Skip to content

Releases: tinkoff-ai/etna

etna 1.10.0

15 Jun 08:16
88f4766
Compare
Choose a tag to compare

Highlights:

  • BATS, TBATS and AutoArima models
  • Fix of empirical prediction intervals

Full changelog:

Added

  • Add Sign metric (#730)
  • Add AutoARIMA model (#679)
  • Add parameters start, end to some eda methods (#665)
  • Add BATS and TBATS model adapters (#678)
  • Jupyter extension for black (#742)

Changed

  • Change color of lines in plot_anomalies and plot_clusters, add grid to all plots, make trend line thicker in plot_trend (#705)
  • Change format of holidays for holiday_plot (#708)
  • Make feature selection transforms return columns in inverse_transform(#688)
  • Add xticks parameter for plot_periodogram, clip frequencies to be >= 1 (#706)
  • Make TSDataset method to_dataset work with copy of the passed dataframe (#741)

Fixed

  • Fix bug when ts.plot does not save figure (#714)
  • Fix bug in plot_clusters (#675)
  • Fix bugs and documentation for cross_corr_plot (#691)
  • Fix bugs and documentation for plot_backtest and plot_backtest_interactive (#700)
  • Make STLTransform to work with NaNs at the beginning (#736)
  • Fix tiny prediction intervals (#722)
  • Fix deepcopy issue for fitted deepmodel (#735)
  • Fix making backtest if all segments start with NaNs (#728)
  • Fix logging issues with backtest while emp intervals using (#747)

etna 1.9.0

17 May 08:36
24d36d6
Compare
Choose a tag to compare

Added

  • Add plot_metric_per_segment (#658)
  • Add metric_per_segment_distribution_plot (#666)

Changed

  • Remove parameter normalize in linear models (#686)

Fixed

  • Add missed forecast_params in forecast CLI method (#671)
  • Add _per_segment_average method to the Metric class (#684)
  • Fix get_statistics_relevance_table working with NaNs and categoricals (#672)
  • Fix bugs and documentation for stl_plot (#685)
  • Fix cuda docker images (#694])

etna 1.8.0

28 Apr 08:55
c05a44a
Compare
Choose a tag to compare

Added

  • Width and Coverage metrics for prediction intervals (#638)
  • Masked backtest (#613)
  • Add seasonal_plot (#628)
  • Add plot_periodogram (#606)
  • Add support of quantiles in backtest (#652)
  • Add prediction_actual_scatter_plot (#610)
  • Add plot_holidays (#624)
  • Add instruction about documentation formatting to contribution guide (#648)
  • Seasonal strategy in TimeSeriesImputerTransform (#639)

Changed

  • Add logging to Metric.__call__ (#643)
  • Add in_column to plot_anomalies, plot_anomalies_interactive (#618)
  • Add logging to TSDataset.inverse_transform (#642)

Fixed

  • Passing non default params for default models STLTransform (#641)
  • Fixed bug in SARIMAX model with horizon=1 (#637)
  • Fixed bug in models get_model method (#623)
  • Fixed unsafe comparison in plots (#611)
  • Fixed plot_trend does not work with Linear and TheilSen transforms (#617)
  • Improve computation time for rolling window statistics (#625)
  • Don't fill first timestamps in TimeSeriesImputerTransform (#634)
  • Fix documentation formatting (#636)
  • Fix bug with exog features in AutoRegressivePipeline (#647)
  • Fix missed dependencies (#656)
  • Fix custom_transform_and_model notebook (#651)
  • Fix MyBinder bug with dependencies (#650)

etna 1.7.0

16 Mar 15:09
7dd9448
Compare
Choose a tag to compare

Highlights:

  • New plots (a lot!): imputation, trend, change points, residuals, qq-plot, feature relevance, stl.
  • New regressors logic in TSDatasets, Transforms and Models
  • Added jupyter notebook with regressors example
  • Prediction intervals visualization in plot_forecast
  • Detrending could be polynomial
  • Added installation instruction for M1
  • Fixed TSDataset when plot method does not plot all required segments
  • VotingEnsemble allows to set weights of estimator as weights of pipelines

Full changelog:

Added

  • Regressors logic to TSDatasets init (#357)
  • FutureMixin into some transforms (#361)
  • Regressors updating in TSDataset transform loops (#374)
  • Regressors handling in TSDataset make_future and train_test_split (#447)
  • Prediction intervals visualization in plot_forecast (#538)
  • Add plot_imputation (#598)
  • Add plot_time_series_with_change_points function (#534)
  • Add plot_trend (#565)
  • Add find_change_points function (#521)
  • Add option day_number_in_year to DateFlagsTransform (#552)
  • Add plot_residuals (#539)
  • Add get_residuals (#597)
  • Create PerSegmentBaseModel, PerSegmentPredictionIntervalModel (#537)
  • Create MultiSegmentModel (#551)
  • Add qq_plot (#604)
  • Add regressors example notebook (#577)
  • Create EnsembleMixin (#574)
  • Add option season_number to DateFlagsTransform (#567)
  • Create BasePipeline, add prediction intervals to all the pipelines, move parameter n_fold to forecast (#578)
  • Add stl_plot (#575)
  • Add plot_features_relevance (#579)
  • Add community section to README.md (#580)
  • Create AbstaractPipeline (#573)
  • Option "auto" to weights parameter of VotingEnsemble, enables to use feature importance as weights of base estimators (https://github.com/tinkoff-ai/etna/pull/587[](https://github.com/tinkoff-ai/etna/releases/edit/1.7.0#changed-1))

Changed

  • Change the way ProphetModel works with regressors (#383)
  • Change the way SARIMAXModel works with regressors (#380)
  • Change the way Sklearn models works with regressors (#440)
  • Change the way FeatureSelectionTransform works with regressors, rename variables replacing the "regressor" to "feature" (#522)
  • Add table option to ConsoleLogger (#544)
  • Installation instruction (#526)
  • Update plot_forecast for multi-forecast mode (#584)
  • Trainer kwargs for deep models (#540)
  • Update CONTRIBUTING.md (#536)
  • Rename _CatBoostModel, _HoltWintersModel, _SklearnModel (#543)
  • Add logging to TSDataset.make_future, log repr of transform instead of class name (#555)
  • Rename _SARIMAXModel and _ProphetModel, make SARIMAXModel and ProphetModel inherit from PerSegmentPredictionIntervalModel (#549)
  • Update get_started section in README (#569)
  • Make detrending polynomial (#566)
  • Update documentation about transforms that generate regressors, update examples with them (#572)
  • Fix that segment is string (#602)
  • Make LabelEncoderTransform and OneHotEncoderTransform multi-segment (https://github.com/tinkoff-ai/etna/pull/554[](https://github.com/tinkoff-ai/etna/releases/edit/1.7.0#fixed-1))

Fixed

  • Fix TSDataset._update_regressors logic removing the regressors (#489)
  • Fix TSDataset.info, TSDataset.describe methods (#519)
  • Fix regressors handling for OneHotEncoderTransform and HolidayTransform (#518)
  • Fix wandb summary issue with custom plots (#535)
  • Small notebook fixes (#595)
  • Fix import Literal in plotters (#558)
  • Fix plot method bug when plot method does not plot all required segments (#596)
  • Fix dependencies for ARM (#599)
  • [BUG] nn models make forecast without inverse_transform (#541)

etna 1.6.3

14 Feb 09:38
edeccdc
Compare
Choose a tag to compare

Highlights:

  • Fix for version incompatibility of scipy and statsmodels

Full changelog:

Fixed

  • Fixed adding unnecessary lag=1 in statistics (#523)
  • Fixed wrong MeanTransform behaviour when using alpha parameter (#523)
  • Fix processing add_noise=True parameter in datasets generation (#520)
  • Fix scipy version (#525)

etna 1.6.2

09 Feb 08:24
8fcb33d
Compare
Choose a tag to compare

Full changelog:

Added

  • Holt-Winters', Holt and exponential smoothing models (#502)

Fixed

  • Bug with exog features in DifferencingTransform.inverse_transform (#503)

etna 1.6.1

03 Feb 10:19
Compare
Choose a tag to compare

Full changelog:

Added

  • Allow choosing start and end in TSDataset.plot method (488)

Changed

  • Make TSDataset.to_flatten faster (#475)
  • Allow logger percentile metric aggregation to work with NaNs (#483)

Fixed

  • Can't make forecasting with pipelines, data with nans, and Imputers (#473)

etna 1.6.0

28 Jan 15:15
f7db1ed
Compare
Choose a tag to compare

Highlights:

  • New transforms for feature engineering: DifferencingTransform, OneHotEncoderTransform, LabelEncoderTransform, MADTransform.
  • New transform for feature selection: MRMRFeatureSelectionTransform.
  • Warnings in docstrings about possible look-ahead bias in case of using some transfroms.
  • Version update of sklearn, pytorch-forecasting and PytorchForecastingTransform api minor changes.
  • Fixes for SARIMAX non-default parameters.
  • TSDataset.describe method for high-level information about provided time series: % of missing values, number of segments, first and last dates and etc.

Full changelog:

Added

  • Method TSDataset.info (#409)
  • DifferencingTransform (#414)
  • OneHotEncoderTransform and LabelEncoderTransform (#431)
  • MADTransform (#441)
  • MRMRFeatureSelectionTransform (#439)
  • Possibility to change metric representation in backtest using Metric.name (#454)
  • Warning section in documentation about look-ahead bias (#464)
  • Parameter figsize to all the plotters #465

Changed

  • Change method TSDataset.describe (#409)
  • Group Transforms according to their impact (#420)
  • Change the way LagTransform, DateFlagsTransform and TimeFlagsTransform generate column names (#421)
  • Clarify the behaviour of TimeSeriesImputerTransform in case of all NaN values (#427)
  • Fixed bug in title in sample_acf_plot method (#432)
  • Pytorch-forecasting and sklearn version update + some pytroch transform API changing (#445)

Fixed

  • Add relevance_params in GaleShapleyFeatureSelectionTransform (#410)
  • Docs for statistics transforms (#441)
  • Handling NaNs in trend transforms (#456)
  • Logger fails with StackingEnsemble (#460)
  • SARIMAX parameters fix (#459)
  • [BUG] Check pytorch-forecasting models with freq > "1D" (#463)

etna 1.5.0

24 Dec 13:57
Compare
Choose a tag to compare

Highlights:

  • We extend our family of loggers by adding S3FileLogger and LocalFileLogger. They partially duplicate behaviour of WandbLogger: you can run multiple experiments (via Optuna, HyperOpt or cutom loop as example) with different hyperparameters and transformers, save results locally or on S3 and analyze results afterwards.
  • HolidayTransfrom on the base of holidays library.
  • Bug fixies for prediction intervals - now they change after inverse_transform like target.
  • We change behaviour of fit_transform:
    • before we raised error if some timeseries ended on NaN values
    • now checking will be made only before forecasting phase, so you can fill NaNs with TimeSeriesImputerTransform and make predictions without raised errors.

N.B.

Special thanks to @Gewissta and his videos about timeseries analysis with ETNA library

Full changelog:

Added

  • Holiday Transform (#359)
  • S3FileLogger and LocalFileLogger (#372)
  • Parameter changepoint_prior_scale to ProphetModel (#408)

Changed

  • Set strict_optional = True for mypy (#381)
  • Move checking the series endings to make_future step (#413)

Fixed

  • Sarimax bug in future prediction with quantiles (#391)
  • Catboost version too high (#394)
  • Add sorting of classes in left bar in docs (#397)
  • nn notebook in docs (#396)
  • SklearnTransform column name generation (#398)
  • Inverse transform doesn't affect quantiles (#395)

etna 1.4.2

09 Dec 16:25
Compare
Choose a tag to compare
  • Fix docs generation