-
Notifications
You must be signed in to change notification settings - Fork 5
/
dnssec.py
954 lines (818 loc) · 30.8 KB
/
dnssec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
# PyDNSSEC - DNSSEC toolkit
# Copyright (C) 2013 Tomas Mazak
# (based on dnssec module from dnspython package)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""DNSSEC toolkit"""
import cStringIO
import os
import math
import struct
import time
import base64
import Crypto.PublicKey.RSA
import Crypto.PublicKey.DSA
import Crypto.Util.number
import Crypto.Hash.SHA
import Crypto.Hash.SHA256
import Crypto.Hash.SHA384
import Crypto.Hash.SHA512
import Crypto.Signature.PKCS1_v1_5
import dns.exception
import dns.hash
import dns.name
import dns.node
import dns.rdataset
import dns.rdata
import dns.rdatatype
import dns.rdataclass
import dns.rdtypes.ANY.DNSKEY
import dns.rdtypes.ANY.DS
import dns.rdtypes.ANY.RRSIG
import dns.rdtypes.ANY.NSEC
import dns.rdtypes.ANY.NSEC3
import dns.rdtypes.ANY.NSEC3PARAM
class UnsupportedAlgorithm(dns.exception.DNSException):
"""Raised if an algorithm is not supported."""
pass
class ValidationFailure(dns.exception.DNSException):
"""The DNSSEC signature is invalid."""
pass
class NSEC3Collision(dns.exception.DNSException):
"""Collision was detected in hashed owner names."""
pass
# DNSSEC algorithm numbers, according to IANA authority
# http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xml
RSAMD5 = 1 # deprecated
DH = 2
DSA = 3
RSASHA1 = 5
DSANSEC3SHA1 = 6
RSASHA1NSEC3SHA1 = 7
RSASHA256 = 8
RSASHA512 = 10
ECCGOST = 12
ECDSAP256SHA256 = 13
ECDSAP384SHA384 = 14
INDIRECT = 252
PRIVATEDNS = 253
PRIVATEOID = 254
# DNSKEY flags
DNSKEY_FLAG_NONE = 0
DNSKEY_FLAG_ZONEKEY = 256
DNSKEY_FLAG_SEP = 1 # Secure entry point
# NSEC3 parameters according to IANA authority:
# http://www.iana.org/assignments/dnssec-nsec3-parameters/dnssec-nsec3-parameters.xml
NSEC3_ALG_SHA1 = 1
NSEC3_FLAG_NONE = 0
NSEC3_FLAG_OPTOUT = 1
_algorithm_by_text = {
'RSAMD5' : RSAMD5,
'DH' : DH,
'DSA' : DSA,
'RSASHA1' : RSASHA1,
'DSANSEC3SHA1' : DSANSEC3SHA1,
'RSASHA1NSEC3SHA1' : RSASHA1NSEC3SHA1,
'RSASHA256' : RSASHA256,
'RSASHA512' : RSASHA512,
'ECCGOST' : ECCGOST,
'ECDSAP256SHA256' : ECDSAP256SHA256,
'ECDSAP384SHA384' : ECDSAP384SHA384,
'INDIRECT' : INDIRECT,
'PRIVATEDNS' : PRIVATEDNS,
'PRIVATEOID' : PRIVATEOID,
}
# We construct the inverse mapping programmatically to ensure that we
# cannot make any mistakes (e.g. omissions, cut-and-paste errors) that
# would cause the mapping not to be true inverse.
_algorithm_by_value = dict([(y, x) for x, y in _algorithm_by_text.iteritems()])
def algorithm_from_text(text):
"""Convert text into a DNSSEC algorithm value
@rtype: int"""
value = _algorithm_by_text.get(text.upper())
if value is None:
value = int(text)
return value
def algorithm_to_text(value):
"""Convert a DNSSEC algorithm value to text
@rtype: string"""
text = _algorithm_by_value.get(value)
if text is None:
text = str(value)
return text
def _to_rdata(record, origin):
s = cStringIO.StringIO()
record.to_wire(s, origin=origin)
return s.getvalue()
def key_id(key, origin=None):
rdata = _to_rdata(key, origin)
total = 0
for i in range(len(rdata) // 2):
total += (ord(rdata[2 * i]) << 8) + ord(rdata[2 * i + 1])
if len(rdata) % 2 != 0:
total += ord(rdata[len(rdata) - 1]) << 8
total += ((total >> 16) & 0xffff);
return total & 0xffff
def make_ds(name, key, algorithm, origin=None):
if algorithm.upper() == 'SHA1':
dsalg = 1
hash = dns.hash.get('SHA1')()
elif algorithm.upper() == 'SHA256':
dsalg = 2
hash = dns.hash.get('SHA256')()
else:
raise UnsupportedAlgorithm, 'unsupported algorithm "%s"' % algorithm
if isinstance(name, (str, unicode)):
name = dns.name.from_text(name, origin)
hash.update(name.canonicalize().to_wire())
hash.update(_to_rdata(key, origin))
digest = hash.digest()
dsrdata = struct.pack("!HBB", key_id(key), key.algorithm, dsalg) + digest
return dns.rdata.from_wire(dns.rdataclass.IN, dns.rdatatype.DS, dsrdata, 0,
len(dsrdata))
def _find_candidate_keys(keys, rrsig):
candidate_keys=[]
value = keys.get(rrsig.signer)
if value is None:
return None
if isinstance(value, dns.node.Node):
try:
rdataset = node.find_rdataset(dns.rdataclass.IN,
dns.rdatatype.DNSKEY)
except KeyError:
return None
else:
rdataset = value
for rdata in rdataset:
if rdata.algorithm == rrsig.algorithm and \
key_id(rdata) == rrsig.key_tag:
candidate_keys.append(rdata)
return candidate_keys
def _is_rsa(algorithm):
return algorithm in (RSASHA1, RSASHA1NSEC3SHA1, RSASHA256, RSASHA512)
def _is_dsa(algorithm):
return algorithm in (DSA, DSANSEC3SHA1)
def _is_sha1(algorithm):
return algorithm in (DSA, RSASHA1,
DSANSEC3SHA1, RSASHA1NSEC3SHA1)
def _is_sha256(algorithm):
return algorithm == RSASHA256
def _is_sha384(algorithm):
return algorithm == ECDSAP384SHA384
def _is_sha512(algorithm):
return algorithm == RSASHA512
def _make_hash(algorithm):
if _is_sha1(algorithm):
return Crypto.Hash.SHA.new()
if _is_sha256(algorithm):
return Crypto.Hash.SHA256.new()
if _is_sha384(algorithm):
return Crypto.Hash.SHA384.new()
if _is_sha512(algorithm):
return Crypto.Hash.SHA512.new()
raise ValidationFailure, 'unknown hash for algorithm %u' % algorithm
def _make_algorithm_id(algorithm):
if _is_sha1(algorithm):
oid = [0x2b, 0x0e, 0x03, 0x02, 0x1a]
elif _is_sha256(algorithm):
oid = [0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01]
elif _is_sha512(algorithm):
oid = [0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03]
else:
raise ValidationFailure, 'unknown algorithm %u' % algorithm
olen = len(oid)
dlen = _make_hash(algorithm).digest_size
idbytes = [0x30] + [8 + olen + dlen] + \
[0x30, olen + 4] + [0x06, olen] + oid + \
[0x05, 0x00] + [0x04, dlen]
return ''.join(map(chr, idbytes))
def _get_minimum_ttl(zone):
"""
Get minimum TTL from SOA record in the given zone.
"""
try:
rdataset = zone.find_rdataset(zone.origin, dns.rdatatype.SOA)
return rdataset[0].minimum
except KeyError:
raise dns.zone.NoSOA
def _is_delegation(rrname, rdataset, zone):
"""
Test if the given rrset is a subzone delegation
"""
if rdataset.rdtype == dns.rdatatype.NS and \
rrname.derelativize(zone.origin) != zone.origin:
return True
else:
return False
def _get_delegations(zone):
"""
Get all zone delegation rrsets
"""
return [x[0].derelativize(zone.origin)
for x in zone.iterate_rdatasets(dns.rdatatype.NS)
if _is_delegation(x[0], x[1], zone)]
def _is_authoritative(rrname, rdataset, zone, delegations = None):
"""
Checks if a given resource records is authoritative in the zone
"""
if not delegations:
delegations = _get_delegations(zone)
rrname = rrname.derelativize(zone.origin)
if not rrname.is_subdomain(zone.origin):
return False
deleg_dnssec = (dns.rdatatype.DS, dns.rdatatype.NSEC, dns.rdatatype.NSEC3)
for delegation in delegations:
if (rrname==delegation and rdataset.rdtype not in deleg_dnssec) or \
(rrname.is_subdomain(delegation) and rrname != delegation):
return False
return True
def _get_authoritative(zone):
"""
Get all owner names from the zone which contain any authoritative data.
"""
delegs = _get_delegations(zone)
names = []
for name in zone.nodes:
auth = False
for rdataset in zone.get_node(name):
if _is_authoritative(name, rdataset, zone, delegs):
auth = True
break
if auth:
names.append(name)
return names
def _canonical_order(names, origin = None):
"""
Sort the given names according to canonical order defined in RFC-4034,
section 6.1
"""
def labelCmp(n1, n2):
for i in range(min(len(n1), len(n2))):
i1 = len(n1) - i - 1
i2 = len(n2) - i - 1
if cmp(n1.labels[i1].lower(), n2.labels[i2].lower()) != 0:
return cmp(n1.labels[i1].lower(), n2.labels[i2].lower())
return cmp(len(n1), len(n2))
if origin:
names = [n.derelativize(origin) for n in names]
return sorted(names, cmp=labelCmp)
def _hashed_order(names, origin=None, salt='', iterations=0):
"""
Hash the given names using SHA-1 algorithm, the given salt and the given
number of iterations. Return list of tuples (name, hash) in hash order.
Used for NSEC3 records generation. See RFC-5155 for details.
"""
# Add empty non terminals to the list, see RFC-5155, section 7.1
nameset = set(names)
for name in names:
n = name.relativize(origin)
while len(n) > 1:
n = n.parent()
nameset.add(n.derelativize(origin))
names = list(nameset)
ret = []
for name in names:
h = name.to_digestable(origin)
i = iterations
while i >= 0:
sha = Crypto.Hash.SHA.new()
sha.update(h)
sha.update(salt)
h = sha.digest()
i -= 1
ret.append((name, h))
# Check for hash collision
if len(ret) != len(set(ret)):
raise NSEC3Collision()
ret = sorted(ret, key=lambda x: x[1])
return ret
def _rdtypes_to_bitmaps(rdtypes):
"""
Convert list of RR types to bitmap windows required by NSEC/NSEC3 records
(see RFC-4034, section 4.1.2).
Partly copied from dns.rdtypes.ANY.NSEC.from_text method
"""
if not len(rdtypes):
return []
rdtypes.sort()
window = 0
octets = 0
prior_rdtype = 0
bitmap = ['\0'] * 32
windows = []
for nrdtype in rdtypes:
if nrdtype == prior_rdtype:
continue
prior_rdtype = nrdtype
new_window = nrdtype // 256
if new_window != window:
windows.append((window, ''.join(bitmap[0:octets])))
bitmap = ['\0'] * 32
window = new_window
offset = nrdtype % 256
byte = offset // 8
bit = offset % 8
octets = byte + 1
bitmap[byte] = chr(ord(bitmap[byte]) | (0x80 >> bit))
windows.append((window, ''.join(bitmap[0:octets])))
return windows
def add_nsec(zone):
"""
Add appropriate NSEC records to the given zone (see RFC-4034 for details).
"""
# Only add NSEC records to owner names containing authoritative data or
# zone delegations
delegs = _get_delegations(zone)
names = list(set(delegs + _get_authoritative(zone)))
ordered = _canonical_order(names, zone.origin)
ttl = _get_minimum_ttl(zone)
for i, name in enumerate(ordered):
# Compute RDATA types covered by this NSEC record
rdtypes = [dns.rdatatype.RRSIG, dns.rdatatype.NSEC]
node = zone.find_node(name)
for rdataset in node:
# Only include RDATA types of authoritative records or delegations
if _is_authoritative(name, rdataset, zone, delegs) or \
_is_delegation(name, rdataset, zone):
rdtypes.append(rdataset.rdtype)
typemap = _rdtypes_to_bitmaps(rdtypes)
# Add the NSEC record to the zone
rdataset = zone.find_rdataset(name, rdtype=dns.rdatatype.NSEC,
create=True)
nsec = dns.rdtypes.ANY.NSEC.NSEC(dns.rdataclass.IN, dns.rdatatype.NSEC,
ordered[(i+1)%len(ordered)], typemap)
rdataset.add(nsec, ttl=ttl)
def add_nsec3(zone, salt=None, iters=None):
"""
Add appropriate NSEC3 records to the given zone. The NSEC3PARAM record
is added as well. (see RFC-5155 for details)
"""
# For NSEC3 purposes, 8 octets long salt is used and fixed number of
# iterations - 10. As this configuration is used by CZ.NIC, it's considered
# to be secure enough.
can_resalt=False
if salt is None:
salt = os.urandom(8)
can_resalt = True
if iters is None:
iters = 10
# Only add NSEC records to owner names containing authoritative data or
# zone delegations
delegs = _get_delegations(zone)
names = list(set(delegs + _get_authoritative(zone)))
# If a collision occurs (two names with the same hash - EXTREMLY low
# probability), change the salt and try again.
while True:
try:
hashed_names = _hashed_order(names, zone.origin, salt, iters)
break
except NSEC3Collision as collision:
if not can_resalt:
raise collision
salt = os.urandom(8)
continue
# Add NSEC3PARAM resource record
ttl = _get_minimum_ttl(zone)
rdataset = zone.find_rdataset(zone.origin, rdtype=dns.rdatatype.NSEC3PARAM,
create=True)
nsec3param = dns.rdtypes.ANY.NSEC3PARAM.NSEC3PARAM(dns.rdataclass.IN,
dns.rdatatype.NSEC3PARAM, NSEC3_ALG_SHA1, NSEC3_FLAG_NONE, iters,
salt)
rdataset.add(nsec3param, ttl=ttl)
# Add NSEC3 records for all owner names having at least one authoritative
# resource record
for i, nametuple in enumerate(hashed_names):
name, hashed = nametuple
rdtypes = set()
node = zone.get_node(name) or []
for rdataset in node:
if _is_authoritative(name, rdataset, zone, delegs):
rdtypes.add(rdataset.rdtype)
rdtypes.add(dns.rdatatype.RRSIG)
if _is_delegation(name, rdataset, zone):
rdtypes.add(rdataset.rdtype)
typemap = _rdtypes_to_bitmaps(list(rdtypes))
# Convert hashed name to DNSSEC's strange base32 encoding
b32hash = base64.b32encode(hashed)
b32hash = b32hash.translate(dns.rdtypes.ANY.NSEC3.b32_normal_to_hex)
owner = dns.name.Name((b32hash.lower(),)).derelativize(zone.origin)
rdataset = zone.find_rdataset(owner, rdtype=dns.rdatatype.NSEC3,
create=True)
nexthash = hashed_names[(i+1)%len(hashed_names)][1]
nsec3 = dns.rdtypes.ANY.NSEC3.NSEC3(dns.rdataclass.IN,
dns.rdatatype.NSEC3, NSEC3_ALG_SHA1,
NSEC3_FLAG_NONE, iters, salt, nexthash, typemap)
rdataset.add(nsec3, ttl=ttl)
def validate_rrsig(rrset, rrsig, keys, origin=None, now=None):
"""Validate an RRset against a single signature rdata
The owner name of the rrsig is assumed to be the same as the owner name
of the rrset.
@param rrset: The RRset to validate
@type rrset: dns.rrset.RRset or (dns.name.Name, dns.rdataset.Rdataset)
tuple
@param rrsig: The signature rdata
@type rrsig: dns.rrset.Rdata
@param keys: The key dictionary.
@type keys: a dictionary keyed by dns.name.Name with node or rdataset values
@param origin: The origin to use for relative names
@type origin: dns.name.Name or None
@param now: The time to use when validating the signatures. The default
is the current time.
@type now: int
"""
if isinstance(origin, (str, unicode)):
origin = dns.name.from_text(origin, dns.name.root)
for candidate_key in _find_candidate_keys(keys, rrsig):
if not candidate_key:
raise ValidationFailure, 'unknown key'
# For convenience, allow the rrset to be specified as a (name, rdataset)
# tuple as well as a proper rrset
if isinstance(rrset, tuple):
rrname = rrset[0]
rdataset = rrset[1]
else:
rrname = rrset.name
rdataset = rrset
if now is None:
now = time.time()
if rrsig.expiration < now:
raise ValidationFailure, 'expired'
if rrsig.inception > now:
raise ValidationFailure, 'not yet valid'
hash = _make_hash(rrsig.algorithm)
if _is_rsa(rrsig.algorithm):
keyptr = candidate_key.key
(bytes,) = struct.unpack('!B', keyptr[0:1])
keyptr = keyptr[1:]
if bytes == 0:
(bytes,) = struct.unpack('!H', keyptr[0:2])
keyptr = keyptr[2:]
rsa_e = keyptr[0:bytes]
rsa_n = keyptr[bytes:]
keylen = len(rsa_n) * 8
pubkey = Crypto.PublicKey.RSA.construct(
(Crypto.Util.number.bytes_to_long(rsa_n),
Crypto.Util.number.bytes_to_long(rsa_e)))
sig = (Crypto.Util.number.bytes_to_long(rrsig.signature),)
elif _is_dsa(rrsig.algorithm):
keyptr = candidate_key.key
(t,) = struct.unpack('!B', keyptr[0:1])
keyptr = keyptr[1:]
octets = 64 + t * 8
dsa_q = keyptr[0:20]
keyptr = keyptr[20:]
dsa_p = keyptr[0:octets]
keyptr = keyptr[octets:]
dsa_g = keyptr[0:octets]
keyptr = keyptr[octets:]
dsa_y = keyptr[0:octets]
pubkey = Crypto.PublicKey.DSA.construct(
(Crypto.Util.number.bytes_to_long(dsa_y),
Crypto.Util.number.bytes_to_long(dsa_g),
Crypto.Util.number.bytes_to_long(dsa_p),
Crypto.Util.number.bytes_to_long(dsa_q)))
(dsa_r, dsa_s) = struct.unpack('!20s20s', rrsig.signature[1:])
sig = (Crypto.Util.number.bytes_to_long(dsa_r),
Crypto.Util.number.bytes_to_long(dsa_s))
else:
raise ValidationFailure, 'unknown algorithm %u' % rrsig.algorithm
hash.update(_to_rdata(rrsig, origin)[:18])
hash.update(rrsig.signer.to_digestable(origin))
if rrsig.labels < len(rrname) - 1:
suffix = rrname.split(rrsig.labels + 1)[1]
rrname = dns.name.from_text('*', suffix)
rrnamebuf = rrname.to_digestable(origin)
rrfixed = struct.pack('!HHI', rdataset.rdtype, rdataset.rdclass,
rrsig.original_ttl)
rrlist = sorted(rdataset);
for rr in rrlist:
hash.update(rrnamebuf)
hash.update(rrfixed)
rrdata = rr.to_digestable(origin)
rrlen = struct.pack('!H', len(rrdata))
hash.update(rrlen)
hash.update(rrdata)
digest = hash.digest()
if _is_rsa(rrsig.algorithm):
# PKCS1 algorithm identifier goop
digest = _make_algorithm_id(rrsig.algorithm) + digest
padlen = keylen // 8 - len(digest) - 3
digest = chr(0) + chr(1) + chr(0xFF) * padlen + chr(0) + digest
elif _is_dsa(rrsig.algorithm):
pass
else:
# Raise here for code clarity; this won't actually ever happen
# since if the algorithm is really unknown we'd already have
# raised an exception above
raise ValidationFailure, 'unknown algorithm %u' % rrsig.algorithm
if pubkey.verify(digest, sig):
return
raise ValidationFailure, 'verify failure'
def validate(rrset, rrsigset, keys, origin=None, now=None):
"""Validate an RRset
@param rrset: The RRset to validate
@type rrset: dns.rrset.RRset or (dns.name.Name, dns.rdataset.Rdataset)
tuple
@param rrsigset: The signature RRset
@type rrsigset: dns.rrset.RRset or (dns.name.Name, dns.rdataset.Rdataset)
tuple
@param keys: The key dictionary.
@type keys: a dictionary keyed by dns.name.Name with node or rdataset values
@param origin: The origin to use for relative names
@type origin: dns.name.Name or None
@param now: The time to use when validating the signatures. The default
is the current time.
@type now: int
"""
if isinstance(origin, (str, unicode)):
origin = dns.name.from_text(origin, dns.name.root)
if isinstance(rrset, tuple):
rrname = rrset[0]
else:
rrname = rrset.name
if isinstance(rrsigset, tuple):
rrsigname = rrsigset[0]
rrsigrdataset = rrsigset[1]
else:
rrsigname = rrsigset.name
rrsigrdataset = rrsigset
rrname = rrname.choose_relativity(origin)
rrsigname = rrname.choose_relativity(origin)
if rrname != rrsigname:
raise ValidationFailure, "owner names do not match"
for rrsig in rrsigrdataset:
try:
validate_rrsig(rrset, rrsig, keys, origin, now)
return
except ValidationFailure, e:
pass
raise ValidationFailure, "no RRSIGs validated"
def _rrsig_labels(name, origin):
"""
Get label count of the given dns name as required for RRSIG labels field.
See RFC-4034, section 3.1.3. for details.
"""
labels = [x for x in name.derelativize(origin).labels
if len(x) and x != '*']
return len(labels)
def _sign(digest, key):
"""
Sign the given string using the given key
"""
if _is_rsa(key.algorithm):
rsakey = Crypto.PublicKey.RSA.importKey(key.privkey)
signer = Crypto.Signature.PKCS1_v1_5.new(rsakey)
return signer.sign(digest)
else:
raise ValidationFailure("Unsupported algorithm %d" % key.algorithm)
def sign_rrset(rrset, key, origin, expiration, inception):
"""
Generate a RRSIG record for given RR set
"""
# For convenience, allow the rrset to be specified as a (name, rdataset)
# tuple as well as a proper rrset
if isinstance(rrset, tuple):
rrname = rrset[0]
rdataset = rrset[1]
else:
rrname = rrset.name
rdataset = rrset
# Prepare RRSIG record (without signature field)
rrsig = dns.rdtypes.ANY.RRSIG.RRSIG(rdataset.rdclass, dns.rdatatype.RRSIG,
rdataset.rdtype, key.algorithm, _rrsig_labels(rrname, origin),
rdataset.ttl,expiration, inception, key.key_tag(),
origin.canonicalize(), 'NULL')
# Prepare digest function
digest = _make_hash(key.algorithm)
# Add RRSIG fields to digest
digest.update(_to_rdata(rrsig, origin)[:18])
digest.update(rrsig.signer.to_digestable(origin))
# Add RRs to digest
rrnamebuf = rrname.to_digestable(origin)
rrfixed = struct.pack('!HHI', rdataset.rdtype, rdataset.rdclass,
rrsig.original_ttl)
rrlist = sorted(rdataset)
for rr in rrlist:
digest.update(rrnamebuf)
digest.update(rrfixed)
rrdata = rr.to_digestable(origin)
rrlen = struct.pack('!H', len(rrdata))
digest.update(rrlen)
digest.update(rrdata)
# Update RRSIG with calculated signature and return
rrsig.signature = _sign(digest, key)
return rrsig
def sign_zone(zone, keys, expiration=None, inception=None, nsec3=False,
keyttl=3600, nsec3salt=None, nsec3iters=None):
"""
Given dnspython zone instance and uNIC KSK and ZSK keys to be used,
sign the zone with DNSSEC
"""
# Set defaults
zsk = [k for k in keys if not (k.flags & DNSKEY_FLAG_SEP)]
if not len(zsk):
zsk = keys
if expiration is None:
expiration = time.time() + (3600 * 24 * 90) # 90 days from now
if inception is None:
inception = time.time() - (3600 * 24) # 1 day ago
# Add DNSKEY records to the zone
dnskey_set = zone.find_rdataset(zone.origin, rdtype=dns.rdatatype.DNSKEY,
create=True)
for key in keys:
dnskey_set.add(key.get_pubkey(), ttl=keyttl)
# Add NSEC / NSEC3 RRs
if nsec3:
add_nsec3(zone, nsec3salt, nsec3iters)
else:
add_nsec(zone)
# Sign the DNSKEY records with all keys
rrsig_set = zone.find_rdataset(zone.origin, rdtype=dns.rdatatype.RRSIG,
create=True)
for key in keys:
rrsig = sign_rrset((zone.origin, dnskey_set), key, zone.origin,
expiration, inception)
rrsig_set.add(rrsig, ttl=dnskey_set.ttl)
# Sign other RRs
delegations = _get_delegations(zone)
for rrname, rdataset in zone.iterate_rdatasets():
# DNSKEY are already signed, do not sign again
if rdataset.rdtype == dns.rdatatype.DNSKEY:
continue
# RRSIG records MUST NOT be signed (RFC-4035, section 2.2.)
if rdataset.rdtype == dns.rdatatype.RRSIG:
continue
# Delegations and respective glue records MUST NOT be signed
# (RFC-4035, section 2.2.)
if not _is_authoritative(rrname, rdataset, zone, delegations):
continue
rrsig_set = zone.find_rdataset(rrname, rdtype=dns.rdatatype.RRSIG,
create=True)
for key in zsk:
rrsig = sign_rrset((rrname, rdataset), key, zone.origin,expiration,
inception)
rrsig_set.add(rrsig, ttl=rdataset.ttl)
def sigs_expire_before(zone, limit):
"""
Test if there are any signatures in the zone with the expiration date
before the given limit. It helps to detect if the given zone needs to be
signed again.
"""
for rrname, rdataset in zone.iterate_rdatasets():
if rdataset.rdtype == dns.rdatatype.RRSIG:
for rdata in rdataset:
if rdata.expiration < limit:
return True
return False
def signed(zone):
"""
Test if a zone is signed. Currently, it only checks if there are any DNSKEY
records in zone.
"""
return (zone.get_rdataset(zone.origin, dns.rdatatype.DNSKEY) != None)
def unsign_zone(zone):
"""
Remove all DNSSEC records from the given zone
"""
rdatasets = []
for item in zone.iterate_rdatasets():
rdatasets.append(item)
# Remove signatures
for rrname, rdataset in rdatasets:
if rdataset.rdtype != dns.rdatatype.RRSIG:
zone.delete_rdataset(rrname, rdtype=dns.rdatatype.RRSIG,
covers=rdataset.rdtype)
# Remove NSEC/NSEC3
for rrname, rdataset in rdatasets:
if rdataset.rdtype in (dns.rdatatype.NSEC, dns.rdatatype.NSEC3):
zone.delete_rdataset(rrname, rdtype=rdataset.rdtype)
# Remove NSEC3PARAM
zone.delete_rdataset(zone.origin, rdtype=dns.rdatatype.NSEC3PARAM)
# Remove DNSKEYs
zone.delete_rdataset(zone.origin, rdtype=dns.rdatatype.DNSKEY)
return zone
def _rsa2dnskey(key):
"""
Get RSA public key in DNSKEY resource record format (RFC-3110)
"""
octets = ''
explen = int(math.ceil(math.log(key.e, 2)/8))
if explen > 255:
octets = "\x00"
octets += Crypto.Util.number.long_to_bytes(explen) + \
Crypto.Util.number.long_to_bytes(key.e) + \
Crypto.Util.number.long_to_bytes(key.n)
return octets
def _dnskey2rsa(keyptr):
(b,) = struct.unpack('!B', keyptr[0:1])
keyptr = keyptr[1:]
if b == 0:
(b,) = struct.unpack('!H', keyptr[0:2])
keyptr = keyptr[2:]
rsa_e = keyptr[0:b]
rsa_n = keyptr[b:]
return (rsa_e, rsa_n)
_file_privkey_rsa = \
"""Private-key-format: v1.2
Algorithm: %(alg)d (%(algtxt)s)
Modulus: %(n)s
PublicExponent: %(e)s
PrivateExponent: %(d)s
Prime1: %(p)s
Prime2: %(q)s
Exponent1: %(dmp1)s
Exponent2: %(dmq1)s
Coefficient: %(u)s
"""
class PrivateDNSKEY(dns.rdtypes.ANY.DNSKEY.DNSKEY):
"""
Adds a private key field and methods to DNSKEY. Used for signature
creation.
@ivar privkey: the private key
@type flags: string
"""
@classmethod
def generate(cls, flags, algorithm, bits=None, rdclass=dns.rdataclass.IN,
rdtype=dns.rdatatype.DNSKEY, protocol=3):
"""
Generate a new DNSKEY keypair
"""
if _is_rsa(algorithm):
if not isinstance(bits, (int, long)):
raise ValidationFailure("For RSA key generation, key size in "
"bits must be provided")
key = Crypto.PublicKey.RSA.generate(bits)
private = key.exportKey(format='PEM')
public = _rsa2dnskey(key)
else:
raise ValidationFailure("Unknown algorithm %d" % algorithm)
return cls(flags, algorithm, public, private, rdclass, rdtype,protocol)
def __init__(self, flags, algorithm, key, privkey=None,
rdclass=dns.rdataclass.IN, rdtype=dns.rdatatype.DNSKEY,
protocol=3):
super(PrivateDNSKEY, self).__init__(rdclass, rdtype, flags, protocol,
algorithm, key)
self.privkey = privkey
self._tag = None
def get_pubkey(self):
"""
Return original dns.rdtypes.ANY.DNSKEY.DNSKEY (without private key)
"""
return dns.rdtypes.ANY.DNSKEY.DNSKEY(self.rdclass, self.rdtype,
self.flags, self.protocol, self.algorithm, self.key)
def key_tag(self):
"""
Get the key tag of this key (For details, see RFC 2535, section 4.1.6)
"""
if self._tag is None:
self._tag = key_id(self)
return self._tag
def bits(self):
"""
Get the size of this key in bits.
"""
if _is_rsa(self.algorithm):
(rsa_e,rsa_n) = _dnskey2rsa(self.key)
return len(rsa_n)*8
else:
raise ValidationFailure("Unknown algorithm %d" % self.algorithm)
def to_file(self, domain, directory=None, file=None):
"""
Export this key to a private key file compatible with bind tools
"""
if not _is_rsa(self.algorithm):
raise ValidationFailure("Unknown algorithm %d" % self.algorithm)
# Prepare key data
key = Crypto.PublicKey.RSA.importKey(self.privkey)
keydata = dict(alg=self.algorithm,
algtxt=algorithm_to_text(self.algorithm))
for field in key.keydata:
f = getattr(key, field)
f = Crypto.Util.number.long_to_bytes(f)
keydata[field] = base64.b64encode(f)
dmp1 = Crypto.Util.number.long_to_bytes(key.d % (key.p - 1))
keydata['dmp1'] = base64.b64encode(dmp1)
dmq1 = Crypto.Util.number.long_to_bytes(key.d % (key.p - 1))
keydata['dmq1'] = base64.b64encode(dmq1)
# Write to file
if file:
fname = file
else:
fname = 'K%s.+%03d+%05d.private' % (domain.strip('.'),
self.algorithm, self.key_tag())
if directory:
fname = "%s/%s" % (directory, fname)
fd = open(fname, 'w')
fd.write(_file_privkey_rsa % keydata)
fd.close()