-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataloader.py
471 lines (349 loc) · 16.2 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
from __future__ import print_function, division
import sys
import os
import torch
import pandas as pd
import numpy as np
import random
import csv
import time
import cv2
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from torch.utils.data.sampler import Sampler
import skimage.io
import skimage.transform
import skimage.color
import skimage
from PIL import Image, ImageEnhance, ImageFilter
class CSVDataset(Dataset):
"""CSV dataset."""
def __init__(self, train_file, class_list, transform=None):
"""
Args:
train_file (string): CSV file with training annotations
annotations (string): CSV file with class list
test_file (string, optional): CSV file with testing annotations
"""
self.train_file = train_file
self.class_list = class_list
self.transform = transform
# parse the provided class file
try:
with self._open_for_csv(self.class_list) as file:
self.classes = self.load_classes(csv.reader(file, delimiter=' '))
except ValueError as e:
raise(ValueError('invalid CSV class file: {}: {}'.format(self.class_list, e)), None)
self.labels = {}
for key, value in self.classes.items():
self.labels[value] = key
# csv with img_path, x1, y1, x2, y2, class_name
try:
with self._open_for_csv(self.train_file) as file:
self.image_data = self._read_annotations(csv.reader(file, delimiter=' '), self.classes)
except ValueError as e:
raise(ValueError('invalid CSV annotations file: {}: {}'.format(self.train_file, e)), None)
self.image_names = list(self.image_data.keys())
def _parse(self, value, function, fmt):
"""
Parse a string into a value, and format a nice ValueError if it fails.
Returns `function(value)`.
Any `ValueError` raised is catched and a new `ValueError` is raised
with message `fmt.format(e)`, where `e` is the caught `ValueError`.
"""
try:
return function(value)
except ValueError as e:
raise(ValueError(fmt.format(e)), None)
def _open_for_csv(self, path):
"""
Open a file with flags suitable for csv.reader.
This is different for python2 it means with mode 'rb',
for python3 this means 'r' with "universal newlines".
"""
if sys.version_info[0] < 3:
return open(path, 'rb')
else:
return open(path, 'r', newline='')
def load_classes(self, csv_reader):
result = {}
for line, row in enumerate(csv_reader):
line += 1
try:
class_name, class_id = row
except ValueError:
raise(ValueError('line {}: format should be \'class_name,class_id\''.format(line)), None)
class_id = self._parse(class_id, int, 'line {}: malformed class ID: {{}}'.format(line))
if class_name in result:
raise ValueError('line {}: duplicate class name: \'{}\''.format(line, class_name))
result[class_name] = class_id
return result
def __len__(self):
return len(self.image_names)
def __getitem__(self, idx):
img = self.load_image(idx)
annot = self.load_annotations(idx)
sample = {'img': img, 'annot': annot, 'scale': 1}
if self.transform:
sample = self.transform(sample)
return sample
def load_image(self, image_index):
#img = skimage.io.imread(self.image_names[image_index])
img = cv2.imread(self.image_names[image_index])
b,g,r = cv2.split(img)
img = cv2.merge([r,g,b])
if len(img.shape) == 2:
img = skimage.color.gray2rgb(img)
return img.astype(np.float32)/255.0
def load_annotations(self, image_index):
# get ground truth annotations
annotation_list = self.image_data[self.image_names[image_index]]
annotations = np.zeros((0, 5))
# some images appear to miss annotations (like image with id 257034)
if len(annotation_list) == 0:
return annotations
# parse annotations
for idx, a in enumerate(annotation_list):
# some annotations have basically no width / height, skip them
x1 = a['x1']
x2 = a['x2']
y1 = a['y1']
y2 = a['y2']
if (x2-x1) < 1 or (y2-y1) < 1:
continue
annotation = np.zeros((1, 5))
annotation[0, 0] = x1
annotation[0, 1] = y1
annotation[0, 2] = x2
annotation[0, 3] = y2
annotation[0, 4] = self.name_to_label(a['class'])
annotations = np.append(annotations, annotation, axis=0)
return annotations
def _read_annotations(self, csv_reader, classes):
result = {}
for line, row in enumerate(csv_reader):
line += 1
try:
img_file, x1, y1, x2, y2, class_name = row[:6]
except ValueError:
raise(ValueError('line {}: format should be \'img_file,x1,y1,x2,y2,class_name\' or \'img_file,,,,,\''.format(line)), None)
if img_file not in result:
result[img_file] = []
# If a row contains only an image path, it's an image without annotations.
if (x1, y1, x2, y2, class_name) == ('.', '.', '.', '.', '.'):
continue
x1 = self._parse(x1, int, 'line {}: malformed x1: {{}}'.format(line))
y1 = self._parse(y1, int, 'line {}: malformed y1: {{}}'.format(line))
x2 = self._parse(x2, int, 'line {}: malformed x2: {{}}'.format(line))
y2 = self._parse(y2, int, 'line {}: malformed y2: {{}}'.format(line))
if class_name !='ignore':
# Check that the bounding box is valid.
if x2 <= x1:
raise ValueError('line {}: x2 ({}) must be higher than x1 ({})'.format(line, x2, x1))
if y2 <= y1:
raise ValueError('line {}: y2 ({}) must be higher than y1 ({})'.format(line, y2, y1))
# check if the current class name is correctly present
if class_name not in classes:
raise ValueError('line {}: unknown class name: \'{}\' (classes: {})'.format(line, class_name, classes))
result[img_file].append({'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2, 'class': class_name})
return result
def name_to_label(self, name):
return self.classes[name]
def label_to_name(self, label):
return self.labels[label]
def num_classes(self):
return max(self.classes.values()) + 1
def image_aspect_ratio(self, image_index):
image = Image.open(self.image_names[image_index])
return float(image.width) / float(image.height)
def collater(data):
imgs = [s['img'] for s in data]
annots = [s['annot'] for s in data]
scales = [s['scale'] for s in data]
widths = [int(s.shape[0]) for s in imgs]
heights = [int(s.shape[1]) for s in imgs]
batch_size = len(imgs)
max_width = np.array(widths).max()
max_height = np.array(heights).max()
padded_imgs = torch.zeros(batch_size, max_width, max_height, 3)
for i in range(batch_size):
img = imgs[i]
padded_imgs[i, :int(img.shape[0]), :int(img.shape[1]), :] = img
max_num_annots = max(annot.shape[0] for annot in annots)
annot_padded = torch.ones((len(annots), max_num_annots, 5)) * -1
#print(annot_padded.shape)
if max_num_annots > 0:
for idx, annot in enumerate(annots):
#print(annot.shape)
if annot.shape[0] > 0:
annot_padded[idx, :annot.shape[0], :] = annot
else:
annot_padded = torch.ones((len(annots), 1, 5)) * -1
padded_imgs = padded_imgs.permute(0, 3, 1, 2)
return {'img': padded_imgs, 'annot': annot_padded, 'scale': scales}
class Resizer(object):
"""Convert ndarrays in sample to Tensors."""
def __call__(self, sample, min_side=800, max_side=1400):
image, annots, scale = sample['img'], sample['annot'], sample['scale']
rows, cols, cns = image.shape
#scale = min_side / rows
smallest_side = min(rows, cols)
# rescale the image so the smallest side is min_side
scale = min_side / smallest_side
# check if the largest side is now greater than max_side, which can happen
# when images have a large aspect ratio
largest_side = max(rows, cols)
if largest_side * scale > max_side:
scale = max_side / largest_side
# resize the image with the computed scale
image = cv2.resize(image, (int(round((cols*scale))), int(round((rows*scale)))))
#image = skimage.transform.resize(image, (int(round(rows*scale)), int(round((cols*scale)))))
rows, cols, cns = image.shape
pad_w = 32 - rows%32
pad_h = 32 - cols%32
new_image = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32)
new_image[:rows, :cols, :] = image.astype(np.float32)
annots[:, :4] *= scale
return {'img': new_image, 'annot': annots, 'scale': scale}
class Augmenter(object):
"""Convert ndarrays in sample to Tensors."""
def __call__(self, sample, flip_x=0.5):
if np.random.rand() < flip_x:
image, annots, scales = sample['img'], sample['annot'], sample['scale']
image = image[:, ::-1, :]
rows, cols, channels = image.shape
x1 = annots[:, 0].copy()
x2 = annots[:, 2].copy()
x_tmp = x1.copy()
annots[:, 0] = cols - x2
annots[:, 2] = cols - x_tmp
sample = {'img': image, 'annot': annots, 'scale': scales}
return sample
class Random_crop(object):
def __call__(self, sample):
image, annots, scales = sample['img'], sample['annot'], sample['scale']
if not annots.shape[0]:
return {'img': image, 'annot': annots, 'scale': scales}
if random.choice([0, 1]):
return {'img': image, 'annot': annots, 'scale': scales}
else:
rows, cols, cns = image.shape
flag = 0
while True:
flag += 1
if flag > 10:
return {'img': image, 'annot': annots, 'scale': scales}
crop_ratio = random.uniform(0.5, 1)
rows_zero = int(rows * random.uniform(0, 1 - crop_ratio))
cols_zero = int(cols * random.uniform(0, 1 - crop_ratio))
crop_rows = int(rows * crop_ratio)
crop_cols = int(cols * crop_ratio)
'''
new_image = image[rows_zero:rows_zero+crop_rows, cols_zero:cols_zero+crop_cols, :]
new_image = cv2.resize(new_image, (cols, rows))
#new_image = skimage.transform.resize(new_image, (rows, cols))
new_annots = np.zeros((0, 5))
for i in range(annots.shape[0]):
x1 = max(annots[i, 0] - cols_zero, 0)
y1 = max(annots[i, 1] - rows_zero, 0)
x2 = min(annots[i, 2] - cols_zero, crop_cols)
y2 = min(annots[i, 3] - rows_zero, crop_rows)
label = annots[i, 4]
if x1 + 10 < x2 and y1 + 10 < y2:
x1 /= crop_ratio
y1 /= crop_ratio
x2 /= crop_ratio
y2 /= crop_ratio
new_annots = np.append(new_annots, np.array([[x1, y1, x2, y2, label]]), axis=0)
if not new_annots.shape[0]:
continue
'''
new_image = np.zeros((rows , cols , cns))
new_image[rows_zero:rows_zero+crop_rows, cols_zero:cols_zero+crop_cols, :] = image[rows_zero:rows_zero+crop_rows, cols_zero:cols_zero+crop_cols, :]
new_annots = np.zeros((0, 5))
for i in range(annots.shape[0]):
x1 = max(cols_zero, annots[i, 0])
y1 = max(rows_zero, annots[i, 1])
x2 = min(cols_zero+crop_cols, annots[i, 2])
y2 = min(rows_zero+crop_rows, annots[i, 3])
label = annots[i, 4]
if x1+10 < x2 and y1+10 < y2:
new_annots = np.append(new_annots, np.array([[x1,y1,x2,y2,label]]), axis=0)
if not new_annots.shape[0]:
continue
return {'img': new_image, 'annot': new_annots,'scale': scales}
class Color(object):
def __call__(self, sample):
image, annots, scales = sample['img'], sample['annot'], sample['scale']
image = Image.fromarray(image)
ratio = [0.5, 0.8, 1.2, 1.5]
if random.choice([0, 1]):
enh_bri = ImageEnhance.Brightness(image)
brightness = random.choice(ratio)
image = enh_bri.enhance(brightness)
if random.choice([0, 1]):
enh_col = ImageEnhance.Color(image)
color = random.choice(ratio)
image = enh_col.enhance(color)
if random.choice([0, 1]):
enh_con = ImageEnhance.Contrast(image)
contrast = random.choice(ratio)
image = enh_con.enhance(contrast)
if random.choice([0, 1]):
enh_sha = ImageEnhance.Sharpness(image)
sharpness = random.choice(ratio)
image = enh_sha.enhance(sharpness)
if random.choice([0, 1]):
image = image.filter(ImageFilter.BLUR)
image = np.asarray(image)
return {'img': image, 'annot': annots, 'scale': scales}
class Normalizer(object):
def __init__(self):
self.mean = np.array([[[0.485, 0.456, 0.406]]])
self.std = np.array([[[0.229, 0.224, 0.225]]])
def __call__(self, sample):
image, annots, scales = sample['img'], sample['annot'], sample['scale']
image = (image.astype(np.float32)-self.mean)/self.std
sample = {'img': torch.from_numpy(image), 'annot': torch.from_numpy(annots), 'scale': scales}
return sample
class UnNormalizer(object):
def __init__(self, mean=None, std=None):
if mean == None:
self.mean = [0.485, 0.456, 0.406]
else:
self.mean = mean
if std == None:
self.std = [0.229, 0.224, 0.225]
else:
self.std = std
def __call__(self, tensor):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized image.
"""
for t, m, s in zip(tensor, self.mean, self.std):
t.mul_(s).add_(m)
return tensor
class AspectRatioBasedSampler(Sampler):
def __init__(self, data_source, batch_size, drop_last):
self.data_source = data_source
self.batch_size = batch_size
self.drop_last = drop_last
self.groups = self.group_images()
def __iter__(self):
random.shuffle(self.groups)
for group in self.groups:
yield group
def __len__(self):
if self.drop_last:
return len(self.sampler) // self.batch_size
else:
return (len(self.sampler) + self.batch_size - 1) // self.batch_size
def group_images(self):
# determine the order of the images
order = list(range(len(self.data_source)))
order.sort(key=lambda x: self.data_source.image_aspect_ratio(x))
# divide into groups, one group = one batch
return [[order[x % len(order)] for x in range(i, i + self.batch_size)] for i in range(0, len(order), self.batch_size)]