Skip to content

Latest commit

 

History

History
106 lines (73 loc) · 2.76 KB

README.md

File metadata and controls

106 lines (73 loc) · 2.76 KB

Re3Dial: Retrieve, Reorganize and Rescale Conversations for Long-Turn Open-Domain Dialogue Pre-training

This repository contains data, code, and pre-trained retriever models for our EMNLP 2023 paper

Re$^3$Dial: Retrieve, Reorganize and Rescale Conversations for Long-Turn Open-Domain Dialogue Pre-training

In this work, we propose Re$^3$Dial (Retriever, Reorganize, and Rescale), a framework to automatically construct billion-scale long-turn dialogues by reorganizing existing short-turn ones.

Getting Started

from transformers import BertTokenizer, BertModel
import torch


def get_embedding(encoder, inputs):
    outputs = encoder(**inputs)
    pooled_output = outputs[0][:, 0, :]
    return pooled_output

tokenizer = BertTokenizer.from_pretrained('')
tokenizer.add_tokens(['<uttsep>'])
query_encoder = BertModel.from_pretrained('')
context_encoder = BertModel.from_pretrained('')

query = '你好<uttsep>好久不见,最近在干嘛'
context = '正在准备考试<uttsep>是什么考试呀,很辛苦吧'

query_inputs = tokenizer([query], return_tensors='pt')
context_inputs = tokenizer([context], return_tensors='pt')

query_embedding = get_embedding(query_encoder, query_inputs)
context_embedding = get_embedding(context_encoder, context_inputs)

score = torch.cosine_similarity(query_embedding, context_embedding, dim=1)

print('similarity score = ', score)

1. Install

conda create -n redial python=3.8
pip install -r requirements.txt

2. Prepare Original Dialogue Corpus

  • each line is a multi-turn dialogue seperated by \t
  • for example: 'u1\tu2\tu3\tu4'

3. Construct Long-turn Dialogue Corpus

Before running the code, please change some arguments (e.g., the path of pre-trained models, data path, save path) in the script according to your own path.

3.1 Training and Inference of UDSR

  • train
cd src
bash scripts/train.sh 8 # 8 means data-parallel training over 8 GPUs
  • inference
cd src
bash scripts/predict.sh 8 # 8 means data-parallel inference over 8 GPUs

3.2 Retrieval

  • retrieval on a single GPU
cd src
bash scripts/retrieve.sh
  • data-parallel retrieval over multi-GPUs
cd src
python scripts/parallel_retrieve.py

3.3 Build Long-turn Dialogue Corpus

cd src
bash scripts/build_corpus.sh

4. Citation

@article{wen2023re,
  title={Re $\^{} 3$ Dial: Retrieve, Reorganize and Rescale Dialogue Corpus for Long-Turn Open-Domain Dialogue Pre-training},
  author={Wen, Jiaxin and Zhou, Hao and Guan, Jian and Huang, Minlie},
  journal={arXiv preprint arXiv:2305.02606},
  year={2023}
}