diff --git a/CHANGELOG.md b/CHANGELOG.md index 531563298..0d8f199e2 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -7,16 +7,36 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 ## Unreleased ### Added +- +- +- +- +- + +### Changed +- +- +- +- + +### Fixed +- +- +- +- +- + + +## [2.1.0] - 2023-06-30 +### Added - Notebook `forecast_interpretation.ipynb` with forecast decomposition ([#1220](https://github.com/tinkoff-ai/etna/pull/1220)) - Exogenous variables shift transform `ExogShiftTransform`([#1254](https://github.com/tinkoff-ai/etna/pull/1254)) - Parameter `start_timestamp` to forecast CLI command ([#1265](https://github.com/tinkoff-ai/etna/pull/1265)) - `DeepStateModel` ([#1253](https://github.com/tinkoff-ai/etna/pull/1253)) - Function `estimate_max_n_folds` for folds number estimation ([#1279](https://github.com/tinkoff-ai/etna/pull/1279)) - Parameters `estimate_n_folds` and `context_size` to forecast and backtest CLI commands ([#1284](https://github.com/tinkoff-ai/etna/pull/1284)) -- - Class `Tune` for hyperparameter optimization within existing pipeline ([#1200](https://github.com/tinkoff-ai/etna/pull/1200)) - Add `etna.distributions` for using it instead of using `optuna.distributions` ([#1292](https://github.com/tinkoff-ai/etna/pull/1292)) -- ### Changed - Set the default value of `final_model` to `LinearRegression(positive=True)` in the constructor of `StackingEnsemble` ([#1238](https://github.com/tinkoff-ai/etna/pull/1238)) @@ -27,8 +47,6 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 - Optimize `make_samples` of `RNNNet` and `MLPNet` ([#1281](https://github.com/tinkoff-ai/etna/pull/1281)) - Remove `to_be_fixed` from inference tests on `SpecialDaysTransform` ([#1283](https://github.com/tinkoff-ai/etna/pull/1283)) - Rewrite `TimeSeriesImputerTransform` to work without per-segment wrapper ([#1293](https://github.com/tinkoff-ai/etna/pull/1293)) -- -- - Add default `params_to_tune` for catboost models ([#1185](https://github.com/tinkoff-ai/etna/pull/1185)) - Add default `params_to_tune` for `ProphetModel` ([#1203](https://github.com/tinkoff-ai/etna/pull/1203)) - Add default `params_to_tune` for `SARIMAXModel`, change default parameters for the model ([#1206](https://github.com/tinkoff-ai/etna/pull/1206)) @@ -65,6 +83,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 - Teach `BaseMixin.set_params` to work with nested `list` and `tuple` ([#1201](https://github.com/tinkoff-ai/etna/pull/1201)) - Fix `get_anomalies_prediction_interval` to work when segments have different start date ([#1296](https://github.com/tinkoff-ai/etna/pull/1296)) - Fix `classification` notebook to download `FordA` dataset without error ([#1299](https://github.com/tinkoff-ai/etna/pull/1299)) +- Fix signature of `Auto.fit`, `Tune.fit` to not have a breaking change ([#1300](https://github.com/tinkoff-ai/etna/pull/1300)) ## [2.0.0] - 2023-04-11 ### Added @@ -126,6 +145,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 - Fix `DifferencingTransform` to raise error on new segments during `transform` and `inverse_transform` in inplace mode ([#1141](https://github.com/tinkoff-ai/etna/pull/1141)) - Teach `DifferencingTransform` to `inverse_transform` with NaNs ([#1155](https://github.com/tinkoff-ai/etna/pull/1155)) - Fixed `custom_transform_and_model.ipynb`([#1216](https://github.com/tinkoff-ai/etna/pull/1216)) + ### Removed - `sample_acf_plot`, `sample_pacf_plot`, `CatBoostModelPerSegment`, `CatBoostModelMultiSegment` ([#1118](https://github.com/tinkoff-ai/etna/pull/1118)) - `PytorchForecastingTransform` ([#971](https://github.com/tinkoff-ai/etna/pull/971)) diff --git a/pyproject.toml b/pyproject.toml index e72998f25..ed281ccb7 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "etna" -version = "2.0.0" +version = "2.1.0" repository = "https://github.com/tinkoff-ai/etna" readme = "README.md" description = "ETNA is the first python open source framework of Tinkoff.ru AI Center. It is designed to make working with time series simple, productive, and fun."