-
Notifications
You must be signed in to change notification settings - Fork 559
/
test_kitti_depth.py
62 lines (59 loc) · 2.51 KB
/
test_kitti_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from __future__ import division
import tensorflow as tf
import numpy as np
import os
# import scipy.misc
import PIL.Image as pil
from SfMLearner import SfMLearner
flags = tf.app.flags
flags.DEFINE_integer("batch_size", 4, "The size of of a sample batch")
flags.DEFINE_integer("img_height", 128, "Image height")
flags.DEFINE_integer("img_width", 416, "Image width")
flags.DEFINE_string("dataset_dir", None, "Dataset directory")
flags.DEFINE_string("output_dir", None, "Output directory")
flags.DEFINE_string("ckpt_file", None, "checkpoint file")
FLAGS = flags.FLAGS
def main(_):
with open('data/kitti/test_files_eigen.txt', 'r') as f:
test_files = f.readlines()
test_files = [FLAGS.dataset_dir + t[:-1] for t in test_files]
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
basename = os.path.basename(FLAGS.ckpt_file)
output_file = FLAGS.output_dir + '/' + basename
sfm = SfMLearner()
sfm.setup_inference(img_height=FLAGS.img_height,
img_width=FLAGS.img_width,
batch_size=FLAGS.batch_size,
mode='depth')
saver = tf.train.Saver([var for var in tf.model_variables()])
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
saver.restore(sess, FLAGS.ckpt_file)
pred_all = []
for t in range(0, len(test_files), FLAGS.batch_size):
if t % 100 == 0:
print('processing %s: %d/%d' % (basename, t, len(test_files)))
inputs = np.zeros(
(FLAGS.batch_size, FLAGS.img_height, FLAGS.img_width, 3),
dtype=np.uint8)
for b in range(FLAGS.batch_size):
idx = t + b
if idx >= len(test_files):
break
fh = open(test_files[idx], 'r')
raw_im = pil.open(fh)
scaled_im = raw_im.resize((FLAGS.img_width, FLAGS.img_height), pil.ANTIALIAS)
inputs[b] = np.array(scaled_im)
# im = scipy.misc.imread(test_files[idx])
# inputs[b] = scipy.misc.imresize(im, (FLAGS.img_height, FLAGS.img_width))
pred = sfm.inference(inputs, sess, mode='depth')
for b in range(FLAGS.batch_size):
idx = t + b
if idx >= len(test_files):
break
pred_all.append(pred['depth'][b,:,:,0])
np.save(output_file, pred_all)
if __name__ == '__main__':
tf.app.run()