-
Notifications
You must be signed in to change notification settings - Fork 0
/
MLP_train_test_multimodal_cascade_fusion.py
502 lines (397 loc) · 19.2 KB
/
MLP_train_test_multimodal_cascade_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import os
import sys
import openslide
from PIL import Image
import numpy as np
import random
import argparse
import pickle
import torch
import torch.nn as nn
import torch.utils.data as data
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.models as models
from sklearn.metrics import accuracy_score, roc_auc_score, mean_absolute_error
from order_top_data import create_max_mix_tiles_dataset, create_max_tiles_dataset, create_max_tiles_dataset_bin,create_max_mix_tiles_dataset_bin,create_max_tiles_dataset_expected_value_bin
from torch.utils.data import Dataset
from torchvision import models, transforms
import monai
from monai.data import ImageDataset, DataLoader
from monai.transforms import EnsureChannelFirst, Compose, RandRotate90, Resize, ScaleIntensity
parser = argparse.ArgumentParser(description='Multimodal MRI + Path - MLP aggregator - cascade with regularization')
parser.add_argument('--train_lib', type=str, default='train', help='path to train MIL library binary')
parser.add_argument('--val_lib', type=str, default='test', help='path to validation MIL library binary. If present.')
parser.add_argument('--fold', type=int, default=4, help='select kfold')
parser.add_argument('--batch_size', type=int, default=32, help='mini-batch size (default: 128)')
parser.add_argument('--nepochs', type=int, default=30, help='number of epochs')
parser.add_argument('--workers', default=0, type=int, help='number of data loading workers (default: 4)')
parser.add_argument('--s', default=10, type=int, help='how many top k tiles to consider per class(default: 10)')
parser.add_argument('--mix', default='expected',choices=['mix','global', 'expected'], help='get top classes probabilities (3 classes)')
parser.add_argument('--ndims', default=256, type=int, help='length of hidden representation (default: 128)')
parser.add_argument('--model_PATH', type=str, default='checkpoint_best_512_bin_fold_4.pth', help='path to trained model checkpoint')
parser.add_argument('--model_MRI', type=str, default=r'MRI_weights\multiclass_t1ce\multiclass_fold4_t1ce\multiclass_checkpoint_best_tiles.pth', help='path to trained model checkpoint')
parser.add_argument('--method_MRI', choices=['UniMRI','MultiMRI'], default='UniMRI')
parser.add_argument('--MRI_type', choices=['flair', 't1', 't1ce', 't2', 'all'], default='t1ce')
parser.add_argument('--MRI_n_outputs', default=3, type=int,help='multiclass vs binary mri')
parser.add_argument('--weights', default='CE', help='unbalanced positive class weight (default: CE, ordinal)')
parser.add_argument('--shuffle', action='store_true', help='to shuffle order of sequence')
parser.add_argument('--dataset', default='',choices=['','_full', '_all','_biomarkers_all','_biomarkers_full'], help='select dataset partition')
parser.add_argument('--results_folder',default='')
#
def main():
best_loss=0
global args, best_acc
args = parser.parse_args()
#Create dataset with top tiles
if args.mix in ('mix'):
print(f'Top tiles per class: {round(args.s/2)}')
create_max_mix_tiles_dataset_bin('multimodal_glioma_data_sorted{args.dataset}.pickle',args.fold, round(args.s/2),args.dataset)
elif args.mix in ('expected'):
print(f'Top tiles: {args.s}')
create_max_tiles_dataset_expected_value_bin('multimodal_glioma_data_sorted{args.dataset}.pickle',args.fold,args.dataset)
else:
print(f'Top tiles: {args.s}')
create_max_tiles_dataset_bin('multimodal_glioma_data_sorted{args.dataset}.pickle',args.fold, args.s,args.dataset)
#load libraries
normalize = transforms.Normalize(mean=[0.5,0.5,0.5],std=[0.1,0.1,0.1])
trans = transforms.Compose([
transforms.ToTensor(),
normalize
])
#MRI transforms
train_transforms = Compose([ScaleIntensity(), EnsureChannelFirst(), RandRotate90()])
val_transforms = Compose([ScaleIntensity(), EnsureChannelFirst()])
train_dset = rnndata(fold=args.fold, typet=args.train_lib, s=args.s, shuffle=args.shuffle, transform=trans, transform_MRI=val_transforms, MRI_exam=args.MRI_type)
train_loader = torch.utils.data.DataLoader(
train_dset,
batch_size=args.batch_size, shuffle=args.shuffle,
num_workers=args.workers, pin_memory=False)
val_dset = rnndata(fold=args.fold, typet=args.val_lib, s=args.s, shuffle=False, transform=trans,transform_MRI=val_transforms, MRI_exam=args.MRI_type)
val_loader = torch.utils.data.DataLoader(
val_dset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=False)
#make model fro PATH
embedder_PATH = ResNetEncoder(args.model_PATH)
for param in embedder_PATH.parameters():
param.requires_grad = False
embedder_PATH = embedder_PATH.cuda()
embedder_PATH.eval()
#make model for MRI
embedder_MRI = MRI_DensenetEncoder(args.model_MRI)
for param in embedder_MRI.parameters():
param.requires_grad = False
embedder_MRI = embedder_MRI.cuda()
embedder_MRI.eval()
mlp = MLP_single(args.ndims)
# mlp_dict = torch.load(os.path.join(args.results_folder,f'rnn_checkpoint_best_tiles_{args.s}_mix_{args.mix}_loss_{args.weights}_fold_{args.fold}_multimodal.pth'))
# mlp.load_state_dict(mlp_dict['state_dict'])
mlp = mlp.cuda()
if args.weights in ('CE'):
# w = torch.Tensor([0.5912698412698413, 1.1037037037037036, 2.4833333333333334])
criterion = nn.CrossEntropyLoss().cuda()
else:
criterion=ordinal_loss
#create results_folder
os.makedirs(os.path.join(args.results_folder,"results"), exist_ok=True)
optimizer = optim.Adam(mlp.parameters(), lr=1e-3)
cudnn.benchmark = True
fconv = open(os.path.join(args.results_folder, f'convergence_tiles_{args.s}_mix_{args.mix}_loss_{args.weights}_fold_{args.fold}.csv'), 'w')
fconv.write('epoch,train.loss,val.loss\n')
fconv.close()
for epoch in range(args.nepochs):
train_loss = train_single(epoch, embedder_PATH,embedder_MRI, mlp, train_loader, criterion, optimizer)
val_loss, avg_acc,Phat, Phat_p = test_single(epoch, embedder_PATH,embedder_MRI, mlp, val_loader, criterion)
fconv = open(os.path.join(args.results_folder,f'convergence_tiles_{args.s}_mix_{args.mix}_loss_{args.weights}_fold_{args.fold}.csv'), 'a')
fconv.write('{},{},{}\n'.format(epoch+1, train_loss, val_loss))
fconv.close()
val_err = avg_acc
if val_err > best_loss:
best_loss = val_err
obj = {
'epoch': epoch+1,
'state_dict': mlp.state_dict()
}
torch.save(obj, os.path.join(args.results_folder,f'rnn_checkpoint_best_tiles_{args.s}_mix_{args.mix}_loss_{args.weights}_fold_{args.fold}.pth'))
fp = open(os.path.join(args.results_folder, f'predictions_tiles_{args.s}_mix_{args.mix}_loss_{args.weights}_fold_{args.fold}.csv'), 'w')
fp.write('file,target,prediction,probability_0,probability_1,probability_2\n')
for name, target, prob, pred in zip(val_dset.slidenames, val_dset.targets, Phat_p,Phat):
fp.write('{},{},{},{},{},{}\n'.format(name, target, pred, prob[0],prob[1],prob[2]))
fp.close()
def train_single(epoch, embedder_PATH, embedder_MRI, mlp, loader, criterion, optimizer):
mlp.train()
running_loss = 0.
avg_acc = 0
avg_auc=0
avg_mae=0
Phat=[]
Phat_p=[]
Y_true=[]
out_mri_all=[]
for i,(inputs_PATH,inputs_MRI,inputs_age, inputs_gender, target) in enumerate(loader):
print('Training - Epoch: [{}/{}]\tBatch: [{}/{}]'.format(epoch+1, args.nepochs, i+1, len(loader)))
batch_size = inputs_PATH[0].size(0)
mlp.zero_grad()
inputs=[]
for s in range(len(inputs_PATH)):
input = inputs_PATH[s].cuda()
_, input = embedder_PATH(input)
inputs.append(input)
# input_mri = embedder_MRI(torch.unsqueeze(inputs_MRI[0], 1).cuda())
input_mri, classes_mri = embedder_MRI(inputs_MRI.cuda())
# input = torch.cat((input_mri, torch.cat(inputs, dim=1),torch.unsqueeze(inputs_age.cuda(), 1).float(),torch.unsqueeze(inputs_gender.cuda(), 1).float()), dim=1)
input = torch.cat((input_mri, torch.cat(inputs, dim=1)), dim=1)
# input = torch.cat(inputs, dim=1)
output = mlp(input)
target_path=target.clone()
# for i in range(len(target)):
# if target[i]==2:
# target_path[i]=1
target = target.cuda()
target_path = target_path.cuda()
loss = criterion(output,target_path)
loss.backward()
optimizer.step()
running_loss += loss.item()*target.size(0)
probss, classes = to_proba_and_classes(output)
GT = target.detach().cpu().numpy()
if args.weights in ('ordinal'):
Pred=(classes.detach().squeeze().cpu().numpy())
else:
Pred=(output.detach().squeeze().cpu().numpy().argmax(1))*1
Phat_p.append(F.softmax(output, 1).detach().cpu().numpy())
# print(Phat_p)
# avg_auc += roc_auc_score(GT,Phat_p, multi_class='ovr')/len(loader)
Phat.append(Pred)
Y_true.append(GT)
if args.MRI_n_outputs in ([3]):
out_mri=F.softmax(classes_mri, 1).argmax(1)*1
else:
out_mri=F.softmax(classes_mri, 1).argmax(1)*2
out_mri = out_mri.detach().cpu().numpy()
out_mri_all.append(out_mri)
Phat_mri = np.concatenate(out_mri_all)
Phat = np.concatenate(Phat)
Y_true = np.concatenate(Y_true)
Phat_p = np.concatenate(Phat_p)
# cascade model
for i in range(len(Phat)):
if Phat_mri[i]==2:
Phat[i]=2
running_loss = running_loss/len(loader.dataset)
avg_acc = accuracy_score(Y_true, Phat)
avg_mae = mean_absolute_error(Y_true, Phat)
# avg_auc = roc_auc_score(Y_true,Phat_p)
print('Training - Epoch: [{}/{}]\tLoss: {}\tACC: {}\tMAE: {}'.format(epoch+1, args.nepochs, running_loss, avg_acc, avg_mae))
return running_loss
def test_single(epoch,embedder_PATH, embedder_MRI, mlp, loader, criterion):
mlp.eval()
running_loss = 0.
avg_acc = 0
avg_auc=0
avg_mae=0
Phat=[]
Y_true=[]
Phat_p=[]
out_mri_all=[]
with torch.no_grad():
for i,(inputs_PATH,inputs_MRI,inputs_age, inputs_gender, target) in enumerate(loader):
print('Validating - Epoch: [{}/{}]\tBatch: [{}/{}]'.format(epoch+1,args.nepochs,i+1,len(loader)))
batch_size = inputs_PATH[0].size(0)
inputs=[]
for s in range(len(inputs_PATH)):
input = inputs_PATH[s].cuda()
_, input = embedder_PATH(input)
inputs.append(input)
input_mri, classes_mri = embedder_MRI(inputs_MRI.cuda())
# input_mri = embedder_MRI(torch.unsqueeze(inputs_MRI[0], 1).cuda())
# print(F.softmax(input_mri, 1).argmax(1)*1)
# input = torch.cat((input_mri, torch.cat(inputs, dim=1),torch.unsqueeze(inputs_age.cuda(), 1).float(),torch.unsqueeze(inputs_gender.cuda(), 1).float()), dim=1)
input = torch.cat((input_mri, torch.cat(inputs, dim=1)), dim=1)
# input = torch.cat(inputs, dim=1)
output = mlp(input)
target_path=target.clone()
# for i in range(len(target)):
# if target[i]==2:
# target_path[i]=1
target = target.cuda()
target_path = target_path.cuda()
loss = criterion(output,target_path)
running_loss += loss.item()*target.size(0)
probss, classes = to_proba_and_classes(output)
GT = target.detach().cpu().numpy()
if args.weights in ('ordinal'):
Pred=(classes.detach().squeeze().cpu().numpy())
else:
Pred=(output.detach().squeeze().cpu().numpy().argmax(1))*1
# print('GT: ', GT,' \nPred: ', Pred)
Phat_p.append(F.softmax(output, 1).detach().cpu().numpy())
# avg_auc += roc_auc_score(GT,Phat_p, multi_class='ovr')/len(loader)
Phat.append(Pred)
Y_true.append(GT)
if args.MRI_n_outputs in ([3]):
out_mri=F.softmax(classes_mri, 1).argmax(1)*1
else:
out_mri=F.softmax(classes_mri, 1).argmax(1)*2
out_mri = out_mri.detach().cpu().numpy()
out_mri_all.append(out_mri)
Phat_mri = np.concatenate(out_mri_all)
Phat = np.concatenate(Phat)
Y_true = np.concatenate(Y_true)
Phat_p = np.concatenate(Phat_p)
# #uncomment for cascade model
for i in range(len(Phat)):
if Phat_mri[i]==2:
Phat[i]=2
print(Y_true)
print(Phat_mri)
print(Phat)
running_loss = running_loss/len(loader.dataset)
avg_acc = accuracy_score(Y_true, Phat)
avg_mae = mean_absolute_error(Y_true, Phat)
# avg_auc = roc_auc_score(Y_true,Phat_p)
print('Validating - Epoch: [{}/{}]\tLoss: {}\tACC: {}\tMAE: {}'.format(epoch+1, args.nepochs, running_loss, avg_acc,avg_mae))
return running_loss,avg_acc,Phat,Phat_p
class MRI_DensenetEncoder(nn.Module):
def __init__(self, path):
super(MRI_DensenetEncoder, self).__init__()
# path='trial_2023_01_05_21_54_42/best_metric_model_classification3d_array.pth'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
temp = monai.networks.nets.DenseNet121(spatial_dims=3, in_channels=1, out_channels=args.MRI_n_outputs, dropout_prob=0.15)
# temp.load_state_dict(torch.load(path))
temp.load_state_dict(torch.load(path)['state_dict'])
temp1 = monai.networks.nets.DenseNet121(spatial_dims=3, in_channels=1, out_channels=args.MRI_n_outputs, dropout_prob=0.15)
temp1.load_state_dict(torch.load(path)['state_dict'])
# temp = nn.Sequential(*tuple(temp.children())[:-1])
# ch = torch.load(args.model_MRI)
# temp.load_state_dict(ch['state_dict'])
temp.to(device)
temp1.to(device)
temp1.class_layers.out = nn.Linear(temp1.class_layers.out.in_features, 1024)
# temp = temp.model[0:7]
self.temp1= temp1
self.temp= temp
def forward(self,x):
x1 = self.temp1(x)
x2 = self.temp(x)
return x1, x2
class ResNetEncoder(nn.Module):
def __init__(self, path):
super(ResNetEncoder, self).__init__()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
temp = models.resnet34(True)
temp.fc = nn.Linear(temp.fc.in_features, 2)
ch = torch.load(args.model_PATH)
temp= nn.DataParallel(temp)
temp.load_state_dict(ch['state_dict'])
temp.to(device)
self.features = nn.Sequential(*list(temp.module.children())[:-1])
self.fc = temp.module.fc
def forward(self,x):
x = self.features(x)
x = x.view(x.size(0),-1)
return self.fc(x), x
class MLP_single(nn.Module):
def __init__(self, ndims):
super(MLP_single, self).__init__()
self.ndims = ndims
self.model = nn.Sequential(
# +args.MRI_n_outputs+2
nn.Linear(args.s*512+1024, 512),
nn.Dropout(0.1),
nn.ReLU(),
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, 3)
)
def forward(self, input):
output = self.model(input)
return output
def init_hidden(self, batch_size):
return torch.zeros(batch_size, self.ndims)
class rnndata(data.Dataset):
def __init__(self, fold, typet, s, shuffle=False, transform=None, transform_MRI=None, MRI_exam='flair'):
lib, targets = pickle.load(open(f'multimodal_glioma_data_sorted{args.dataset}.pickle', 'rb'))[0][typet]
slide_names=[lib[i]['slide'] for i in range(len(lib))]
target=[[targets[i]['idh1'], targets[i]['ioh1p15q']] for i in range(len(targets))]
pat_age=[lib[i]['age'] for i in range(len(lib))]
pat_gender=[lib[i]['gender'] for i in range(len(lib))]
#Encoding targets
for i in range(len(target)):
if target[i]==[0,0]:
target[i]=0
elif target[i]==[1,0]:
target[i]=1
else:
target[i]=2
grids=np.array([lib[i]['sorted_coords'] for i in range(len(lib))],dtype=object)
slides = []
for i,name in enumerate(slide_names):
slides.append(openslide.OpenSlide(os.path.join(f'E:/Pathology',name)))
print('Number of slides: {}'.format(len(grids)))
self.slidenames = slide_names
self.slides = slides
self.targets = target
self.grid = grids
self.age =pat_age
self.gender = pat_gender
self.transform = transform
self.mode = None
self.mult = 1
self.size = int(np.round(512*1))
self.level = 0
self.s = s
self.shuffle = shuffle
#MRI
self.transform_MRI = transform_MRI
self.MRI_exam=MRI_exam
self.lib=lib
def __getitem__(self,index):
#MRI
if self.MRI_exam ==args.MRI_type:
img_flair = np.load(os.path.join('data_multimodal_tcga',self.lib[index][args.MRI_type+'_block']))
X_flair = self.transform_MRI(img_flair)
mri=X_flair
#PATHOLOGY
slide = self.slides[index]
grid = self.grid[index]
if self.shuffle:
grid = random.sample(grid,len(grid))
patho = []
s = min(self.s, len(grid))
for i in range(s):
# print(grid[i])
img = slide.read_region(grid[i], self.level, (self.size, self.size)).convert('RGB')
if self.mult != 1:
img = img.resize((224,224), Image.BILINEAR)
if self.transform is not None:
img = self.transform(img)
patho.append(img)
return patho, mri, self.age[index], self.gender[index], self.targets[index]
def __len__(self):
return len(self.targets)
#optimization
def ordinal_loss(Yhat, Y):
# if K=3, then
# Y=0 => Y_=[1, 0, 0]
# Y=1 => Y_=[1, 1, 0]
# Y=2 => Y_=[1, 1, 1]
KK = torch.arange(3, device='cuda').expand(Y.shape[0], -1)
YY = (Y[:, None] > KK).float()
return F.binary_cross_entropy_with_logits(Yhat, YY).cuda()
def to_proba(Yhat):
probs = torch.sigmoid(Yhat)
probs = torch.cat((1-probs[:, :1], probs[:, :-1]-probs[:, 1:], probs[:, -1:]), 1)
# there may be small discrepancies
probs = torch.clamp(probs, 0, 1)
probs = probs / probs.sum(1, keepdim=True)
return probs
def to_proba_and_classes(ypred):
probs = to_proba(ypred)
classes = torch.sum(ypred >= 0, 1)
return probs, classes
if __name__ == '__main__':
main()