forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
linear.py
327 lines (278 loc) · 12 KB
/
linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import numpy as np
import tensorrt as trt
import torch
import torch.nn.functional as F
from .._common import default_net, default_trtnet
from .._utils import pad_vocab_size, set_obj_attrs, str_dtype_to_trt
from ..functional import (Tensor, _add_plugin_info, _create_tensor, allgather,
allreduce, cast, matmul)
from ..mapping import Mapping
from ..module import Module
from ..parameter import Parameter
from ..plugin import TRT_LLM_PLUGIN_NAMESPACE
from .lora import LoraRuntimeParams
def _gemm_plugin(input: Tensor,
mat2: Tensor,
transa: bool = False,
transb: bool = False,
pad_lda: int = 0,
pad_ldb: int = 0,
use_fp8: bool = False,
strict_dtype: Optional[trt.DataType] = None) -> Tensor:
'''
output = op(mat2)op(input)
Parameters:
input : Tensor (On GPU)
The input tensor.
mat2 : Tensor (On GPU)
The mat2 tensor.
transa : bool
Is the input tensor transposed? Set to 'True' if you want the
input tensor to be transposed, 'False' otherwise.
transb : bool
Is the mat2 tensor transposed? Set to 'True' if you want the
mat2 tensor to be transposed, 'False' otherwise.
pad_lda: int
Padding to the lead dimension of input tensor. It is used to
support the strided GEMM that only uses the sub-tensor for
computation. The GEMM plugin computation is
[N, K] x [K, M+pad_lda] -> [N, M] if transa,
[N, K] x [K+pad_lda, M] -> [N, M] if not transa.
pad_ldb: int
Padding to the lead dimension of mat2 tensor. It is used to
support the strided GEMM that only uses the sub-tensor for
computation. The GEMM plugin computation is
[N, K+pad_ldb] x [K, M] -> [N, M] if transb,
[N+pad_ldb, K] x [K, M] -> [N, M] if not transb.
use_fp8: bool
Do we use fp8 GEMM.
strict_dtype: trt.DataType
Set the data type for the GEMM plugin. If it is None, the data
type is the gemm_plugin type set in the plugin_config.
'''
plg_creator = trt.get_plugin_registry().get_plugin_creator(
'Gemm', '1', TRT_LLM_PLUGIN_NAMESPACE)
assert plg_creator is not None
transa = 1 if transa else 0
transa = trt.PluginField("transa", np.array(transa, dtype=np.int32),
trt.PluginFieldType.INT32)
transb = 1 if transb else 0
transb = trt.PluginField("transb", np.array(transb, dtype=np.int32),
trt.PluginFieldType.INT32)
pad_lda = trt.PluginField("pad_lda", np.array(pad_lda, dtype=np.int32),
trt.PluginFieldType.INT32)
pad_ldb = trt.PluginField("pad_ldb", np.array(pad_ldb, dtype=np.int32),
trt.PluginFieldType.INT32)
use_fp8 = 1 if use_fp8 else 0
use_fp8 = trt.PluginField("use_fp8", np.array(use_fp8, dtype=np.int32),
trt.PluginFieldType.INT32)
if strict_dtype is not None:
assert isinstance(strict_dtype, trt.DataType)
p_dtype = strict_dtype
else:
p_dtype = str_dtype_to_trt(default_net().plugin_config.gemm_plugin)
pf_type = trt.PluginField("type_id", np.array([int(p_dtype)], np.int32),
trt.PluginFieldType.INT32)
pfc = trt.PluginFieldCollection(
[transa, transb, pad_lda, pad_ldb, pf_type, use_fp8])
gemm_plug = plg_creator.create_plugin("gemm", pfc)
plug_inputs = [input.trt_tensor, mat2.trt_tensor]
layer = default_trtnet().add_plugin_v2(plug_inputs, gemm_plug)
_add_plugin_info(layer, plg_creator, "gemm", pfc)
return _create_tensor(layer.get_output(0), layer)
class Linear(Module):
def __init__(self,
in_features,
out_features,
bias=True,
dtype=None,
use_fp8=False,
tp_group=None,
tp_size=1,
gather_output=True,
share_weight=None,
strict_dtype=False,
pad_lda=0):
super().__init__()
self.in_features = in_features
self.out_features = out_features // tp_size
self.dtype = dtype
self.use_fp8 = use_fp8
self.pad_lda = pad_lda
if not share_weight:
self.weight = Parameter(shape=(self.out_features, self.in_features),
dtype=('fp8' if use_fp8 else dtype))
set_obj_attrs(self.weight, {
"weight_loader": self.weight_loader,
})
else:
self.weight = share_weight
self.tp_size = tp_size
self.tp_group = tp_group
self.gather_output = gather_output
self.strict_dtype = self.dtype if strict_dtype else None
if bias:
self.bias = Parameter(shape=(self.out_features, ), dtype=dtype)
set_obj_attrs(self.bias, {
"weight_loader": self.weight_loader,
})
else:
self.register_parameter('bias', None)
def multiply_gather(self,
x,
weight,
gemm_plugin,
lora_runtime_params: LoraRuntimeParams = None):
hidden_state = x
if gemm_plugin:
x = _gemm_plugin(x,
weight,
transb=True,
pad_lda=self.pad_lda,
use_fp8=self.use_fp8,
strict_dtype=self.strict_dtype)
else:
x = matmul(x, weight, transb=True)
if default_net(
).plugin_config.lora_plugin and lora_runtime_params is not None:
x = x + self.lora(hidden_state,
lora_runtime_params=lora_runtime_params)
if self.bias is not None:
bias = cast(self.bias.value, x.dtype)
x = x + bias
if self.gather_output and self.tp_size > 1 and self.tp_group is not None:
# [dim0, local_dim] -> [dim0 * tp_size, local_dim] --> [dim0, local_dim * tp_size]
x = allgather(x, self.tp_group, gather_dim=-1)
return x
def forward(self, x, lora_runtime_params: LoraRuntimeParams = None):
return self.multiply_gather(x,
self.weight.value,
default_net().plugin_config.gemm_plugin,
lora_runtime_params=lora_runtime_params)
def weight_loader(self, mapping: Mapping, param: Parameter,
loaded_weight: torch.Tensor):
tp_rank = mapping.tp_rank
output_dim = 0
shard_size = param._shape[output_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)
param.value = loaded_weight
ColumnLinear = Linear
class QKVColumnLinear(ColumnLinear):
def weight_loader(self, mapping: Mapping, param: Parameter,
loaded_weight: torch.Tensor):
tp_rank = mapping.tp_rank
output_dim = 0
shard_size = param._shape[output_dim] // 3
start_idx = tp_rank * shard_size
# reshape for qkv_weights
assert loaded_weight.shape[output_dim] % 3 == 0
loaded_weight = loaded_weight.reshape(
3, loaded_weight.shape[output_dim] // 3, -1)
loaded_weight = loaded_weight.narrow(output_dim + 1, start_idx,
shard_size)
loaded_weight = loaded_weight.reshape(
loaded_weight.shape[output_dim + 1] * 3, -1)
# for bias
if len(param._shape) == 1:
loaded_weight.squeeze_(-1)
param.value = loaded_weight
class ParallelLMHead(ColumnLinear):
def weight_loader(self, mapping: Mapping, param: Parameter,
loaded_weight: torch.Tensor):
tp_rank = mapping.tp_rank
output_dim = 0
shard_size = param._shape[output_dim]
start_idx = tp_rank * shard_size
# vocab padding for TP
vocab_size = loaded_weight.shape[output_dim]
pad_width = pad_vocab_size(vocab_size, self.tp_size) - vocab_size
if pad_width > 0:
loaded_weight = F.pad(loaded_weight, (0, 0, 0, pad_width),
mode="constant",
value=0)
loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)
param.value = loaded_weight
class RowLinear(Module):
def __init__(self,
in_features,
out_features,
bias=True,
dtype=None,
use_fp8=False,
tp_group=None,
tp_size=1,
strict_dtype: bool = False,
pad_lda=0):
super().__init__()
self.in_features = in_features // tp_size
self.out_features = out_features
self.dtype = dtype
self.use_fp8 = use_fp8
self.pad_lda = pad_lda
self.weight = Parameter(shape=(self.out_features, self.in_features),
dtype=('fp8' if use_fp8 else dtype))
set_obj_attrs(self.weight, {
"weight_loader": self.weight_loader,
})
if bias:
self.bias = Parameter(shape=(self.out_features, ), dtype=dtype)
else:
self.register_parameter('bias', None)
self.tp_group = tp_group
self.tp_size = tp_size
self.strict_dtype = self.dtype if strict_dtype else None
def multiply_reduce(self,
x,
weight,
gemm_plugin,
use_fp8=False,
lora_runtime_params: LoraRuntimeParams = None):
hidden_state = x
if gemm_plugin:
x = _gemm_plugin(x,
weight,
transb=True,
pad_lda=self.pad_lda,
use_fp8=self.use_fp8,
strict_dtype=self.strict_dtype)
else:
x = matmul(x, weight, transb=True)
if default_net(
).plugin_config.lora_plugin and lora_runtime_params is not None:
x = x + self.lora(hidden_state,
lora_runtime_params=lora_runtime_params)
if self.tp_size > 1 and self.tp_group is not None:
x = allreduce(x, self.tp_group)
if self.bias is not None:
bias = cast(self.bias.value, x.dtype)
x = x + bias
return x
def forward(self, x, lora_runtime_params: LoraRuntimeParams = None):
return self.multiply_reduce(x,
self.weight.value,
default_net().plugin_config.gemm_plugin,
lora_runtime_params=lora_runtime_params)
def weight_loader(self, mapping: Mapping, param: Parameter,
loaded_weight: torch.Tensor):
tp_rank = mapping.tp_rank
input_dim = 1
shard_size = param._shape[input_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(input_dim, start_idx, shard_size)
param.value = loaded_weight