dubbo 负载均衡策略和集群容错策略都有哪些?动态代理策略呢?
继续深问吧,这些都是用 dubbo 必须知道的一些东西,你得知道基本原理,知道序列化是什么协议,还得知道具体用 dubbo 的时候,如何负载均衡,如何高可用,如何动态代理。
说白了,就是看你对 dubbo 熟悉不熟悉:
- dubbo 工作原理:服务注册、注册中心、消费者、代理通信、负载均衡;
- 网络通信、序列化:dubbo 协议、长连接、NIO、hessian 序列化协议;
- 负载均衡策略、集群容错策略、动态代理策略:dubbo 跑起来的时候一些功能是如何运转的?怎么做负载均衡?怎么做集群容错?怎么生成动态代理?
- dubbo SPI 机制:你了解不了解 dubbo 的 SPI 机制?如何基于 SPI 机制对 dubbo 进行扩展?
默认情况下,dubbo 是 random load balance 随机调用实现负载均衡,可以对 provider 不同实例设置不同的权重,会按照权重来负载均衡,权重越大分配流量越高,一般就用这个默认的就可以了。
这个的话默认就是均匀地将流量打到各个机器上去,但是如果各个机器的性能不一样,容易导致性能差的机器负载过高。所以此时需要调整权重,让性能差的机器承载权重小一些,流量少一些。
举个栗子。
跟运维同学申请机器,有的时候,我们运气好,正好公司资源比较充足,刚刚有一批热气腾腾、刚刚做好的一批虚拟机新鲜出炉,配置都比较高:8 核 + 16G 机器,申请到 2 台。过了一段时间,我们感觉 2 台机器有点不太够,我就去找运维同学说,“哥儿们,你能不能再给我一台机器”,但是这时只剩下一台 4 核 + 8G 的机器。我要还是得要。
这个时候,可以给两台 8 核 16G 的机器设置权重 4,给剩余 1 台 4 核 8G 的机器设置权重 2。
这个就是自动感知一下,如果某个机器性能越差,那么接收的请求越少,越不活跃,此时就会给不活跃的性能差的机器更少的请求。
一致性 Hash 算法,相同参数的请求一定分发到一个 provider 上去,provider 挂掉的时候,会基于虚拟节点均匀分配剩余的流量,抖动不会太大。如果你需要的不是随机负载均衡,是要一类请求都到一个节点,那就走这个一致性 Hash 策略。
失败自动切换,自动重试其他机器,默认就是这个,常见于读操作。(失败重试其它机器)
一次调用失败就立即失败,常见于写操作。(调用失败就立即失败)
出现异常时忽略掉,常用于不重要的接口调用,比如记录日志。
失败了后台自动记录请求,然后定时重发,比较适合于写消息队列这种。
并行调用多个 provider,只要一个成功就立即返回。
逐个调用所有的 provider。
默认使用 javassist 动态字节码生成,创建代理类。但是可以通过 spi 扩展机制配置自己的动态代理策略。