We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I'm working on bug which has this as input IR:
module @jit_convolution attributes {} { func.func @forward(%arg0: tensor<1x2048x7x7xf32> {ttir.name = "x"}) -> (tensor<1x2048x1x1xf32> {ttir.name = "AvgPool2d.output_avg_pool2d_0"}) { %0 = tensor.empty() : tensor<1x1x2048x49xf32> %1 = "ttir.reshape"(%arg0, %0) <{shape = [1 : i32, 1 : i32, 2048 : i32, 49 : i32]}> : (tensor<1x2048x7x7xf32>, tensor<1x1x2048x49xf32>) -> tensor<1x1x2048x49xf32> %2 = tensor.empty() : tensor<1x1x49x2048xf32> %3 = "ttir.transpose"(%1, %2) <{dim0 = -2 : si32, dim1 = -1 : si32}> : (tensor<1x1x2048x49xf32>, tensor<1x1x49x2048xf32>) -> tensor<1x1x49x2048xf32> %4 = tensor.empty() : tensor<1x1x1x2048xf32> %5 = "ttir.mean"(%3, %4) <{keep_dim = true}> {dim = -2 : si32} : (tensor<1x1x49x2048xf32>, tensor<1x1x1x2048xf32>) -> tensor<1x1x1x2048xf32> %6 = tensor.empty() : tensor<1x2048x1x1xf32> %7 = "ttir.reshape"(%5, %6) <{shape = [1 : i32, 2048 : i32, 1 : i32, 1 : i32]}> : (tensor<1x1x1x2048xf32>, tensor<1x2048x1x1xf32>) -> tensor<1x2048x1x1xf32> return %7 : tensor<1x2048x1x1xf32> } }
When I run ttrt on silicon I get segfault when trying to get output tensor of to_layout operation. Below is log tail:
2024-12-25 21:59:48,810 - DEBUG - evaluating program=0 for binary=avg.ttnn Always | WARNING | Golden information not found 2024-12-25 21:59:48,811 - DEBUG - generating inputs/outputs for loop=1/1 for binary=avg.ttnn 2024-12-25 21:59:48,812 - DEBUG - starting loop=1/1 for binary=avg.ttnn RuntimeTTNN | DEBUG | Executing operation: %0 = "ttnn.get_device"() <{mesh_shape = #ttnn<mesh_shape 1x1>}> : () -> !tt.device<<workerGrid = #tt.grid<8x8, (d0, d1) -> (0, d0, d1)>, l1Map = (d0, d1)[s0, s1] -> (0, d0 floordiv s0, d1 floordiv s1, (d0 mod s0) * s1 + d1 mod s1), dramMap = (d0, d1)[s0, s1] -> (0, 0, ((((d0 floordiv s0) * 8 + d1 floordiv s1) * (s1 * s0) + (d0 mod s0) * s1 + d1 mod s1) floordiv 8192) mod 12, (((d0 floordiv s0) * 8 + d1 floordiv s1) * (s1 * s0) + (d0 mod s0) * s1 + d1 mod s1) floordiv 98304 + (((d0 floordiv s0) * 8 + d1 floordiv s1) * (s1 * s0) + (d0 mod s0) * s1 + d1 mod s1) mod 8192), meshShape = , chipIds = [0]>> loc("avg.ttnn.mlir":14:10) 2024-12-25 21:59:48,812 - DEBUG - executing golden comparison Always | WARNING | Golden information not found Always | WARNING | Output tensor not found in tensor pool 2024-12-25 21:59:48,812 - DEBUG - Golden tensor is None - skipping golden comparison RuntimeTTNN | DEBUG | Executing operation: %1 = "ttnn.to_layout"(%arg0) <{layout = #ttnn.layout<tile>}> : (tensor<1x2048x7x7xf32, #ttnn.ttnn_layout<(d0, d1, d2, d3) -> (d0 * 14336 + d1 * 7 + d2, d3), <1x1>, memref<14336x7xf32, #ttnn.buffer_type<system_memory>>>>) -> tensor<1x2048x7x7xf32, #ttnn.ttnn_layout<(d0, d1, d2, d3) -> (d0 * 14336 + d1 * 7 + d2, d3), <1x1>, memref<448x1x!tt.tile<32x32, f32>, #ttnn.buffer_type<dram>>, <interleaved>>> loc("avg.ttnn.mlir":15:10) 2024-12-25 21:59:48,864 - DEBUG - executing golden comparison Always | WARNING | Golden information not found Segmentation fault
I'm running mlir in debug build on commit 109d917. If any information is missing please reach out.
The text was updated successfully, but these errors were encountered:
tapspatel
No branches or pull requests
I'm working on bug which has this as input IR:
When I run ttrt on silicon I get segfault when trying to get output tensor of to_layout operation. Below is log tail:
I'm running mlir in debug build on commit 109d917. If any information is missing please reach out.
The text was updated successfully, but these errors were encountered: