forked from chdoig/scipy2015-blaze-bokeh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
animate_widgets.py
169 lines (114 loc) · 4.24 KB
/
animate_widgets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# -*- coding: utf-8 -*-
# **Exercise: Animate the timeseries plot**
# In[1]:
# Imports
from threading import Thread
import datetime
import logging
import time
import numpy as np
import netCDF4
import pandas as pd
from bokeh.plotting import vplot, hplot, cursession, curdoc, output_server, show
from bokeh.models.widgets import Button, Icon
from viz import climate_map, timeseries, legend, get_slice
# In[2]:
# Data
data = netCDF4.Dataset('data/Land_and_Ocean_LatLong1.nc')
t = data.variables['temperature']
df = pd.read_csv('data/Land_Ocean_Monthly_Anomaly_Average.csv', parse_dates=[0])
# In[3]:
# Output option
output_server("climate")
# In[4]:
from bokeh.plotting import figure
# Data
year = 1850
month = 1
years = [str(x) for x in np.arange(1850, 2015, 1)]
months = [str(x) for x in np.arange(1, 13, 1)]
months_str = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
month_str = months_str[month-1]
date = datetime.date(year, month, 1)
df['moving_average'] = pd.rolling_mean(df['anomaly'], 12)
df = df.fillna(0)
# New text Plot
title = figure(width=1200, height=100, x_range=(0, 1200), y_range=(0, 100), toolbar_location=None,
x_axis_type=None, y_axis_type=None, outline_line_color="#FFFFFF", tools="", min_border=0)
title.text(x=500, y=5, text=[month_str], text_font_size='36pt', text_color='black', name="month", text_font="Georgia")
title.text(x=350, y=5, text=[str(year)], text_font_size='36pt', text_color='black', name="year",text_font="Georgia")
# In[5]:
# Plots
climate_map = climate_map()
timeseries = timeseries()
legend = legend()
# ADD WIDGETS
play = True
def play_handler():
print("button_handler: start click")
global play
play = True
def stop_handler():
print("button_handler: stop click")
global play
play = False
button_start = Button(label="Start", type="success")
button_start.on_click(play_handler)
button_stop = Button(label="Stop", type="danger")
button_stop.on_click(stop_handler)
controls = hplot(button_start, button_stop)
# In[6]:
# New circle in timeseries plot
timeseries.circle(x=[date], y=[df[df.datetime == date].moving_average], size=8, name="circle")
# In[7]:
# Create layout
map_legend = hplot(climate_map, legend)
layout = vplot(controls, title, map_legend, timeseries)
# In[8]:
# Show
show(layout)
# In[9]:
# Select data source for climate_map and month and year
renderer = climate_map.select(dict(name="image"))
ds = renderer[0].data_source
month_renderer = title.select(dict(name="month"))
month_ds = month_renderer[0].data_source
year_renderer = title.select(dict(name="year"))
year_ds = year_renderer[0].data_source
# Select data source for timeseries data
timeseries_renderer = timeseries.select(dict(name="circle"))
timeseries_ds = timeseries_renderer[0].data_source
def should_play():
"""
Return true if we should play animation, otherwise block
"""
global play
while True:
if play:
return True
else:
time.sleep(0.05)
def background_thread(ds, year_ds, month_ds, timeseries_ds):
"""Plot animation, update data if play is True, otherwise stop"""
try:
while True:
for year_index in np.arange(2000, 2015, 1):
year_ds.data["text"] = [str(year_index)]
for month_index in np.arange(1, 13, 1):
if should_play():
month_ds.data["text"] = [months_str[month_index-1]]
image = get_slice(t, year_index, month_index)
date = datetime.date(year_index, month_index, 1)
timeseries_ds.data["x"] = [date]
timeseries_ds.data["y"] = [df[df.datetime == date].moving_average]
ds.data["image"] = [image]
cursession().store_objects(ds, year_ds, month_ds, timeseries_ds)
time.sleep(0.5)
time.sleep(0.5)
except:
logger.exception("An error occurred")
raise
# spin up a background thread
Thread(target=background_thread, args=(ds, year_ds, month_ds, timeseries_ds)).start()
# endlessly poll
cursession().poll_document(curdoc(), 0.04)