Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RuntimeError: BinaryOpType cannot be mapped to BcastOpMath #1667

Open
meenakshiramanathan1 opened this issue Dec 26, 2024 · 0 comments
Open

Comments

@meenakshiramanathan1
Copy link
Contributor

meenakshiramanathan1 commented Dec 26, 2024

Description

  • Floor op faces this runtime error

Reproduce

git checkout  mramanathan/grid_sample_floor_issue
pytest forge/test/mlir/test_ops.py::test_floor

Observed Behaviour

RuntimeError: TT_THROW @ /proj_sw/user_dev/mramanathan/bgdlab18_dec24_forge/tt-forge-fe/third_party/tt-mlir/third_party/tt-metal/src/tt-metal/ttnn/cpp/ttnn/operations/eltwise/binary/device/broadcast_height_and_width_multi_core_program_factory.cpp:27: tt::exception
E       info:
E       BinaryOpType cannot be mapped to BcastOpMath

Logs

TTIR graph

module @Floor attributes {tt.system_desc = #tt.system_desc<[{role = host, target_triple = "x86_64-pc-linux-gnu"}], [{arch = <wormhole_b0>, grid = 8x8, l1_size = 1499136, num_dram_channels = 12, dram_channel_size = 1073741824, noc_l1_address_align_bytes = 16, pcie_address_align_bytes = 32, noc_dram_address_align_bytes = 32, l1_unreserved_base = 1024, erisc_l1_unreserved_base = 1024, dram_unreserved_base = 1024, dram_unreserved_end = 1073741824, physical_cores = {worker = [ 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  1x0,  1x1,  1x2,  1x3,  1x4,  1x5,  1x6,  1x7,  2x0,  2x1,  2x2,  2x3,  2x4,  2x5,  2x6,  2x7,  3x0,  3x1,  3x2,  3x3,  3x4,  3x5,  3x6,  3x7,  4x0,  4x1,  4x2,  4x3,  4x4,  4x5,  4x6,  4x7,  5x0,  5x1,  5x2,  5x3,  5x4,  5x5,  5x6,  5x7,  6x0,  6x1,  6x2,  6x3,  6x4,  6x5,  6x6,  6x7,  7x0,  7x1,  7x2,  7x3,  7x4,  7x5,  7x6,  7x7] dram = [ 8x0,  9x0,  10x0,  8x1,  9x1,  10x1,  8x2,  9x2,  10x2,  8x3,  9x3,  10x3]}, supported_data_types = [<f32>, <f16>, <bf16>, <bfp_f8>, <bfp_bf8>, <bfp_f4>, <bfp_bf4>, <bfp_f2>, <bfp_bf2>, <u32>, <u16>, <u8>], supported_tile_sizes = [ 4x16,  16x16,  32x16,  4x32,  16x32,  32x32], num_cbs = 32}], [0], [3 : i32], [ 0x0x0x0]>} {
  func.func @forward(%arg0: tensor<6xf32> {ttir.name = "a"}, %arg1: tensor<1xf32> {ttir.name = "input_1_less_26"}, %arg2: tensor<1xf32> {ttir.name = "dc.input_tensor.where_30.0"}, %arg3: tensor<1xf32> {ttir.name = "input_2_where_30"}) -> (tensor<6xf32> {ttir.name = "Floor_3.output_subtract_31"}) {
    %0 = tensor.empty() : tensor<6xi32>
    %1 = "ttir.typecast"(%arg0, %0) <{operandSegmentSizes = array<i32: 1, 1>}> {dtype = "Int32"} : (tensor<6xf32>, tensor<6xi32>) -> tensor<6xi32>
    %2 = tensor.empty() : tensor<6xf32>
    %3 = "ttir.typecast"(%1, %2) <{operandSegmentSizes = array<i32: 1, 1>}> {dtype = "Float32"} : (tensor<6xi32>, tensor<6xf32>) -> tensor<6xf32>
    %4 = tensor.empty() : tensor<6xf32>
    %5 = "ttir.le"(%arg0, %arg1, %4) <{operandSegmentSizes = array<i32: 2, 1>}> : (tensor<6xf32>, tensor<1xf32>, tensor<6xf32>) -> tensor<6xf32>
    %6 = tensor.empty() : tensor<6xi8>
    %7 = "ttir.typecast"(%5, %6) <{operandSegmentSizes = array<i32: 1, 1>}> {dtype = "Int8"} : (tensor<6xf32>, tensor<6xi8>) -> tensor<6xi8>
    %8 = tensor.empty() : tensor<6xf32>
    %9 = "ttir.ne"(%arg0, %3, %8) <{operandSegmentSizes = array<i32: 2, 1>}> : (tensor<6xf32>, tensor<6xf32>, tensor<6xf32>) -> tensor<6xf32>
    %10 = tensor.empty() : tensor<6xf32>
    %11 = "ttir.typecast"(%9, %10) <{operandSegmentSizes = array<i32: 1, 1>}> {dtype = "Float32"} : (tensor<6xf32>, tensor<6xf32>) -> tensor<6xf32>
    %12 = tensor.empty() : tensor<6xf32>
    %13 = "ttir.multiply"(%7, %11, %12) <{operandSegmentSizes = array<i32: 2, 1>}> : (tensor<6xi8>, tensor<6xf32>, tensor<6xf32>) -> tensor<6xf32>
    %14 = tensor.empty() : tensor<6xf32>
    %15 = "ttir.subtract"(%arg2, %7, %14) <{operandSegmentSizes = array<i32: 2, 1>}> : (tensor<1xf32>, tensor<6xi8>, tensor<6xf32>) -> tensor<6xf32>
    %16 = tensor.empty() : tensor<6xf32>
    %17 = "ttir.multiply"(%15, %arg3, %16) <{operandSegmentSizes = array<i32: 2, 1>}> : (tensor<6xf32>, tensor<1xf32>, tensor<6xf32>) -> tensor<6xf32>
    %18 = tensor.empty() : tensor<6xf32>
    %19 = "ttir.add"(%13, %17, %18) <{operandSegmentSizes = array<i32: 2, 1>}> : (tensor<6xf32>, tensor<6xf32>, tensor<6xf32>) -> tensor<6xf32>
    %20 = tensor.empty() : tensor<6xf32>
    %21 = "ttir.subtract"(%3, %19, %20) <{operandSegmentSizes = array<i32: 2, 1>}> : (tensor<6xf32>, tensor<6xf32>, tensor<6xf32>) -> tensor<6xf32>
    return %21 : tensor<6xf32>
  }
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant