Releases: tinkoff-ai/etna
Releases · tinkoff-ai/etna
etna 1.10.0
Highlights:
- BATS, TBATS and AutoArima models
- Fix of empirical prediction intervals
Full changelog:
Added
- Add Sign metric (#730)
- Add AutoARIMA model (#679)
- Add parameters
start
,end
to some eda methods (#665) - Add BATS and TBATS model adapters (#678)
- Jupyter extension for black (#742)
Changed
- Change color of lines in plot_anomalies and plot_clusters, add grid to all plots, make trend line thicker in plot_trend (#705)
- Change format of holidays for holiday_plot (#708)
- Make feature selection transforms return columns in inverse_transform(#688)
- Add xticks parameter for plot_periodogram, clip frequencies to be >= 1 (#706)
- Make TSDataset method to_dataset work with copy of the passed dataframe (#741)
Fixed
- Fix bug when
ts.plot
does not save figure (#714) - Fix bug in plot_clusters (#675)
- Fix bugs and documentation for cross_corr_plot (#691)
- Fix bugs and documentation for plot_backtest and plot_backtest_interactive (#700)
- Make STLTransform to work with NaNs at the beginning (#736)
- Fix tiny prediction intervals (#722)
- Fix deepcopy issue for fitted deepmodel (#735)
- Fix making backtest if all segments start with NaNs (#728)
- Fix logging issues with backtest while emp intervals using (#747)
etna 1.9.0
etna 1.8.0
Added
Width
andCoverage
metrics for prediction intervals (#638)- Masked backtest (#613)
- Add seasonal_plot (#628)
- Add plot_periodogram (#606)
- Add support of quantiles in backtest (#652)
- Add prediction_actual_scatter_plot (#610)
- Add plot_holidays (#624)
- Add instruction about documentation formatting to contribution guide (#648)
- Seasonal strategy in TimeSeriesImputerTransform (#639)
Changed
- Add logging to
Metric.__call__
(#643) - Add in_column to plot_anomalies, plot_anomalies_interactive (#618)
- Add logging to TSDataset.inverse_transform (#642)
Fixed
- Passing non default params for default models STLTransform (#641)
- Fixed bug in SARIMAX model with
horizon
=1 (#637) - Fixed bug in models
get_model
method (#623) - Fixed unsafe comparison in plots (#611)
- Fixed plot_trend does not work with Linear and TheilSen transforms (#617)
- Improve computation time for rolling window statistics (#625)
- Don't fill first timestamps in TimeSeriesImputerTransform (#634)
- Fix documentation formatting (#636)
- Fix bug with exog features in AutoRegressivePipeline (#647)
- Fix missed dependencies (#656)
- Fix custom_transform_and_model notebook (#651)
- Fix MyBinder bug with dependencies (#650)
etna 1.7.0
Highlights:
- New plots (a lot!): imputation, trend, change points, residuals, qq-plot, feature relevance, stl.
- New regressors logic in TSDatasets, Transforms and Models
- Added jupyter notebook with regressors example
- Prediction intervals visualization in plot_forecast
- Detrending could be polynomial
- Added installation instruction for M1
- Fixed TSDataset when plot method does not plot all required segments
- VotingEnsemble allows to set weights of estimator as weights of pipelines
Full changelog:
Added
- Regressors logic to TSDatasets init (#357)
- FutureMixin into some transforms (#361)
- Regressors updating in TSDataset transform loops (#374)
- Regressors handling in TSDataset make_future and train_test_split (#447)
- Prediction intervals visualization in plot_forecast (#538)
- Add plot_imputation (#598)
- Add plot_time_series_with_change_points function (#534)
- Add plot_trend (#565)
- Add find_change_points function (#521)
- Add option day_number_in_year to DateFlagsTransform (#552)
- Add plot_residuals (#539)
- Add get_residuals (#597)
- Create PerSegmentBaseModel, PerSegmentPredictionIntervalModel (#537)
- Create MultiSegmentModel (#551)
- Add qq_plot (#604)
- Add regressors example notebook (#577)
- Create EnsembleMixin (#574)
- Add option season_number to DateFlagsTransform (#567)
- Create BasePipeline, add prediction intervals to all the pipelines, move parameter n_fold to forecast (#578)
- Add stl_plot (#575)
- Add plot_features_relevance (#579)
- Add community section to README.md (#580)
- Create AbstaractPipeline (#573)
- Option "auto" to weights parameter of VotingEnsemble, enables to use feature importance as weights of base estimators (https://github.com/tinkoff-ai/etna/pull/587[](https://github.com/tinkoff-ai/etna/releases/edit/1.7.0#changed-1))
Changed
- Change the way ProphetModel works with regressors (#383)
- Change the way SARIMAXModel works with regressors (#380)
- Change the way Sklearn models works with regressors (#440)
- Change the way FeatureSelectionTransform works with regressors, rename variables replacing the "regressor" to "feature" (#522)
- Add table option to ConsoleLogger (#544)
- Installation instruction (#526)
- Update plot_forecast for multi-forecast mode (#584)
- Trainer kwargs for deep models (#540)
- Update CONTRIBUTING.md (#536)
- Rename _CatBoostModel, _HoltWintersModel, _SklearnModel (#543)
- Add logging to TSDataset.make_future, log repr of transform instead of class name (#555)
- Rename _SARIMAXModel and _ProphetModel, make SARIMAXModel and ProphetModel inherit from PerSegmentPredictionIntervalModel (#549)
- Update get_started section in README (#569)
- Make detrending polynomial (#566)
- Update documentation about transforms that generate regressors, update examples with them (#572)
- Fix that segment is string (#602)
- Make LabelEncoderTransform and OneHotEncoderTransform multi-segment (https://github.com/tinkoff-ai/etna/pull/554[](https://github.com/tinkoff-ai/etna/releases/edit/1.7.0#fixed-1))
Fixed
- Fix TSDataset._update_regressors logic removing the regressors (#489)
- Fix TSDataset.info, TSDataset.describe methods (#519)
- Fix regressors handling for OneHotEncoderTransform and HolidayTransform (#518)
- Fix wandb summary issue with custom plots (#535)
- Small notebook fixes (#595)
- Fix import Literal in plotters (#558)
- Fix plot method bug when plot method does not plot all required segments (#596)
- Fix dependencies for ARM (#599)
- [BUG] nn models make forecast without inverse_transform (#541)
etna 1.6.3
Highlights:
- Fix for version incompatibility of scipy and statsmodels
Full changelog:
Fixed
etna 1.6.2
etna 1.6.1
etna 1.6.0
Highlights:
- New transforms for feature engineering:
DifferencingTransform
,OneHotEncoderTransform
,LabelEncoderTransform
,MADTransform
. - New transform for feature selection:
MRMRFeatureSelectionTransform
. - Warnings in docstrings about possible look-ahead bias in case of using some transfroms.
- Version update of sklearn, pytorch-forecasting and
PytorchForecastingTransform
api minor changes. - Fixes for SARIMAX non-default parameters.
TSDataset.describe
method for high-level information about provided time series: % of missing values, number of segments, first and last dates and etc.
Full changelog:
Added
- Method TSDataset.info (#409)
- DifferencingTransform (#414)
- OneHotEncoderTransform and LabelEncoderTransform (#431)
- MADTransform (#441)
MRMRFeatureSelectionTransform
(#439)- Possibility to change metric representation in backtest using Metric.name (#454)
- Warning section in documentation about look-ahead bias (#464)
- Parameter
figsize
to all the plotters #465
Changed
- Change method TSDataset.describe (#409)
- Group Transforms according to their impact (#420)
- Change the way
LagTransform
,DateFlagsTransform
andTimeFlagsTransform
generate column names (#421) - Clarify the behaviour of TimeSeriesImputerTransform in case of all NaN values (#427)
- Fixed bug in title in
sample_acf_plot
method (#432) - Pytorch-forecasting and sklearn version update + some pytroch transform API changing (#445)
Fixed
etna 1.5.0
Highlights:
- We extend our family of loggers by adding S3FileLogger and LocalFileLogger. They partially duplicate behaviour of WandbLogger: you can run multiple experiments (via Optuna, HyperOpt or cutom loop as example) with different hyperparameters and transformers, save results locally or on S3 and analyze results afterwards.
- HolidayTransfrom on the base of holidays library.
- Bug fixies for prediction intervals - now they change after inverse_transform like target.
- We change behaviour of
fit_transform
:- before we raised error if some timeseries ended on
NaN
values - now checking will be made only before forecasting phase, so you can fill
NaN
s withTimeSeriesImputerTransform
and make predictions without raised errors.
- before we raised error if some timeseries ended on
N.B.
Special thanks to @Gewissta and his videos about timeseries analysis with ETNA library
Full changelog:
Added
- Holiday Transform (#359)
- S3FileLogger and LocalFileLogger (#372)
- Parameter
changepoint_prior_scale
toProphetModel
(#408)
Changed
- Set
strict_optional = True
for mypy (#381) - Move checking the series endings to
make_future
step (#413)
Fixed
etna 1.4.2
- Fix docs generation