-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_quantization.py
207 lines (180 loc) · 7.71 KB
/
train_quantization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from __future__ import print_function
import os
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
import argparse
import torch.utils.data as data
from data import WiderFaceDetection, detection_collate, preproc, cfg_mnet, cfg_re50
from data.data_augment_1 import preproc1
from layers.modules import MultiBoxLoss
from layers.functions.prior_box import PriorBox
import time
import datetime
import math
from models.retinaface import RetinaFace, QuantizedRetinaFace
import copy
import pdb
parser = argparse.ArgumentParser(description='Retinaface Training')
parser.add_argument('--training_dataset', default='./data/widerface/train/label.txt', help='Training dataset directory')
parser.add_argument('--network', default='mobile0.25', help='Backbone network mobile0.25 or resnet50')
parser.add_argument('--num_workers', default=5, type=int, help='Number of workers used in dataloading')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--resume_net', default=None, help='resume net for retraining')
parser.add_argument('--resume_epoch', default=0, type=int, help='resume iter for retraining')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD')
parser.add_argument('--save_folder', default='./weights/', help='Location to save checkpoint models')
args = parser.parse_args()
print(args)
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
cfg = None
if args.network == "mobile0.25":
cfg = cfg_mnet
elif args.network == "resnet50":
cfg = cfg_re50
print(cfg)
# rgb_mean = (104, 117, 123) # bgr order
rgb_mean = (0, 0, 0) # bgr order
num_classes = 2
img_dim = cfg['image_size']
num_gpu = cfg['ngpu']
batch_size = cfg['batch_size']
max_epoch = 200
gpu_train = cfg['gpu_train']
num_workers = args.num_workers
momentum = args.momentum
weight_decay = args.weight_decay
initial_lr = args.lr
gamma = args.gamma
training_dataset = args.training_dataset
save_folder = args.save_folder
net = RetinaFace(cfg=cfg)
print("Printing net...")
# print(net)
# for name, param in net.named_parameters():
# if 'body' in name:
# param.requires_grad = False
pytorch_total_params = sum(p.numel() for p in net.parameters())
pytorch_total_params_trainable = sum(p.numel() for p in net.parameters() if p.requires_grad)
print("pytorch_total_params", pytorch_total_params)
print("pytorch_total_params_trainable", pytorch_total_params_trainable)
if args.resume_net is not None:
print('Loading resume network...')
state_dict = torch.load(args.resume_net)
# create new OrderedDict that does not contain `module.`
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
head = k[:7]
if head == 'module.':
name = k[7:] # remove `module.`
else:
name = k
new_state_dict[name] = v
net.load_state_dict(new_state_dict, strict=False)
print("Load: ", args.resume_net)
print("Load finish")
if num_gpu > 1 and gpu_train:
net = torch.nn.DataParallel(net).cuda()
else:
net = net.cuda()
cudnn.benchmark = True
optimizer = optim.SGD(net.parameters(), lr=initial_lr, momentum=momentum, weight_decay=weight_decay)
criterion = MultiBoxLoss(num_classes, 0.35, True, 0, True, 7, 0.35, False)
priorbox = PriorBox(cfg, image_size=(360, 640))
with torch.no_grad():
priors = priorbox.forward()
priors = priors.cuda()
def train():
epoch = 0
net.train()
fused_model = copy.deepcopy(net)
fused_model.train()
# fused_model = torch.quantization.fuse_modules(fused_model, [["body.stage1[0][0]", "body.stage1[0][1]", "body.stage1[0][2]"]], inplace=True)
# print(fused_model)
net.eval()
fused_model.eval()
quantized_model = QuantizedRetinaFace(model_fp32=fused_model)
# quantization_config = torch.quantization.get_default_qconfig("fbgemm")
quantization_config = torch.quantization.get_default_qconfig("qnnpack")
quantized_model.qconfig = quantization_config
print(quantized_model.qconfig)
torch.quantization.prepare_qat(quantized_model, inplace=True)
print("Training QAT Model...")
quantized_model.train()
quantized_model.to('cuda')
dataset = WiderFaceDetection(training_dataset,preproc1(img_dim, rgb_mean))
epoch_size = math.ceil(len(dataset) / batch_size)
max_iter = max_epoch * epoch_size
stepvalues = (cfg['decay1'] * epoch_size, cfg['decay2'] * epoch_size)
step_index = 0
if args.resume_epoch > 0:
start_iter = args.resume_epoch * epoch_size
else:
start_iter = 0
for iteration in range(start_iter, max_iter):
if iteration % epoch_size == 0:
# create batch iterator
batch_iterator = iter(data.DataLoader(dataset, batch_size, shuffle=True, num_workers=num_workers, collate_fn=detection_collate))
# if (epoch % 10 == 0 and epoch > 0) or (epoch % 5 == 0 and epoch > cfg['decay1']):
if epoch > 0 and epoch % 1 == 0:
torch.save(quantized_model.state_dict(), os.path.join(save_folder, cfg['name']+ '_epoch_' + str(epoch) + '_quantized_.pth'))
epoch += 1
load_t0 = time.time()
if iteration in stepvalues:
step_index += 1
lr = adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size)
# load train data
images, targets = next(batch_iterator)
images = images.cuda()
targets = [anno.cuda() for anno in targets]
# forward
out = quantized_model(images)
# backprop
optimizer.zero_grad()
loss_l, loss_c, loss_landm = criterion(out, priors, targets)
loss = cfg['loc_weight'] * loss_l + loss_c + loss_landm
loss.backward()
optimizer.step()
load_t1 = time.time()
batch_time = load_t1 - load_t0
eta = int(batch_time * (max_iter - iteration))
if iteration % 5000 == 0:
print('Epoch:{}/{} || Epochiter: {}/{} || Iter: {}/{} || Loc: {:.4f} Cla: {:.4f} Landm: {:.4f} || LR: {:.8f} || Batchtime: {:.4f} s || ETA: {}'
.format(epoch, max_epoch, (iteration % epoch_size) + 1,
epoch_size, iteration + 1, max_iter, loss_l.item(), loss_c.item(), loss_landm.item(), lr, batch_time, str(datetime.timedelta(seconds=eta))))
# break
quantized_model.to('cpu')
quantized_model.eval()
# print(quantized_model)
torch.save(quantized_model.state_dict(), os.path.join(save_folder, cfg['name'] + '_Final_quantized_.pth'))
quantized_model = torch.quantization.convert(quantized_model, inplace=True)
quantized_model.eval()
# print(quantized_model)
input_p = torch.ones(1, 3, 360, 640)
trace_model = torch.jit.trace(quantized_model, input_p)
path_save = os.path.join(save_folder, cfg['name'] + '_Final_quantized_jit.pth')
torch.jit.save(trace_model, path_save)
print("DONE")
device='cpu'
# quantized_model_load = torch.jit.load(path_save, map_location=device)
# print(quantized_model_load)
# print("LOAD DONE")
def adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size):
"""Sets the learning rate
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
warmup_epoch = -1
if epoch <= warmup_epoch:
lr = 1e-6 + (initial_lr-1e-6) * iteration / (epoch_size * warmup_epoch)
else:
lr = initial_lr * (gamma ** (step_index))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
if __name__ == '__main__':
train()