-
Notifications
You must be signed in to change notification settings - Fork 32
/
benchmark_coreml_infer.py
59 lines (43 loc) · 1.51 KB
/
benchmark_coreml_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="resnet50")
parser.add_argument("--type", type=str, default="cnn")
parser.add_argument("--bs", type=int, default=1)
args = parser.parse_args()
import time
import numpy as np
import coremltools as ct
from coremltools.models.neural_network import quantization_utils
import tensorflow as tf
from model_library import *
if args.type == "cnn":
train_items = return_cnn(args.model, batch_size=args.bs, steps=1)
elif args.type == "transformer":
train_items = return_transformer(args.model, batch_size=args.bs, steps=1)
else:
raise ValueError("Model type not supported")
model = train_items["model"]
dataset_x, dataset_y = train_items["sample_data"]
sample_input = dataset_x
input_size = list(sample_input.shape)
print("input_size", input_size)
tf_out = model.predict(sample_input)
model.summary()
mlmodel = ct.convert(model,
convert_to="mlprogram",
inputs=[ct.TensorType(shape=input_size)],
compute_precision=ct.precision.FLOAT16,
compute_units=ct.ComputeUnit.CPU_AND_GPU)
random_input = {"input_2": np.asarray(sample_input).astype(float)}
ane_out = mlmodel.predict(random_input)
# warmup
ane_out = mlmodel.predict(random_input)
iterations = 100
st = time.time()
for i in range(iterations):
ane_out = mlmodel.predict(random_input)
et = time.time()
duration = et-st
fps = args.bs*iterations/duration
print("\nSample/sec", fps)
print("")