-
Notifications
You must be signed in to change notification settings - Fork 4
/
clanczos.c
333 lines (302 loc) · 8.59 KB
/
clanczos.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/*
* clanczos.c
*
* Created on: 1.7.2014
* Author: Teemu Rantalaiho
*
*
* Copyright 2014 Teemu Rantalaiho
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*/
#include "arnoldi.h"
#ifdef TIMER
#define TRACE_STATISTICS 1
#include <sys/time.h>
#include <sys/resource.h>
static double cputime(void)
{
struct rusage resource;
//extern int getrusage();
extern int getrusage(int who, struct rusage *usage);
getrusage(RUSAGE_SELF,&resource);
return(resource.ru_utime.tv_sec + 1e-6*resource.ru_utime.tv_usec +
resource.ru_stime.tv_sec + 1e-6*resource.ru_stime.tv_usec);
}
#endif
#define RADIX_SIZE 32
// For normal complex types
typedef struct fieldtype_s
{
float re;
float im;
} fieldtype;
typedef struct fieldentry_s
{
float re;
float im;
} fieldentry;
#define MANGLE(X) clanczos_##X
#define USE_LANCZOS
#include "arnoldi_generic.h"
#ifndef PRINT_FREE
#define PRINT_FREE(X)
#endif
#ifndef PRINT_MALLOC
#define PRINT_MALLOC(X)
#endif
// static cputimefunT s_cputimef = (cputimefunT)0;
static arnoldi_abs_int s_functions;
fieldtype* new_fieldtype(int size, int nMulti){
fieldtype* result;
if (s_functions.allocFieldFun){
result = (fieldtype*)s_functions.allocFieldFun(size, nMulti);
}
else {
#ifdef CUDA
cudaMalloc(&result, nMulti * size * sizeof(fieldentry));
PRINT_MALLOC(result);
#else
result = (fieldtype*)s_mallocf(nMulti * size * sizeof(fieldentry));
#endif
}
return result;
}
void free_fieldtype(fieldtype* f){
if (s_functions.freeFieldFun){
s_functions.freeFieldFun(f);
}
else {
#ifdef CUDA
cudaFree(f);
PRINT_FREE(f);
#else
s_freef(f);
#endif
}
}
__device__
void get_fieldEntry(const fieldtype* f, int i, fieldentry* result, int multiIdx, int stride){
fieldtype tmp = f[i+multiIdx*stride];
result->re = tmp.re;
result->im = tmp.im;
}
__device__
void set_fieldEntry(fieldtype* f, int i, const fieldentry* entry, int multiIdx, int stride){
fieldtype tmp;
tmp.re = entry->re;
tmp.im = entry->im;
f[i+multiIdx*stride] = tmp;
}
__device__
lcomplex fieldEntry_dot(const fieldentry* a, const fieldentry* b){
lcomplex res;
// (z1*) * z2 = (x1 - iy1)*(x2 + iy2) = x1x2 + y1y2 + i(x1y2 - y1x2)
res.real = a->re * b->re + a->im * b->im;
res.imag = a->re * b->im - a->im * b->re;
return res;
}
__device__
radix fieldEntry_rdot(const fieldentry* a, const fieldentry* b){
return a->re * b->re + a->im * b->im;
}
// dst = scalar * a
__device__
void fieldEntry_scalar_mult(const fieldentry* a, radix scalar, fieldentry* dst ){
dst->re = scalar * a->re;
dst->im = scalar * a->im;
}
// dst = a + scalar * b
__device__
void fieldEntry_scalar_madd(const fieldentry * restrict a, radix scalar, const fieldentry * restrict b, fieldentry * restrict dst ){
dst->re = a->re + scalar * b->re;
dst->im = a->im + scalar * b->im;
}
// dst = scalar * a
__device__
void fieldEntry_complex_mult(const fieldentry* a, lcomplex scalar, fieldentry* dst ){
dst->re = scalar.real * a->re - scalar.imag * a->im;
dst->im = scalar.real * a->im + scalar.imag * a->re;
}
// dst = a + scalar * b
__device__
void fieldEntry_complex_madd(const fieldentry * restrict a, lcomplex scalar, const fieldentry * restrict b, fieldentry * restrict dst ){
dst->re = a->re + scalar.real * b->re - scalar.imag * b->im;
dst->im = a->im + scalar.real * b->im + scalar.imag * b->re;
}
typedef struct init_arn_vec_in_s
{
const fieldtype* src;
fieldtype* dst;
int stride;
} init_arn_vec_in;
PARALLEL_KERNEL_BEGIN(init_arn_vec, init_arn_vec_in, in, i, multiIdx)
{
fieldentry x;
if (in.src){
get_fieldEntry(in.src, i, &x, multiIdx, in.stride);
}
else {
if (i == 0)
x.re = 1.0;
else
x.re = 0.0;
x.im = 0.0;
}
set_fieldEntry(in.dst, i, &x, multiIdx, in.stride);
}
PARALLEL_KERNEL_END()
static int s_size = 0;
#ifdef CUDA
#include "cuda_matmul.h"
template <typename INDEXTYPE>
struct complexMatMulFun {
INDEXTYPE stride;
__device__
scomplex_t operator()( const scomplex_t* data, INDEXTYPE x, INDEXTYPE y, scomplex_t* src, int srcx){
scomplex_t m_ij = data[y*stride + x];
scomplex_t res;
scomplex_t a = src[srcx];
res.re = m_ij.re * a.re - m_ij.im * a.im;
res.im = m_ij.re * a.im + m_ij.im * a.re;
return res;
}
};
struct complexSumFun {
__device__
scomplex_t operator()( scomplex_t a, scomplex_t b){
scomplex_t res;
res.re = a.re + b.re;
res.im = a.im + b.im;
return res;
}
};
template <typename INDEXTYPE, typename ARRAYENTRYT>
struct complexStoreFun {
__device__
void operator()( ARRAYENTRYT* dst, INDEXTYPE i, ARRAYENTRYT entry){
dst[i] = entry;
}
};
#endif
static
int backup_matmul(void* matctx, void* src, void* dst){
int error = 0;
int size = s_size;
fullmat_t* mat = (fullmat_t*)matctx;
scomplex_t* m = (scomplex_t*)mat->data;
scomplex_t* x0 = (scomplex_t*)src;
scomplex_t* y = (scomplex_t*)dst;
#ifndef CUDA
// Trivial implementation - just for backup, replace at will with sgemv
int i;
int hopstride = mat->stride - size;
scomplex_t* lim = x0 + size;
for (i = 0; i < size; i++){
scomplex_t* x = x0;
scomplex_t res;
res.im = 0.0;
res.re = 0.0;
while (x < lim){
scomplex_t a = *m++;
scomplex_t b = *x++;
res.re += a.re * b.re - a.im * b.im;
res.im += a.re * b.im + a.im * b.re;
}
*y++ = res;
m += hopstride;
}
#else
complexMatMulFun<int> matmulf;
complexStoreFun<int, scomplex_t> storef;
complexSumFun cmplxsumf;
matmulf.stride = mat->stride;
error = (int)callFullMatMul<scomplex_t>(m, matmulf, cmplxsumf, storef, size, size, x0, y, false, 0, true);
#endif
return error;
}
// Note - with a normal vector of complex numbers, use nMulti = 1, stride = 0
int run_clanczos(
scomplex_t* results, const void* init_vec, void** rvecs, int size, int nMulti, int stride,
int n_eigs, int n_extend, double tolerance, int* maxIter,
const arnoldi_abs_int* functions, arnmode mode)
{
int error = 0;
fieldtype** e_vecs = (fieldtype**)s_mallocf(sizeof(fieldtype*) * (n_eigs + n_extend));
scomplex_t* e_vals = (scomplex_t*)s_mallocf(sizeof(scomplex_t) * (n_eigs + n_extend));
int i;
if (!(e_vecs && e_vals)){
error = -1;
goto cleanup;
}
s_size = size;
s_functions = *functions;
for (i = 0; i < n_eigs + n_extend; i++){
// TODO: Handle allocation errors
e_vecs[i] = new_fieldtype(size, nMulti);
if (!e_vecs[i])
error = -2;
}
if (error)
goto cleanup;
{
init_arn_vec_in in;
in.dst = e_vecs[0];
in.src = (const fieldtype*)init_vec;
in.stride = stride;
KERNEL_CALL(init_arn_vec, in, 0, size, nMulti);
}
// Set necessary function pointers
s_mulf = (mv_mul_t)functions->mvecmulFun;
if (!s_mulf){
if (!functions->fullmat.data){
error = -1001;
goto cleanup;
}
s_mulf = (mv_mul_t)backup_matmul;
s_matmul_cxt = (void*)&functions->fullmat;
}
else{
s_matmul_cxt = functions->fullmat.data;
}
scalar_reduction_f = functions->scalar_redFun;
complex_reduction_f = functions->complex_redFun;
#ifdef TIMER
s_cputimef = &cputime;
#endif
error = run_arnoldiabs(n_eigs, n_extend, (radix)tolerance, e_vecs, (lcomplex*)e_vals, maxIter, size, nMulti, stride, mode);
if (error)
goto cleanup;
for (i = 0; i < n_eigs + n_extend; i++){
if (i < n_eigs)
results[i] = e_vals[i];
if (rvecs && i < n_eigs)
rvecs[i] = e_vecs[i];
else
free_fieldtype(e_vecs[i]);
e_vecs[i] = NULL;
}
cleanup:
if (e_vecs){
for (i = 0; i < n_eigs + n_extend; i++){
if (e_vecs[i])
free_fieldtype(e_vecs[i]);
}
s_freef(e_vecs);
}
if (e_vals)
s_freef(e_vals);
return error;
}