forked from sai-byui/NEO2D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
neo.py
232 lines (189 loc) · 8.56 KB
/
neo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from enum import Enum
import _thread
import pygame
# from neo_body.ears import Ears
from neo_body.eyes import Eyes
from neo_body.hands import Hands
from neo_body.memory import Memory
from neo_body.mouth import Mouth
from neo_body.legs import Legs
from neo_body.wernicke_area import Wernicke_Area
from bot import Bot
from raycast import RayCaster
from pathfinder import Pathfinder
from agent import Agent
NEO_STARTING_X = 550
NEO_STARTING_Y = 200
MARGIN = 48
RED = (255, 0, 0)
class NEO(Agent):
"""Controls the behaviors of the NEO bot
NEO has four main tasks:
1. scan the room for new objects,
2. approach discovered objects,
3. inspect objects and gather info about their attributes,
4. accept queries from the user to test its memory of objects.
NEO performs these tasks by using the various body part classes located in the neo_body directory. This NEO
class essentially serves as the 'brain' class and passes commands to all other body parts as needed. NEO and every
body part class are subclasses of the Agent class, which allows them to safely share info with each other using
Agent Oriented Programming methods. This allows us to easily add new parts or replace parts altogether."""
def __init__(self, environment=None):
"""sets up details about the red rectangle as well as variables for A.I. behavior"""
super(NEO, self).__init__("neo", environment)
# the bot object represents NEO's physical body
# it performs the tasks as directed by the body part classes below
self.bot = Bot()
# set the bot's image and angle
self.bot.image = pygame.Surface([16, 16])
self.bot.image = pygame.transform.scale(pygame.image.load('Neo.png'), (25, 25))
self.original_image = self.bot.image.copy()
self.angle = 90
# set the starting position
self.bot.rect.x = NEO_STARTING_X
self.bot.rect.y = NEO_STARTING_Y
# place the coordinates of our rectangle in a tuple to update the game manager
self.red_coordinate = (self.bot.rect.x, self.bot.rect.y)
self.rect = self.bot.rect
# these different body part classes help modularize the various functions NEO performs
self.eyes = Eyes()
self.hands = Hands()
self.legs = Legs()
self.memory = Memory()
self.mouth = Mouth()
# self.ears = Ears()
self.wernicke_area = Wernicke_Area()
# these coordinates tell the agent how far away the object is
self.object_coordinates = None
self.distance_from_object = 0
self.current_position = 0
self.path_course = []
self.path_found = False
self.next_node_coordinates = None
# variables for A.I. behavior
self.inspecting = False
self.detected_objects = pygame.sprite.Group()
self.current_behavior = BEHAVIOR_STATE.SCANNING
self.pathfinder = Pathfinder()
def act_out_decision(self):
pass
def check_distance_from_object(self):
self.update_coordinates()
self.distance_from_object = \
abs(self.object_coordinates[0] - self.red_coordinate[0]) + abs(self.object_coordinates[1] - self.red_coordinate[1])
def determine_behavior(self):
if not self.detected_objects:
self.current_behavior = BEHAVIOR_STATE.SCANNING
elif self.inspecting:
self.current_behavior = BEHAVIOR_STATE.INSPECTING
elif self.detected_objects and not self.path_found:
self.current_behavior = BEHAVIOR_STATE.PATH_FINDING
elif self.path_found:
self.current_behavior = BEHAVIOR_STATE.APPROACHING
def determine_object_position(self):
""""used to determine which direction the red player should turn to face object"""
if self.red_coordinate[0] + MARGIN >= self.object_coordinates[0] >= MARGIN - self.red_coordinate[0]:
# red player is above blue player
if self.red_coordinate[1] < self.object_coordinates[1] - MARGIN:
self.current_position = PilotCurrentPosition.ABOVE
# red player is below blue player
elif self.red_coordinate[1] > self.object_coordinates[1] + MARGIN:
self.current_position = PilotCurrentPosition.BELOW
# red player is right of blue
elif self.red_coordinate[0] > self.object_coordinates[0]:
self.current_position = PilotCurrentPosition.RIGHT
# red player is left of blue
elif self.red_coordinate[0] < self.object_coordinates[0]:
self.current_position = PilotCurrentPosition.LEFT
def find_next_node(self):
"""finds the closest node in our path and removes nodes once they are reached"""
if not (1 <= abs(self.rect.centerx - self.next_node_coordinates[0]) or 1 <= abs(
self.rect.centery - self.next_node_coordinates[1])):
self.path_course.pop(0)
if self.path_course:
self.next_node_coordinates = (self.path_course[0].x, self.path_course[0].y)
def is_healthy(self):
return self.hit_points > 50
def make_decision(self):
self.determine_behavior()
if self.current_behavior == BEHAVIOR_STATE.SCANNING:
self.legs.rotate()
self.angle = self.ask("legs", "angle")
self.eyes.scan_room()
_thread.start_new_thread(self.mouth.speak, ("Scanning Room",))
elif self.current_behavior == BEHAVIOR_STATE.PATH_FINDING:
self.path_course = self.pathfinder.find_path(self.object_coordinates)
self.path_found = True
self.next_node_coordinates = (self.path_course[0].x, self.path_course[0].y)
elif self.current_behavior == BEHAVIOR_STATE.APPROACHING:
if not self.path_course:
self.path_found = False
self.inspecting = True
return
self.find_next_node()
self.move_to_next_node()
elif self.current_behavior == BEHAVIOR_STATE.INSPECTING:
if not self.mouth.inspection_message_spoken:
self.mouth.stopSentence()
_thread.start_new_thread(self.mouth.speak, ("Inspecting Object",))
self.mouth.inspection_message_spoken = True
pass
def move_to_next_node(self):
"""tells the bot which direction to move to reach the next node in its path"""
if self.next_node_coordinates[0] < self.rect.centerx:
self.bot.move(-2, 0)
elif self.next_node_coordinates[0] > self.rect.centerx:
self.bot.move(2, 0)
# up and down
if self.next_node_coordinates[1] < self.rect.centery:
self.bot.move(0, -2)
elif self.next_node_coordinates[1] > self.rect.centery:
self.bot.move(0, 2)
def rotate(self):
self.angle += .5
key = pygame.key.get_pressed()
if key[pygame.K_LEFT]:
self.angle += 4
if key[pygame.K_RIGHT]:
self.angle -= 4
# self.angle += 2
self.angle %= 360
self.bot.angle_facing = self.angle
self.bot.update_dx_dy()
rect_center = self.bot.image.get_rect()
self.bot.image = pygame.transform.rotozoom(self.original_image, self.angle, 1)
rot_rect = rect_center.copy()
rot_rect.center = self.bot.image.get_rect().center
self.bot.image = self.bot.image.subsurface(rot_rect).copy()
def setup_bot_map(self):
self.bot.wall_list = self.environment.get_object("wall_list")
def shoot(self):
if self.bot.reloaded():
bullet_list = self.environment.get_object("bullet_list")
if self.current_position == PilotCurrentPosition.LEFT:
bullet_list.add(self.bot.shoot_right())
elif self.current_position == PilotCurrentPosition.RIGHT:
bullet_list.add(self.bot.shoot_left())
elif self.current_position == PilotCurrentPosition.ABOVE:
bullet_list.add(self.bot.shoot_down())
elif self.current_position == PilotCurrentPosition.BELOW:
bullet_list.add(self.bot.shoot_up())
def update_coordinates(self):
self.red_coordinate = (self.rect.x, self.rect.y)
self.object_coordinates = self.ask("blue_player_pilot", "blue_coordinate")
class PilotAgentBehavior(Enum):
FINDING_PATH = 0
CHASING = 1
SHOOTING = 2
FLEEING = 4
HIDING = 8
class PilotCurrentPosition(Enum):
ABOVE = 1
BELOW = 2
LEFT = 3
RIGHT = 4
class BEHAVIOR_STATE(Enum):
SCANNING = 1
APPROACHING = 2
INSPECTING = 3
FINISHED = 4
PATH_FINDING = 5