diff --git a/jet-tagging.ipynb b/jet-tagging.ipynb
index 318377e..26913ba 100644
--- a/jet-tagging.ipynb
+++ b/jet-tagging.ipynb
@@ -112,7 +112,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"metadata": {
"collapsed": false
},
@@ -132,7 +132,8 @@
"from sklearn.metrics import roc_auc_score\n",
"from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor\n",
"from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor, ExtraTreesClassifier\n",
- "from rep.estimators import XGBoostClassifier, SklearnClassifier"
+ "from rep.estimators import XGBoostClassifier, SklearnClassifier\n",
+ "import cPickle as pickle"
]
},
{
@@ -1021,18 +1022,14 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "collapsed": false
+ "collapsed": true
},
"outputs": [],
"source": [
- "best_xgb_multi_proba = best_xgb_multi_folding.predict_proba(train_data)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Results"
+ "# Save classifier\n",
+ "clf_pickle = open('best_xgb_multi_folding.pkl', 'wb')\n",
+ "#pickle.dump(best_xgb_multi_folding, clf_pickle)\n",
+ "clf_pickle.close()"
]
},
{
@@ -1043,260 +1040,21 @@
},
"outputs": [],
"source": [
- "best_xgb_multi_results = get_result(best_xgb_multi_proba, labels, \"best_xgb_multiclass\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 200,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " b vs c | \n",
- " b vs light | \n",
- " c vs light | \n",
- "
\n",
- " \n",
- " name | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " multiclass | \n",
- " 0.949536 | \n",
- " 0.983856 | \n",
- " 0.973569 | \n",
- "
\n",
- " \n",
- " pca_multiclass | \n",
- " 0.945119 | \n",
- " 0.985436 | \n",
- " 0.977200 | \n",
- "
\n",
- " \n",
- " sel_new_multiclass | \n",
- " 0.950772 | \n",
- " 0.988023 | \n",
- " 0.980581 | \n",
- "
\n",
- " \n",
- " best_xgb_multiclass | \n",
- " 0.949341 | \n",
- " 0.984908 | \n",
- " 0.975656 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " b vs c b vs light c vs light\n",
- "name \n",
- "multiclass 0.949536 0.983856 0.973569\n",
- "pca_multiclass 0.945119 0.985436 0.977200\n",
- "sel_new_multiclass 0.950772 0.988023 0.980581\n",
- "best_xgb_multiclass 0.949341 0.984908 0.975656"
- ]
- },
- "execution_count": 200,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "result = pandas.concat([multiclass_result, \n",
- " pca_multiclass_result, \n",
- " sel_new_multi_results,\n",
- " best_xgb_multi_results])\n",
- "result.index = result['name']\n",
- "result = result.drop('name', axis=1)\n",
- "result"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Grid search RF"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Search"
+ "# Read classifier\n",
+ "clf_pickle2 = open('best_xgb_multi_folding.pkl', 'rb')\n",
+ "#best_xgb_multi_folding = pickle.load(clf_pickle2)\n",
+ "clf_pickle2.close()"
]
},
{
"cell_type": "code",
- "execution_count": 215,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "GridSearchCV(cv=2, error_score='raise',\n",
- " estimator=RandomForestClassifier(bootstrap=True, class_weight='auto', criterion='gini',\n",
- " max_depth=None, max_features='auto', max_leaf_nodes=None,\n",
- " min_samples_leaf=1, min_samples_split=2,\n",
- " min_weight_fraction_leaf=0.0, n_estimators=1000, n_jobs=1,\n",
- " oob_score=False, random_state=None, verbose=0,\n",
- " warm_start=False),\n",
- " fit_params={}, iid=True, loss_func=None, n_jobs=8,\n",
- " param_grid={'max_features': ['auto', 0.3, 0.5, 1.0], 'max_depth': [4, 8, 12, None]},\n",
- " pre_dispatch='2*n_jobs', refit=True, score_func=None,\n",
- " scoring=<__main__.MyMeanRocAucScorer object at 0x7f14ac0ec4d0>,\n",
- " verbose=0)"
- ]
- },
- "execution_count": 215,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from sklearn.grid_search import GridSearchCV\n",
- "from rep.utils import train_test_split\n",
- "\n",
- "train_train_data, test_data, train_labels, test_labels = train_test_split(train_data, labels, test_size=0.3)\n",
- "\n",
- "grid_param = {}\n",
- "grid_param['max_features'] = ['auto', 0.3, 0.5, 1.0]\n",
- "grid_param['max_depth'] = [4, 8, 12, None]\n",
- "\n",
- "rf_base = RandomForestClassifier(n_estimators=1000, max_depth=None, max_features='auto', class_weight='auto')\n",
- "\n",
- "grid_rf = GridSearchCV(estimator=rf_base, param_grid=grid_param, cv=2, \n",
- " scoring=MyMeanRocAucScorer(test_data, test_labels), n_jobs=8)\n",
- "grid_rf.fit(train_train_data, train_labels)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 216,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'max_depth': 12, 'max_features': 'auto'}"
- ]
- },
- "execution_count": 216,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "grid_rf.best_params_"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Train"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 217,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "CPU times: user 2min 16s, sys: 216 ms, total: 2min 16s\n",
- "Wall time: 2min 16s\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "FoldingClassifier(base_estimator=RandomForestClassifier(bootstrap=True, class_weight='auto', criterion='gini',\n",
- " max_depth=12, max_features='auto', max_leaf_nodes=None,\n",
- " min_samples_leaf=1, min_samples_split=2,\n",
- " min_weight_fraction_leaf=0.0, n_estimators=1000, n_jobs=1,\n",
- " oob_score=False, random_state=None, verbose=0,\n",
- " warm_start=False),\n",
- " features=['Feature_0', 'Feature_1', 'Feature_2', 'Feature_3', 'Feature_4', 'Feature_5', 'Feature_6', 'Feature_7', 'Feature_8'],\n",
- " n_folds=2, parallel_profile=None, random_state=11)"
- ]
- },
- "execution_count": 217,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "rf_best = grid_rf.best_estimator_\n",
- "best_rf_multi_folding = FoldingClassifier(rf_best, n_folds=2, random_state=11)\n",
- "%time best_rf_multi_folding.fit(train_data, labels)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 218,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 218,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "rf_best.get_params"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 219,
+ "execution_count": null,
"metadata": {
"collapsed": false
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "KFold prediction using folds column\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
- "best_rf_multi_proba = best_rf_multi_folding.predict_proba(train_data)"
+ "best_xgb_multi_proba = best_xgb_multi_folding.predict_proba(train_data)"
]
},
{
@@ -1308,18 +1066,18 @@
},
{
"cell_type": "code",
- "execution_count": 220,
+ "execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
- "best_rf_multi_results = get_result(best_rf_multi_proba, labels, \"best_rf_multiclass\")"
+ "best_xgb_multi_results = get_result(best_xgb_multi_proba, labels, \"best_xgb_multiclass\")"
]
},
{
"cell_type": "code",
- "execution_count": 221,
+ "execution_count": 200,
"metadata": {
"collapsed": false
},
@@ -1368,12 +1126,6 @@
" 0.984908 | \n",
" 0.975656 | \n",
" \n",
- " \n",
- " best_rf_multiclass | \n",
- " 0.947559 | \n",
- " 0.981816 | \n",
- " 0.968406 | \n",
- "
\n",
" \n",
"\n",
""
@@ -1384,11 +1136,10 @@
"multiclass 0.949536 0.983856 0.973569\n",
"pca_multiclass 0.945119 0.985436 0.977200\n",
"sel_new_multiclass 0.950772 0.988023 0.980581\n",
- "best_xgb_multiclass 0.949341 0.984908 0.975656\n",
- "best_rf_multiclass 0.947559 0.981816 0.968406"
+ "best_xgb_multiclass 0.949341 0.984908 0.975656"
]
},
- "execution_count": 221,
+ "execution_count": 200,
"metadata": {},
"output_type": "execute_result"
}
@@ -1397,8 +1148,7 @@
"result = pandas.concat([multiclass_result, \n",
" pca_multiclass_result, \n",
" sel_new_multi_results,\n",
- " best_xgb_multi_results,\n",
- " best_rf_multi_results])\n",
+ " best_xgb_multi_results])\n",
"result.index = result['name']\n",
"result = result.drop('name', axis=1)\n",
"result"
@@ -1408,7 +1158,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "# Grid search AdaBoost"
+ "# Grid search XGBoost + features generation + features selection"
]
},
{
@@ -1422,32 +1172,33 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "collapsed": false
+ "collapsed": true
},
"outputs": [],
"source": [
"from sklearn.grid_search import GridSearchCV\n",
"from rep.utils import train_test_split\n",
- "from sklearn.ensemble import AdaBoostClassifier\n",
- "from sklearn.tree import DecisionTreeClassifier\n",
"\n",
- "train_train_data, test_data, train_labels, test_labels = train_test_split(train_data, labels, test_size=0.3)\n",
+ "sel_new_train_train_data, sel_new_test_data, sel_new_train_labels, sel_new_test_labels = \\\n",
+ "train_test_split(sel_new_train_data, labels, test_size=0.3)\n",
"\n",
"grid_param = {}\n",
- "grid_param['learning_rate'] = [0.1, 0.05, 0.01]\n",
- "grid_param['max_depth'] = [4, 8, 12, None]\n",
+ "grid_param['eta'] = [0.1, 0.05, 0.01]\n",
+ "grid_param['max_depth'] = [6, 8, 12, 100]\n",
+ "grid_param['colsample'] = [0.3, 0.5, 0.7, 1.0]\n",
+ "grid_param['subsample'] = [0.3, 0.5, 0.7, 1.0]\n",
"\n",
- "ada_base = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=8, max_features='auto', class_weight='balanced'),\n",
- " n_estimators=1000, learning_rate=0.01)\n",
+ "xgb_base = XGBoostClassifier(n_estimators=1000, colsample=0.7, eta=0.01, nthreads=1, \n",
+ " subsample=0.5, max_depth=8)\n",
"\n",
- "grid_ada = GridSearchCV(estimator=ada_base, param_grid=grid_param, cv=2, \n",
- " scoring=MyMeanRocAucScorer(test_data, test_labels), n_jobs=8)\n",
- "grid_ada.fit(train_train_data, train_labels)"
+ "sel_new_grid_xgb = GridSearchCV(estimator=xgb_base, param_grid=grid_param, cv=2, \n",
+ " scoring=MyMeanRocAucScorer(sel_new_test_data, sel_new_test_labels), n_jobs=8)\n",
+ "sel_new_grid_xgb.fit(sel_new_train_train_data, sel_new_train_labels)"
]
},
{
"cell_type": "code",
- "execution_count": 212,
+ "execution_count": 241,
"metadata": {
"collapsed": false
},
@@ -1455,16 +1206,16 @@
{
"data": {
"text/plain": [
- "{'learning_rate': 0.1}"
+ "{'colsample': 0.7, 'eta': 0.01, 'max_depth': 6, 'subsample': 0.5}"
]
},
- "execution_count": 212,
+ "execution_count": 241,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "grid_ada.best_params_"
+ "sel_new_grid_xgb.best_params_"
]
},
{
@@ -1474,37 +1225,6 @@
"## Train"
]
},
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "ada_best = grid_ada.best_estimator_\n",
- "best_ada_multi_folding = FoldingClassifier(ada_best, n_folds=2, random_state=11)\n",
- "%time best_ada_multi_folding.fit(train_data, labels)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "best_ada_multi_proba = best_ada_multi_folding.predict_proba(train_data)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Results"
- ]
- },
{
"cell_type": "code",
"execution_count": null,
@@ -1513,193 +1233,48 @@
},
"outputs": [],
"source": [
- "best_ada_multi_results = get_result(best_ada_multi_proba, labels, \"best_ada_multiclass\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 222,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " b vs c | \n",
- " b vs light | \n",
- " c vs light | \n",
- "
\n",
- " \n",
- " name | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " multiclass | \n",
- " 0.949536 | \n",
- " 0.983856 | \n",
- " 0.973569 | \n",
- "
\n",
- " \n",
- " pca_multiclass | \n",
- " 0.945119 | \n",
- " 0.985436 | \n",
- " 0.977200 | \n",
- "
\n",
- " \n",
- " sel_new_multiclass | \n",
- " 0.950772 | \n",
- " 0.988023 | \n",
- " 0.980581 | \n",
- "
\n",
- " \n",
- " best_xgb_multiclass | \n",
- " 0.949341 | \n",
- " 0.984908 | \n",
- " 0.975656 | \n",
- "
\n",
- " \n",
- " best_rf_multiclass | \n",
- " 0.947559 | \n",
- " 0.981816 | \n",
- " 0.968406 | \n",
- "
\n",
- " \n",
- " best_ada_multiclass | \n",
- " 0.939101 | \n",
- " 0.977499 | \n",
- " 0.958886 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " b vs c b vs light c vs light\n",
- "name \n",
- "multiclass 0.949536 0.983856 0.973569\n",
- "pca_multiclass 0.945119 0.985436 0.977200\n",
- "sel_new_multiclass 0.950772 0.988023 0.980581\n",
- "best_xgb_multiclass 0.949341 0.984908 0.975656\n",
- "best_rf_multiclass 0.947559 0.981816 0.968406\n",
- "best_ada_multiclass 0.939101 0.977499 0.958886"
- ]
- },
- "execution_count": 222,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "result = pandas.concat([multiclass_result, \n",
- " pca_multiclass_result, \n",
- " sel_new_multi_results,\n",
- " best_xgb_multi_results,\n",
- " best_rf_multi_results,\n",
- " best_ada_multi_results])\n",
- "result.index = result['name']\n",
- "result = result.drop('name', axis=1)\n",
- "result"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Grid search ExtraTreeClassifier"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Search"
+ "sel_new_xgb_best = sel_new_grid_xgb.best_estimator_.set_params(features=None)\n",
+ "sel_new_best_xgb_multi_folding = FoldingClassifier(sel_new_xgb_best, n_folds=2, random_state=11)\n",
+ "%time sel_new_best_xgb_multi_folding.fit(sel_new_train_data, labels)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
- "collapsed": false
+ "collapsed": true
},
"outputs": [],
"source": [
- "from sklearn.grid_search import GridSearchCV\n",
- "from rep.utils import train_test_split\n",
- "\n",
- "train_train_data, test_data, train_labels, test_labels = train_test_split(train_data, labels, test_size=0.3)\n",
- "\n",
- "grid_param = {}\n",
- "grid_param['max_features'] = ['auto', 0.3, 0.5, 0.7, 1.0]\n",
- "grid_param['max_depth'] = [4, 8, 12, None]\n",
- "\n",
- "ex_base = ExtraTreesClassifier(n_estimators=1000, max_depth=6, max_features='auto', class_weight='balanced', n_jobs=4)\n",
- "\n",
- "ex_base = GridSearchCV(estimator=ex_base, param_grid=grid_param, cv=2, \n",
- " scoring=MyMeanRocAucScorer(test_data, test_labels), n_jobs=8)\n",
- "ex_base.fit(train_train_data, train_labels)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 213,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'max_depth': 8, 'max_features': 1.0}"
- ]
- },
- "execution_count": 213,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "ex_base.best_params_"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Train"
+ "# Save classifier\n",
+ "clf_pickle = open('sel_new_best_xgb_multi_folding.pkl', 'wb')\n",
+ "#pickle.dump(sel_new_best_xgb_multi_folding, clf_pickle)\n",
+ "clf_pickle.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
- "collapsed": false
+ "collapsed": true
},
"outputs": [],
"source": [
- "ex_best = ex_base.best_estimator_\n",
- "best_ex_multi_folding = FoldingClassifier(ex_best, n_folds=2, random_state=11)\n",
- "%time best_ex_multi_folding.fit(train_data, labels)"
+ "# Read classifier\n",
+ "clf_pickle2 = open('sel_new_best_xgb_multi_folding.pkl', 'rb')\n",
+ "#sel_new_best_xgb_multi_folding = pickle.load(clf_pickle2)\n",
+ "clf_pickle2.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
- "collapsed": false
+ "collapsed": true
},
"outputs": [],
"source": [
- "best_ex_multi_proba = best_ex_multi_folding.predict_proba(train_data)"
+ "sel_new_best_xgb_multi_proba = sel_new_best_xgb_multi_folding.predict_proba(sel_new_train_data)"
]
},
{
@@ -1717,12 +1292,12 @@
},
"outputs": [],
"source": [
- "best_ex_multi_results = get_result(best_ex_multi_proba, labels, \"best_ex_multiclass\")"
+ "sel_new_best_xgb_multi_results = get_result(sel_new_best_xgb_multi_proba, labels, \"sel_new_best_xgb_multiclass\")"
]
},
{
"cell_type": "code",
- "execution_count": 223,
+ "execution_count": 242,
"metadata": {
"collapsed": false
},
@@ -1772,181 +1347,26 @@
" 0.975656 | \n",
" \n",
" \n",
- " best_rf_multiclass | \n",
- " 0.947559 | \n",
- " 0.981816 | \n",
- " 0.968406 | \n",
- "
\n",
- " \n",
- " best_ada_multiclass | \n",
- " 0.939101 | \n",
- " 0.977499 | \n",
- " 0.958886 | \n",
- "
\n",
- " \n",
- " best_ex_multiclass | \n",
- " 0.934843 | \n",
- " 0.973519 | \n",
- " 0.953799 | \n",
+ " sel_new_best_xgb_multiclass | \n",
+ " 0.951279 | \n",
+ " 0.987887 | \n",
+ " 0.980127 | \n",
"
\n",
" \n",
"\n",
""
],
"text/plain": [
- " b vs c b vs light c vs light\n",
- "name \n",
- "multiclass 0.949536 0.983856 0.973569\n",
- "pca_multiclass 0.945119 0.985436 0.977200\n",
- "sel_new_multiclass 0.950772 0.988023 0.980581\n",
- "best_xgb_multiclass 0.949341 0.984908 0.975656\n",
- "best_rf_multiclass 0.947559 0.981816 0.968406\n",
- "best_ada_multiclass 0.939101 0.977499 0.958886\n",
- "best_ex_multiclass 0.934843 0.973519 0.953799"
- ]
- },
- "execution_count": 223,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "result = pandas.concat([multiclass_result, \n",
- " pca_multiclass_result, \n",
- " sel_new_multi_results,\n",
- " best_xgb_multi_results,\n",
- " best_rf_multi_results,\n",
- " best_ada_multi_results,\n",
- " best_ex_multi_results])\n",
- "result.index = result['name']\n",
- "result = result.drop('name', axis=1)\n",
- "result"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "collapsed": true
- },
- "source": [
- "# Combination"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 230,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "comb_proba = 0.5 * (best_xgb_multi_proba + best_rf_multi_proba)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 231,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "comb_multi_results = get_result(comb_proba, labels, \"comb_multiclass\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 232,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " b vs c | \n",
- " b vs light | \n",
- " c vs light | \n",
- "
\n",
- " \n",
- " name | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " multiclass | \n",
- " 0.949536 | \n",
- " 0.983856 | \n",
- " 0.973569 | \n",
- "
\n",
- " \n",
- " pca_multiclass | \n",
- " 0.945119 | \n",
- " 0.985436 | \n",
- " 0.977200 | \n",
- "
\n",
- " \n",
- " sel_new_multiclass | \n",
- " 0.950772 | \n",
- " 0.988023 | \n",
- " 0.980581 | \n",
- "
\n",
- " \n",
- " best_xgb_multiclass | \n",
- " 0.949341 | \n",
- " 0.984908 | \n",
- " 0.975656 | \n",
- "
\n",
- " \n",
- " best_rf_multiclass | \n",
- " 0.947559 | \n",
- " 0.981816 | \n",
- " 0.968406 | \n",
- "
\n",
- " \n",
- " best_ada_multiclass | \n",
- " 0.939101 | \n",
- " 0.977499 | \n",
- " 0.958886 | \n",
- "
\n",
- " \n",
- " best_ex_multiclass | \n",
- " 0.934843 | \n",
- " 0.973519 | \n",
- " 0.953799 | \n",
- "
\n",
- " \n",
- " comb_multiclass | \n",
- " 0.949307 | \n",
- " 0.983889 | \n",
- " 0.973104 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " b vs c b vs light c vs light\n",
- "name \n",
- "multiclass 0.949536 0.983856 0.973569\n",
- "pca_multiclass 0.945119 0.985436 0.977200\n",
- "sel_new_multiclass 0.950772 0.988023 0.980581\n",
- "best_xgb_multiclass 0.949341 0.984908 0.975656\n",
- "best_rf_multiclass 0.947559 0.981816 0.968406\n",
- "best_ada_multiclass 0.939101 0.977499 0.958886\n",
- "best_ex_multiclass 0.934843 0.973519 0.953799\n",
- "comb_multiclass 0.949307 0.983889 0.973104"
+ " b vs c b vs light c vs light\n",
+ "name \n",
+ "multiclass 0.949536 0.983856 0.973569\n",
+ "pca_multiclass 0.945119 0.985436 0.977200\n",
+ "sel_new_multiclass 0.950772 0.988023 0.980581\n",
+ "best_xgb_multiclass 0.949341 0.984908 0.975656\n",
+ "sel_new_best_xgb_multiclass 0.951279 0.987887 0.980127"
]
},
- "execution_count": 232,
+ "execution_count": 242,
"metadata": {},
"output_type": "execute_result"
}
@@ -1956,10 +1376,7 @@
" pca_multiclass_result, \n",
" sel_new_multi_results,\n",
" best_xgb_multi_results,\n",
- " best_rf_multi_results,\n",
- " best_ada_multi_results,\n",
- " best_ex_multi_results,\n",
- " comb_multi_results])\n",
+ " sel_new_best_xgb_multi_results])\n",
"result.index = result['name']\n",
"result = result.drop('name', axis=1)\n",
"result"