Skip to content

Latest commit

 

History

History
49 lines (42 loc) · 1.49 KB

README.md

File metadata and controls

49 lines (42 loc) · 1.49 KB

These are the exercise files used for NICF - Computational Modeling with Generative Adversarial Network (GAN) course.

The course outline can be found in

https://www.tertiarycourses.com.sg/wsq-generative-adversarial-network-gan-course.html

Topic 1 Introduction to Generative Adversarial Network (GAN)

  • Overview of Generative Adversarial Network (GAN)
  • Basic GAN Framework

Topic 2 DCGAN, WGAN & Conditional GAN

  • Deep Convolutional GAN (DCGAN)
  • Wasserstein GAN (WGAAN)
  • Conditional GAN (CGAN)

Topic 3 Variational Autoencoders (VAEs)

  • Autoencoders
  • Variational Autoencoders (VAEs)

Topic 4 Introduction to GAN Algorithms

  • Image to Image Translation (Pix2Pix) GAN
  • Cycle GAN, Disco GAN, Dual GAN

Topic 5 Applications of GAN

  • Super Resolution GAN (SRGAN)
  • Style Transfer GAN (StyleGAN)
  • Photo Editing Using GAN

Topic 6 GAN Evaluation and Guidelines

  • Likelihood and Quality of GAN
  • Objective Evaluation
  • Mode Dropping

Mode of Assessment

  • Written Assessment(Q&A)
  • Practical Performance