-
Notifications
You must be signed in to change notification settings - Fork 0
/
analysis.R
252 lines (200 loc) · 9.23 KB
/
analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
rawData<-read.table("data.csv",sep=",",header=TRUE)
# clean up data
dataStep3<-subset(rawData,subset=error!=1) # remove errors
meanRT<-mean(dataStep3$RT)
sdRT<-sd(dataStep3$RT)
data<-subset(dataStep3,subset=RT<meanRT+3*sdRT & RT>meanRT-3*sdRT) # remove 3 SD outliers
attach(data)
# produce trajectory graphs
dataLargeSmallComp<-subset(data,compSize=="small" & decision=="larger")
dataLargeLargeComp<-subset(data,compSize=="large" & decision=="larger")
dataSmallSmallComp<-subset(data,compSize=="small" & decision=="smaller")
dataSmallLargeComp<-subset(data,compSize=="large" & decision=="smaller")
dataLargeClose<-subset(data,distance=="small" & decision=="larger")
dataLargeFar<-subset(data,distance=="large" & decision=="larger")
dataSmallClose<-subset(data,distance=="small" & decision=="smaller")
dataSmallFar<-subset(data,distance=="large" & decision=="smaller")
xCoords=rep(0,808)
yCoords=rep(0,808)
manip=rep(0,808)
size=rep(0,808)
decision=rep(0,808)
for (i in 1:101){
xCoords[i]=mean(dataLargeSmallComp[,i+28])
yCoords[i]=mean(dataLargeSmallComp[,i+129])
manip[i]="by component size"
size[i]="small"
decision[i]="larger than 1/2"
xCoords[i+101]=mean(dataLargeLargeComp[,i+28])
yCoords[i+101]=mean(dataLargeLargeComp[,i+129])
manip[i+101]="by component size"
size[i+101]="large"
decision[i+101]="larger than 1/2"
xCoords[i+202]=mean(dataSmallSmallComp[,i+28])
yCoords[i+202]=mean(dataSmallSmallComp[,i+129])
manip[i+202]="by component size"
size[i+202]="small"
decision[i+202]="smaller than 1/2"
xCoords[i+303]=mean(dataSmallLargeComp[,i+28])
yCoords[i+303]=mean(dataSmallLargeComp[,i+129])
manip[i+303]="by component size"
size[i+303]="large"
decision[i+303]="smaller than 1/2"
xCoords[i+404]=mean(dataLargeClose[,i+28])
yCoords[i+404]=mean(dataLargeClose[,i+129])
manip[i+404]="by distance"
size[i+404]="small"
decision[i+404]="larger than 1/2"
xCoords[i+505]=mean(dataLargeFar[,i+28])
yCoords[i+505]=mean(dataLargeFar[,i+129])
manip[i+505]="by distance"
size[i+505]="large"
decision[i+505]="larger than 1/2"
xCoords[i+606]=mean(dataSmallClose[,i+28])
yCoords[i+606]=mean(dataSmallClose[,i+129])
manip[i+606]="by distance"
size[i+606]="small"
decision[i+606]="smaller than 1/2"
xCoords[i+707]=-mean(dataLargeFar[,i+28])
yCoords[i+707]=mean(dataLargeFar[,i+129])
manip[i+707]="by distance"
size[i+707]="large"
decision[i+707]="smaller than 1/2"
}
library("ggplot2")
trajectoryData=data.frame(xCoords,yCoords,manip,size,decision)
plot=ggplot(trajectoryData,aes(x=xCoords,y=yCoords,group=size))+xlim(-1,1)+ylim(0,1.5)
paths=geom_path(aes(linetype=size),size=1.3)
colors=scale_colour_manual(values=c("blue","red"))
labels=labs(x="x-coordinates",y="y-coordinates")
faceting=facet_grid(decision~manip)
stripFormat=theme(strip.text=element_text(face="bold",size=rel(1.5)))
legendFormat=theme(legend.title=element_text(face="bold",size=rel(1.5)),legend.text=element_text(size=rel(1.5)))
axesFormat=theme(axis.title=element_text(size=rel(1.4)))
basePlot=plot+paths+colors+labels+faceting+stripFormat+legendFormat+axesFormat
basePlot+labs(colour="Size")+theme(legend.position=c(0.9,0.15))
# note: export image as 600x600 to get same dimensions as Acta Psychologica article
# PERFORMANCE MEASURES
# RT
# manip=by compSize
agg=aggregate(RT~subject+compSize+decision,data=data,FUN="mean") # RT performance data aggregated by subject
RT.aov=aov(RT~as.factor(compSize)*as.factor(decision)+Error(as.factor(subject)/(as.factor(compSize)*as.factor(decision))),data=agg)
summary(RT.aov)
print(model.tables(RT.aov,"means"),digits=6)
sd(agg$RT[agg$compSize=="large" & agg$decision=="smaller"]) # edit this to get various SDs
# RT
# manip=by Distance
agg=aggregate(RT~subject+distance+decision,data=data,FUN="mean") # RT performance data aggregated by subject
RT.aov=aov(RT~as.factor(distance)*as.factor(decision)+Error(as.factor(subject)/(as.factor(distance)*as.factor(decision))),data=agg)
summary(RT.aov)
print(model.tables(RT.aov,"means"),digits=6)
sd(agg$RT[agg$distance=="large" & agg$decision=="smaller"]) # edit this to get various SDs
# init
# manip=by compSize
agg=aggregate(init~subject+compSize+decision,data=data,FUN="mean") # RT performance data aggregated by subject
init.aov=aov(init~as.factor(compSize)*as.factor(decision)+Error(as.factor(subject)/(as.factor(compSize)*as.factor(decision))),data=agg)
summary(init.aov)
print(model.tables(init.aov,"means"),digits=6)
sd(agg$init[agg$compSize=="large" & agg$decision=="smaller"]) # edit this to get various SDs
# init
# manip=by Distance
agg=aggregate(init~subject+distance+decision,data=data,FUN="mean") # RT performance data aggregated by subject
init.aov=aov(init~as.factor(distance)*as.factor(decision)+Error(as.factor(subject)/(as.factor(distance)*as.factor(decision))),data=agg)
summary(init.aov)
print(model.tables(init.aov,"means"),digits=6)
sd(agg$init[agg$distance=="large" & agg$decision=="smaller"]) # edit this to get various SDs
# MD
# manip=by compSize
agg=aggregate(MD~subject+compSize+decision,data=data,FUN="mean") # RT performance data aggregated by subject
MD.aov=aov(MD~as.factor(compSize)*as.factor(decision)+Error(as.factor(subject)/(as.factor(compSize)*as.factor(decision))),data=agg)
summary(MD.aov)
print(model.tables(MD.aov,"means"),digits=6)
sd(agg$MD[agg$compSize=="large" & agg$decision=="smaller"]) # edit this to get various SDs
# MD
# manip=by Distance
agg=aggregate(MD~subject+distance+decision,data=data,FUN="mean") # RT performance data aggregated by subject
MD.aov=aov(MD~as.factor(distance)*as.factor(decision)+Error(as.factor(subject)/(as.factor(distance)*as.factor(decision))),data=agg)
summary(MD.aov)
print(model.tables(MD.aov,"means"),digits=6)
sd(agg$MD[agg$distance=="large" & agg$decision=="smaller"]) # edit this to get various SDs
# AUC
# manip=by compSize
agg=aggregate(AUC~subject+compSize+decision,data=data,FUN="mean") # RT performance data aggregated by subject
AUC.aov=aov(AUC~as.factor(compSize)*as.factor(decision)+Error(as.factor(subject)/(as.factor(compSize)*as.factor(decision))),data=agg)
summary(AUC.aov)
print(model.tables(AUC.aov,"means"),digits=6)
sd(agg$MD[agg$compSize=="large" & agg$decision=="smaller"]) # edit this to get various SDs
# AUC
# manip=by Distance
agg=aggregate(AUC~subject+distance+decision,data=data,FUN="mean") # RT performance data aggregated by subject
AUC.aov=aov(AUC~as.factor(distance)*as.factor(decision)+Error(as.factor(subject)/(as.factor(distance)*as.factor(decision))),data=agg)
summary(AUC.aov)
print(model.tables(AUC.aov,"means"),digits=6)
sd(agg$MD[agg$distance=="large" & agg$decision=="smaller"]) # edit this to get various SDs
# MD time
# manip=by compSize
agg=aggregate(MD_time~subject+compSize+decision,data=data,FUN="mean") # RT performance data aggregated by subject
MDtime.aov=aov(MD_time~as.factor(compSize)*as.factor(decision)+Error(as.factor(subject)/(as.factor(compSize)*as.factor(decision))),data=agg)
summary(MDtime.aov)
print(model.tables(MDtime.aov,"means"),digits=6)
sd(agg$MD[agg$compSize=="large" & agg$decision=="smaller"]) # edit this to get various SDs
# MD time
# manip=by Distance
agg=aggregate(MD_time~subject+distance+decision,data=data,FUN="mean") # RT performance data aggregated by subject
MDtime.aov=aov(MD_time~as.factor(distance)*as.factor(decision)+Error(as.factor(subject)/(as.factor(distance)*as.factor(decision))),data=agg)
summary(MDtime.aov)
print(model.tables(MDtime.aov,"means"),digits=6)
sd(agg$MD[agg$distance=="large" & agg$decision=="smaller"]) # edit this to get various SDs
# analysis of when deviations happen by subject
# see file trajBySubject.R for script to calculate by subject
positionsCompLarge=c(77,38,14,31,12,37,47,34,75,45,43,51,46,8,49,40,41,33,3,32,35,41,44,51,50,61)
positionsDistLarge=c(94,39,15,28,80,56,48,49,82,21,54,66,37,63,74,39,67,38,56,21,75,86,56,71,63,64)
positionsCompSmall=c(66,36,49,70,37,28,42,5,37,54,46,35,53,47,14,39,32,38,43,45,50,34,7,45,23,10)
positionsDistSmall=c(81,59,59,38,59,71,58,69,84,70,60,32,59,44,27,81,13,68,72,59,86,57,72,59,48,59)
subject=rep(1:26,4)
manip=rep(0,104)
decision=rep(0,104)
splitPosition=rep(0,104)
for (i in 1:26){
manip[i]="by component"
decision[i]="larger"
splitPosition[i]=positionsCompLarge[i]
}
for (i in 27:52){
manip[i]="by distance"
decision[i]="larger"
splitPosition[i]=positionsDistLarge[i-26]
}
for (i in 53:78){
manip[i]="by component"
decision[i]="smaller"
splitPosition[i]=positionsCompSmall[i-52]
}
for (i in 79:104){
manip[i]="by distance"
decision[i]="smaller"
splitPosition[i]=positionsDistSmall[i-78]
}
splitData=data.frame(subject,manip,decision,splitPosition)
split.aov=aov(splitPosition~manip*decision+Error(as.factor(subject)/(manip*decision)),data=splitData)
summary(split.aov)
print(model.tables(split.aov,"means"),digits=6)
# bimodality coefficients
MDvector=data$z.MD.separate
# histogram of MD values
library("ggplot2")
basePlot=ggplot(NULL,aes(x=MDvector))+geom_histogram(binwidth=0.4,fill="white",colour="black")
labels=labs(x="Maximum deviation (MD)",y="Frequency")
axesFormat=theme(axis.title=element_text(size=rel(1.4)))
basePlot+labels+axesFormat
# computations
# Hartigan's dip statistic
library("diptest")
dip.test(MDvector)
# Bimodality coefficient (SAS)
library("moments")
s=skewness(MDvector)
k=kurtosis(MDvector)
n=length(MDvector)
BC=(s^2+1)/(k+(3*(n-1)^2)/((n-2)*(n-3)))
BC