forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert_checkpoint.py
358 lines (319 loc) · 13.3 KB
/
convert_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import argparse
import json
import os
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
import tensorrt_llm
from tensorrt_llm._utils import release_gc
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import QWenForCausalLM
from tensorrt_llm.models.modeling_utils import QuantConfig
from tensorrt_llm.models.qwen.convert import from_hugging_face, quantize
from tensorrt_llm.quantization import QuantAlgo
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument('--vocab_size', type=int, default=32000)
parser.add_argument('--n_positions', type=int, default=2048)
parser.add_argument('--n_layer', type=int, default=32)
parser.add_argument('--n_head', type=int, default=32)
parser.add_argument('--n_kv_head', type=int, default=None)
parser.add_argument('--n_embd', type=int, default=4096)
parser.add_argument('--inter_size', type=int, default=22016)
parser.add_argument('--rms_norm_eps', type=float, default=1e-06)
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--disable_weight_only_quant_plugin',
default=False,
action="store_true",
help=
'By default, using plugin implementation for weight quantization. Enabling disable_weight_only_quant_plugin flag will use ootb implementation instead of plugin.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4', 'int4_gptq'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
"--smoothquant",
"-sq",
type=float,
default=None,
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
" to Smoothquant the model, and output int8 weights."
" A good first try is 0.5. Must be in [0, 1]")
parser.add_argument(
'--per_channel',
action="store_true",
default=False,
help=
'By default, we use a single static scaling factor for the GEMM\'s result. '
'per_channel instead uses a different static scaling factor for each channel. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_token',
action="store_true",
default=False,
help=
'By default, we use a single static scaling factor to scale activations in the int8 range. '
'per_token chooses at run time, and for each token, a custom scaling factor. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--per_group',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale weights in the int4 range. '
'per_group chooses at run time, and for each group, a custom scaling factor. '
'The flag is built for GPTQ/AWQ quantization.')
parser.add_argument('--hidden_act', type=str, default='silu')
parser.add_argument('--rotary_base', type=float, default=10000.0)
parser.add_argument('--rotary_scaling', nargs=2, type=str, default=None)
parser.add_argument('--group_size',
type=int,
default=128,
help='Group size used in GPTQ quantization.')
parser.add_argument("--dataset-cache-dir",
type=str,
default=None,
help="cache dir to load the hugging face dataset")
parser.add_argument("--load_model_on_cpu", action="store_true")
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=0,
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hidden dimension, set embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument(
'--use_embedding_sharing',
action="store_true",
default=False,
help=
'Try to reduce the engine size by sharing the embedding lookup table between two layers.'
'Note: the flag might not take effect when the criteria are not met.')
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
parser.add_argument(
'--save_config_only',
action="store_true",
default=False,
help=
'Only save the model config w/o read and converting weights, be careful, this is for debug only'
)
args = parser.parse_args()
return args
def args_to_quantization(args: argparse.Namespace) -> QuantConfig:
'''return config dict with quantization info based on the command line args
'''
quant_config = QuantConfig()
quant_config.exclude_modules = ['lm_head']
if args.use_weight_only:
if args.weight_only_precision == 'int8':
quant_config.quant_algo = QuantAlgo.W8A16
elif args.weight_only_precision == 'int4':
quant_config.quant_algo = QuantAlgo.W4A16
elif args.smoothquant:
if args.per_channel:
if args.per_token:
quant_config.quant_algo = QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN
else:
quant_config.quant_algo = QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TENSOR_PLUGIN
else:
if args.per_token:
quant_config.quant_algo = QuantAlgo.W8A8_SQ_PER_TENSOR_PER_TOKEN_PLUGIN
else:
quant_config.quant_algo = QuantAlgo.W8A8_SQ_PER_TENSOR_PLUGIN
if args.int8_kv_cache:
quant_config.kv_cache_quant_algo = QuantAlgo.INT8
if args.weight_only_precision == 'int4_gptq':
quant_config.group_size = args.group_size
quant_config.has_zero_point = True
quant_config.pre_quant_scale = False
quant_config.quant_algo = QuantAlgo.W4A16_GPTQ
return quant_config
def has_any_quant(args):
quant_config = args_to_quantization(args)
return quant_config.quant_algo is not None or quant_config.kv_cache_quant_algo is not None
def args_to_build_options(args):
return {
'use_parallel_embedding': args.use_parallel_embedding,
'embedding_sharding_dim': args.embedding_sharding_dim,
'share_embedding_table': args.use_embedding_sharing,
'disable_weight_only_quant_plugin':
args.disable_weight_only_quant_plugin
}
def from_cli_args(args):
n_kv_head = args.n_kv_head if args.n_kv_head is not None else args.n_head # default to MHA
config = {
'architecture': "QWenForCausalLM",
'dtype': args.dtype,
'logits_dtype': 'float32',
'num_hidden_layers': args.n_layer,
'num_attention_heads': args.n_head,
'hidden_size': args.n_embd,
'intermediate_size': args.inter_size,
'num_key_value_heads': n_kv_head,
'vocab_size': args.vocab_size,
'position_embedding_type': 'rope_gpt_neox',
'max_position_embeddings': args.n_positions,
'hidden_act': args.hidden_act,
'rotary_base': args.rotary_base,
'norm_epsilon': args.rms_norm_eps,
'mapping': {
'world_size': args.tp_size * args.pp_size,
'tp_size': args.tp_size,
'pp_size': args.pp_size
},
'quantization': args_to_quantization(args).asdict()
}
config.update(args_to_build_options(args))
return config
def preload_model(args, model_dir, load_model_on_cpu):
from transformers import AutoModelForCausalLM
if args.use_weight_only and args.weight_only_precision == 'int4_gptq':
model = AutoModelForCausalLM.from_pretrained(
model_dir,
device_map="auto" if not load_model_on_cpu else 'cpu',
torch_dtype='auto',
trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(
model_dir,
device_map='auto' if not load_model_on_cpu else 'cpu',
torch_dtype='auto',
trust_remote_code=True).half()
return model
def convert_and_save_hf(args):
model_dir = args.model_dir
load_model_on_cpu = args.load_model_on_cpu
world_size = args.tp_size * args.pp_size
# Need to convert the cli args to the kay-value pairs and override them in the generate config dict.
# Ideally these fields will be moved out of the config and pass them into build API, keep them here for compatibility purpose for now,
# before the refactor is done.
override_fields = {}
quantization = args_to_quantization(args)
override_fields.update(args_to_build_options(args))
if args.smoothquant is not None or args.int8_kv_cache:
assert not args.load_model_on_cpu, "When using quantization, TRT-LLM needs to load the model to GPU"
mapping = Mapping(
world_size=world_size,
rank=-1, #intentinoally make -1 to avoid mistake
tp_size=args.tp_size,
pp_size=args.pp_size)
#TODO: change to QWenForCausalLM.quantize later
quantize(args.dtype,
args.model_dir,
args.output_dir,
mapping=mapping,
quantization=quantization,
override_fields=override_fields,
dataset_cache_dir=args.dataset_cache_dir,
smoothquant_val=args.smoothquant,
int8_kv_cache=args.int8_kv_cache)
else:
hf_model = preload_model(args, model_dir, load_model_on_cpu)
def convert_and_save_rank(args, rank):
mapping = Mapping(world_size=world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size)
#TODO: change to QWenForCausalLM.from_hugging_face later
qwen = from_hugging_face(
QWenForCausalLM,
hf_model,
model_dir,
args.dtype,
mapping=mapping,
quantization=quantization,
from_hf_gptq=(args.use_weight_only
and args.weight_only_precision == 'int4_gptq'),
override_fields=override_fields)
qwen.save_checkpoint(args.output_dir, save_config=(rank == 0))
del qwen
release_gc()
execute(args.workers, [convert_and_save_rank] * world_size, args)
def execute(workers, func, args):
if workers == 1:
for rank, f in enumerate(func):
f(args, rank)
else:
with ThreadPoolExecutor(max_workers=workers) as p:
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(
exceptions
) == 0, "Checkpoint conversion failed, please check error log."
def main():
print(tensorrt_llm.__version__)
args = parse_arguments()
args.tp_size * args.pp_size
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.model_dir is None:
config = from_cli_args(args)
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
json.dump(config, f, indent=4)
else:
assert args.model_dir is not None
convert_and_save_hf(args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')
if __name__ == '__main__':
main()