Skip to content

Latest commit

 

History

History
90 lines (80 loc) · 2.3 KB

README.md

File metadata and controls

90 lines (80 loc) · 2.3 KB

Deep Learning and Machine Learning with TensorFlow

These are the exercise files used for Deep Learning and Machine Learning with TensorFlow course.

The course outline can be found in

https://www.tertiarycourses.com.sg/deep-learning-neural-network-tensorflow.html

https://www.tertiarycourses.com.my/deep-learning-neural-network-tensorflow-malaysia.html

Day 1

Module 1 Getting Started 

  • What is TensorFlow
  • Install and Run TensorFlow

Module 2 Basic Tensorflow Operations

  • Constant
  • Graph Operation
  • Math
  • Matrix
  • Placeholder
  • Variable

Module 3 Datasets

  • MNIST Handwritten Digits Dataset
  • CIFAR Image Dataset
  • One Hot Encoding/Decoding
  • Split Dataset to Training/Testing 

Module 4 Machine Learning on TF

  • Regression ML Model
  • Loss Function 
  • Optimizer
  • Training
  • Save and Load Model

Module 5 Neural Network (NN)

  • What is Neural Network
  • Activation Functions
  • Deep Neural Network on MNIST

Day 2

Module 6 Tensorboard

  • What is Tensorboard?
  • Visualize a Tensorboard Graph
  • Output Data to Tensorboard

Module 7 Convolutional Neural Network (CNN)

  • What is CNN?
  • CNN Architecture
  • Convolution Layers
  • Pooling and Dropout Layers
  • CNN on MNIST dataset

Module 8 Recurrent Neural Network (RNN)

  • Sequential Data
  • What is RNN?
  • Types of RNN
  • How to train a RNN
  • Long Term Dependencies
  • LSTM and GRU Cells
  • RNN on IMDB dataset

Module 9 Keras

  • What is Keras?
  • NN with Keras
  • CNN with Keras
  • Transfer Learning with Keras
  • RNN with Keras

Module 10 Appendix (Optional)

  • TF Estimators
  • Eager Mode