-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
103 lines (82 loc) · 3.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# lightning imports
from pytorch_lightning import LightningModule, LightningDataModule, Callback, Trainer
from pytorch_lightning.loggers import LightningLoggerBase
from pytorch_lightning import seed_everything
# hydra imports
from omegaconf import DictConfig
from hydra.utils import log
import hydra
# normal imports
from typing import List, Optional
# src imports
from src.utils import template_utils
def train(config: DictConfig) -> Optional[float]:
"""
Contains training pipeline.
Instantiates all PyTorch Lightning objects from config.
Args:
config (DictConfig): Configuration composed by Hydra.
Returns:
Optional[float]: Metric score for hyperparameter optimization.
"""
# Set seed for random number generators in pytorch, numpy and python.random
if "seed" in config:
seed_everything(config.seed)
# Init Lightning datamodule
log.info(f"Instantiating datamodule <{config.datamodule._target_}>")
datamodule: LightningDataModule = hydra.utils.instantiate(config.datamodule)
# Init Lightning model
log.info(f"Instantiating model <{config.model._target_}>")
model: LightningModule = hydra.utils.instantiate(
config.model, optimizer=config.optimizer, _recursive_=False
)
# Init Lightning callbacks
callbacks: List[Callback] = []
if "callbacks" in config:
for _, cb_conf in config["callbacks"].items():
if "_target_" in cb_conf:
log.info(f"Instantiating callback <{cb_conf._target_}>")
callbacks.append(hydra.utils.instantiate(cb_conf))
# Init Lightning loggers
logger: List[LightningLoggerBase] = []
if "logger" in config:
for _, lg_conf in config["logger"].items():
if "_target_" in lg_conf:
log.info(f"Instantiating logger <{lg_conf._target_}>")
logger.append(hydra.utils.instantiate(lg_conf))
# Init Lightning trainer
log.info(f"Instantiating trainer <{config.trainer._target_}>")
trainer: Trainer = hydra.utils.instantiate(
config.trainer, callbacks=callbacks, logger=logger, _convert_="partial"
)
# Send some parameters from config to all lightning loggers
log.info("Logging hyperparameters!")
template_utils.log_hyperparameters(
config=config,
model=model,
datamodule=datamodule,
trainer=trainer,
callbacks=callbacks,
logger=logger,
)
# Train the model
log.info("Starting training!")
trainer.fit(model=model, datamodule=datamodule)
# Evaluate model on test set after training
if not config.trainer.get("fast_dev_run"):
log.info("Starting testing!")
trainer.test()
# Make sure everything closed properly
log.info("Finalizing!")
template_utils.finish(
config=config,
model=model,
datamodule=datamodule,
trainer=trainer,
callbacks=callbacks,
logger=logger,
)
# Return metric score for Optuna optimization
optimized_metric = config.get("optimized_metric")
if optimized_metric:
return trainer.callback_metrics[optimized_metric]