-
Notifications
You must be signed in to change notification settings - Fork 545
/
Copy pathedit_cli.py
128 lines (108 loc) · 4.86 KB
/
edit_cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from __future__ import annotations
import math
import random
import sys
from argparse import ArgumentParser
import einops
import k_diffusion as K
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from torch import autocast
sys.path.append("./stable_diffusion")
from stable_diffusion.ldm.util import instantiate_from_config
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, z, sigma, cond, uncond, text_cfg_scale, image_cfg_scale):
cfg_z = einops.repeat(z, "1 ... -> n ...", n=3)
cfg_sigma = einops.repeat(sigma, "1 ... -> n ...", n=3)
cfg_cond = {
"c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0], uncond["c_crossattn"][0]])],
"c_concat": [torch.cat([cond["c_concat"][0], cond["c_concat"][0], uncond["c_concat"][0]])],
}
out_cond, out_img_cond, out_uncond = self.inner_model(cfg_z, cfg_sigma, cond=cfg_cond).chunk(3)
return out_uncond + text_cfg_scale * (out_cond - out_img_cond) + image_cfg_scale * (out_img_cond - out_uncond)
def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
if vae_ckpt is not None:
print(f"Loading VAE from {vae_ckpt}")
vae_sd = torch.load(vae_ckpt, map_location="cpu")["state_dict"]
sd = {
k: vae_sd[k[len("first_stage_model.") :]] if k.startswith("first_stage_model.") else v
for k, v in sd.items()
}
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
return model
def main():
parser = ArgumentParser()
parser.add_argument("--resolution", default=512, type=int)
parser.add_argument("--steps", default=100, type=int)
parser.add_argument("--config", default="configs/generate.yaml", type=str)
parser.add_argument("--ckpt", default="checkpoints/instruct-pix2pix-00-22000.ckpt", type=str)
parser.add_argument("--vae-ckpt", default=None, type=str)
parser.add_argument("--input", required=True, type=str)
parser.add_argument("--output", required=True, type=str)
parser.add_argument("--edit", required=True, type=str)
parser.add_argument("--cfg-text", default=7.5, type=float)
parser.add_argument("--cfg-image", default=1.5, type=float)
parser.add_argument("--seed", type=int)
args = parser.parse_args()
config = OmegaConf.load(args.config)
model = load_model_from_config(config, args.ckpt, args.vae_ckpt)
model.eval().cuda()
model_wrap = K.external.CompVisDenoiser(model)
model_wrap_cfg = CFGDenoiser(model_wrap)
null_token = model.get_learned_conditioning([""])
seed = random.randint(0, 100000) if args.seed is None else args.seed
input_image = Image.open(args.input).convert("RGB")
width, height = input_image.size
factor = args.resolution / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
if args.edit == "":
input_image.save(args.output)
return
with torch.no_grad(), autocast("cuda"), model.ema_scope():
cond = {}
cond["c_crossattn"] = [model.get_learned_conditioning([args.edit])]
input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
input_image = rearrange(input_image, "h w c -> 1 c h w").to(model.device)
cond["c_concat"] = [model.encode_first_stage(input_image).mode()]
uncond = {}
uncond["c_crossattn"] = [null_token]
uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])]
sigmas = model_wrap.get_sigmas(args.steps)
extra_args = {
"cond": cond,
"uncond": uncond,
"text_cfg_scale": args.cfg_text,
"image_cfg_scale": args.cfg_image,
}
torch.manual_seed(seed)
z = torch.randn_like(cond["c_concat"][0]) * sigmas[0]
z = K.sampling.sample_euler_ancestral(model_wrap_cfg, z, sigmas, extra_args=extra_args)
x = model.decode_first_stage(z)
x = torch.clamp((x + 1.0) / 2.0, min=0.0, max=1.0)
x = 255.0 * rearrange(x, "1 c h w -> h w c")
edited_image = Image.fromarray(x.type(torch.uint8).cpu().numpy())
edited_image.save(args.output)
if __name__ == "__main__":
main()