-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.tex
432 lines (392 loc) · 10.8 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
\documentclass[pdflatex,compress]{beamer}
\usetheme[darktitle,framenumber,totalframenumber]{UniversiteitAntwerpen}
%\usetheme[light,framenumber,totalframenumber]{UniversiteitAntwerpen}
\usefonttheme[onlymath]{serif}
\usepackage{lipsum}
\setbeamertemplate{caption}[numbered]
\beamertemplatenavigationsymbolsempty
\title{Cavity QED with cold particles}
%\subtitle{This is a dummy subtitle}
\author{Bernhard Gstrein}
\begin{document}
\maketitle
\AtBeginSection[]{}
\section{Introduction / Motivation}
\begin{frame}
\frametitle{Introduction}
\begin{itemize}
\item Complex solid-state phenomena which we want to study \\
$\rightarrow$ difficult
\begin{itemize}
\item Fast, lattice spacing small, structural defects, lattice vibrations
\end{itemize}
\item Make crystal ourselves
\begin{itemize}
\item Much slower, bigger lattice spacing, free of defects, fully controlable
\end{itemize}
\item How do we make atoms self-organize?
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Introduction}
Our goal:
\begin{itemize}
\item Establish a theoretical model arranging atoms in a lattice \\
$\rightarrow$ Hamiltonian
\item Investigate ground state of Hamiltonian with simulations
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Table of Contents}
\tableofcontents
\end{frame}
\AtBeginSection[]
{
\begin{frame}
\frametitle{Table of Contents}
\tableofcontents[currentsection]
\end{frame}
}
\section{Setting up our model}
\begin{frame}
\frametitle{Creating an artificial solid}
\begin{columns}
\column[T]{0.5\textwidth}
How do we make atoms arrange in a lattice pattern?
\begin{itemize}
\item Two counter-propagating laser beams
\item Force to low potential points if $\omega_\text{l} << \omega_\text{a}$
\item Optical cavities: Atom-light field interaction
\item Light and atoms: Composite system
\end{itemize}
\column[T]{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=.6\textwidth]{images/counter_propagating.eps}
\vspace*{-5mm}
\caption{Counter-propagating lasers.}
\end{figure}
\vspace{-1.5em}
\begin{figure}
\centering
\includegraphics[width=.6\textwidth]{images/cavity.eps}
\vspace*{-5mm}
\caption{Optical cavity.}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Cold atoms in cavities}
\begin{itemize}
\item Transversal pumping: Atoms create their own trapping potential
\end{itemize}
Paper: Collective Cooling and Self-Organization of Atoms in a Cavity \cite{domokos2002}
\vspace{-2em}
\begin{columns}
\column{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/pump_long.eps}
\caption{Longitudinal pump.}
\end{figure}
\column{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/pump_trans.eps}
\caption{Transversal pump.}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{The Hamiltonians}
Longitudinal pump ($\lambda / 2$-periodic):
\begin{align}
H_\text{long} = \underbrace{\frac{p^2}{2m}}_{\text{kin. E. atom}} - \underbrace{\hbar \omega_\text{c} a^\dagger a}_{\text{E. field}} + \underbrace{\hbar \eta (a + a^\dagger)}_{\text{pumping}} + \underbrace{\hbar U_0 \cos(kx)^2 a^\dagger a}_{\text{light field potential}}
\end{align}Transversal pump ($\lambda$-periodic):
\begin{align}
\begin{split}
H_\text{transv} = \underbrace{\frac{p^2}{2m}}_{\text{kin. E. atom}} - \underbrace{\hbar \omega_\text{c} a^\dagger a}_{\text{E. field}} + \underbrace{\hbar \eta \cos(kx) (a + a^\dagger)}_{\text{pumping}} +\underbrace{\hbar U_0 \cos(kx)^2 a^\dagger a}_{\text{light field potential}}
\end{split}
\end{align}
\end{frame}
\begin{frame}
\frametitle{Scattering of light}
\begin{itemize}
\item Light is scattered differently when we pump longitudinally or transversally
\begin{itemize}
\item Longitudinal pump: $p = 2 n \hbar k$
\item Transversal pump: $p = n \hbar k$
\end{itemize}
\end{itemize}
\vspace{-2em}
\begin{columns}
\column{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/pump_long.eps}
\caption{Longitudinal pump.}
\end{figure}
\column{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/pump_trans.eps}
\caption{Transversal pump.}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Transversal pump: Superposition}
When we do simulations we obtain a superposition of two symmetric states
\begin{columns}
\column{0.5\textwidth}
\vspace*{-4mm}
\begin{figure}
\centering
\includegraphics[width=.5\textwidth]{images/lattice_drawing_orange.eps}
\vspace*{-2mm}
\caption{Lattice.}
\end{figure}
\column{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/density_superposition.pdf}
\vspace*{-10mm}
\caption{Wave function densities.}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Transversal pump: Superposition}
When we do simulations we obtain a superposition of two symmetric states
\begin{columns}
\column{0.5\textwidth}
\vspace*{-4mm}
\begin{figure}
\centering
\includegraphics[width=.5\textwidth]{images/lattice_drawing_blue.eps}
\vspace*{-2mm}
\caption{Lattice.}
\end{figure}
\column{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/density_superposition.pdf}
\vspace*{-10mm}
\caption{Wave function densities.}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Transversal pump: Phase transition}
Paper: Self-organization of a Bose-Einstein condensate in an optical cavity \cite{Nagy2008}
\begin{columns}
\column{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/domokos_order_parameter.pdf}
\caption{Order parameter.}
\end{figure}
\column{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/domokos_lattice_potential.pdf}
\caption{Lattice potential.}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Our expectations}
\begin{itemize}
\item Atoms are localized in "valleys" of optical potential
\item Longitudinal pumping:
\begin{itemize}
\item Atoms can have momenta of $2 n \hbar k$
\item The more we pump, the more photons we will get
\end{itemize}
\item Transversal pumping:
\begin{itemize}
\item Atoms can have momenta of $n \hbar k$
\item Abrupt self-organization with transversal pumping
\end{itemize}
\end{itemize}
\end{frame}
\section{Setting up the simulation}
\begin{frame}
\frametitle{The Julia language and QuantumOptics.jl}
\begin{itemize}
\item High-performance languages like C, Fortran cumbersome to program
\item Julia: promises high level convenience, low-level performance \cite{julialang}
\item How to program it into computer?
\begin{itemize}
\item Starting from scratch: redundant
\item More convenient: QuantumOptics.jl: Quantum optics simulation framework \cite{qojulia}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Code snippet: Longitudinal pump}
\vspace{-1em}
Here: Calculate longitudinal pump Hamiltonian ground state
\vspace{-0.5em}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/code_screenshot.png}
\end{figure}
\end{frame}
\section{Results and Discussion}
\begin{frame}
\frametitle{Position probability densities}
\vspace{-1.5em}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/dens_long.pdf}
\vspace*{-11mm}
\caption{Longitudinal pump, $\eta = 30 \, \omega_\text{r}$.}
\end{figure}
\vspace{-1em}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/dens_trans.pdf}
\vspace*{-11mm}
\caption{Transversal pump, $\eta = 10 \, \omega_\text{r}$.}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Components of the wave function}
\vspace{-3em}
\begin{align}
\psi(k) & = \frac{1}{N} \sum_l c_l \exp(likx) = \\
& = \frac{1}{N} \Big( c_0 + c_{\pm 1} \exp(ikx) + c_{\pm 2} \exp(2ikx) + \dots \Big) \nonumber
\end{align}
\vspace{-1em}
\begin{table}[!htb]
\centering
\begin{tabular}{lll}
$c_l$ & wave number & momentum \\
\hline \\
$c_0$ & 0 & 0 \\
$c_{\pm 1}$ & $k \rightarrow \exp(ikx)$ & $\hbar k$ \\
$c_{\pm 2}$ & $2k \rightarrow \exp(2ikx)$ & $2 \hbar k$ \\
$c_{\pm 3}$ & $3k \rightarrow \exp(3ikx)$ & $3 \hbar k$ \\
$\vdots$ & &
\end{tabular}
\caption{Wave function coefficients.}
\end{table}
\end{frame}
\begin{frame}
\frametitle{Momentum distribution}
\vspace{-1em}
\begin{figure}
\centering
\includegraphics[width=.9\textwidth]{images/mom_long.pdf}
\vspace*{-6mm}
\caption{Longitudinal pump.}
\end{figure}
\vspace{-2em}
\begin{figure}
\centering
\includegraphics[width=.9\textwidth]{images/mom_trans.pdf}
\vspace*{-6mm}
\caption{Transversal pump.}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Photon number distribution}
\vspace{-1em}
\begin{figure}
\centering
\includegraphics[width=.9\textwidth]{images/pho_dens_long.pdf}
\vspace*{-6mm}
\caption{Longitudinal pump.}
\end{figure}
\vspace{-2em}
\begin{figure}
\centering
\includegraphics[width=.9\textwidth]{images/pho_dens_trans.pdf}
\vspace*{-6mm}
\caption{Transversal pump.}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Husimi Q representation}
Way to visualize photon state $|\alpha \rangle$:
\begin{align}
Q(\alpha) = \frac{1}{\pi} \langle \alpha | \rho | \alpha \rangle,
\end{align}where $\rho$ is the density operator
\begin{align}
\rho = |\psi \rangle \langle \psi |.
\end{align}
\end{frame}
\begin{frame}
\frametitle{Husimi Q representation}
\vspace{-1.5em}
\begin{figure}
\centering
\includegraphics[width=.9\textwidth]{images/qfunc_long.pdf}
\vspace*{-4mm}
\caption{Longitudinal pump.}
\end{figure}
\vspace{-2em}
\begin{figure}
\centering
\includegraphics[width=.9\textwidth]{images/qfunc_trans.pdf}
\vspace*{-4mm}
\caption{Transversal pump.}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Phase transition and symmetry breaking}
\begin{columns}
\column{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/theta_long.pdf}
\vspace*{-10mm}
\caption{Longitudinal pump.}
\end{figure}
\column{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/theta_trans.pdf}
\vspace*{-10mm}
\caption{Transversal pump.}
\end{figure}
\end{columns}
\end{frame}
\section{Recap / Conclusion}
\begin{frame}
\frametitle{Recap}
What we discussed in this presentation...
\begin{itemize}
\item Set up model to arrange atoms in a lattice
\begin{itemize}
\item Use light field
\item Atom-light field interaction in cavity
\item Different ways to pump: longitudinally, transversally
\end{itemize}
\item Obtained Hamiltonians, discussed Properties
\item Simulation: Ground state of Hamiltonians
\end{itemize}
\end{frame}
\section{Special Thanks}
\begin{frame}
\frametitle{Special Thanks}
\begin{center}
\huge Helmut Ritsch \\
\small for Opportunity, Subject \\
\vspace{2em}
\huge Stefan Ostermann \\
\small for Guidance, Discussion
\end{center}
\end{frame}
\begin{frame}
\begin{center}
\huge Thank You!
\end{center}
\end{frame}
\section{References}
\begin{frame}[allowframebreaks]
\bibliographystyle{unsrt}
\bibliography{bibliography}
\end{frame}
\end{document}