Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

how can i use tfp.math.psd_kernels.Polynomial, with feature_ndims=6, #1833

Open
devspatron opened this issue Aug 14, 2024 · 0 comments
Open

Comments

@devspatron
Copy link

devspatron commented Aug 14, 2024

with the following code how can i use tfp.math.psd_kernels.Polynomial, with feature_ndims=6, i ussually get an error , please help.

code =
class PolynomialKernelFn(tf_keras.layers.Layer):
def init(self, bias_amplitude=0.0, slope_amplitude=1.0, shift=0.0, exponent=3.0, feature_ndims=1, **kwargs):
super(PolynomialKernelFn, self).init(**kwargs)
dtype = kwargs.get('dtype', None)
self.jitter = 1e-4; # Adding a small jitter for numerical stability
def call(self, inputs): return self.kernel;

@property     
def kernel(self):    
    return tfp.math.psd_kernels.Polynomial( bias_amplitude=0.0, slope_amplitude=1.0, shift=0.0, exponent=3.0, feature_ndims=6, );    

//end_class

//Example data
x_train = np.random.uniform(-3., 3., size=(100, 6));
y_train = np.sin(x_train[:, 0:2]); y_train = x_train;
print( 'x_train', x_train.shape, 'y_train', y_train.shape, );

x_range = [np.min(x_train), np.max(x_train)];
num_inducing_points = 18;

induc_idx_points = np.random.uniform(-3.0, 3.0, size=(num_inducing_points, x_train.shape[1]))
induc_idx_point_init = tf.constant_initializer(induc_idx_points)
print('induc_idx_points shape:', induc_idx_points.shape)

noise0 = ( tf.constant_initializer(np.array(0.54).astype(x_train.dtype)) );
// noise0 = ( tf.constant_initializer(np.array([ [0.54] ]).astype(x_train.dtype)) );
print( 'noise0', noise0.value.shape, );

polynomial_kernel = tfp.math.psd_kernels.Polynomial(
bias_amplitude=1.0, slope_amplitude=1.0, shift=0.0, exponent=2, feature_ndims=6, validate_args=True );

// Build model
model = tf_keras.Sequential([
tf_keras.layers.InputLayer( input_shape=(x_train.shape[1],) ),

tf_keras.layers.Dense(1, kernel_initializer='ones', use_bias=False), 
tfp.layers.VariationalGaussianProcess(
    num_inducing_points= num_inducing_points,
    kernel_provider= PolynomialKernelFn(),
    event_shape= [1],
    inducing_index_points_initializer= induc_idx_point_init, 
    unconstrained_observation_noise_variance_initializer= noise0,
),  

]);
model.summary();

// Compile the model
model.compile(optimizer=tf_keras.optimizers.Adam(), loss=lambda y, p_y: -p_y.log_prob(y), );
model.fit(x_train, y_train, epochs=3, );

// Predict
x_test = np.linspace(-3., 3., 30).reshape(-1, 6);
y_pred = model.predict(x_test);

error = TypeError: Eager execution of tf.constant with unsupported shape. Tensor [[ 2.6181169 -0.63000023 0.88848853 2.8256464 0.7070044 0.10845122]
[ 1.7892019 0.9782654 0.7722825 -1.3020381 -2.2474375 -2.7869945 ]
[-1.7044429 1.3536608 1.6787233 -1.0234025 -0.56131506 -1.3617553 ]
[-0.67438734 -2.781567 -2.8270533 1.1969172 0.6445283 -2.27967 ]
[ 2.360385 -0.04742741 0.59732205 -2.933202 0.7861253 2.8390534 ]
[ 2.8995507 -2.7624567 1.4198784 2.6410117 -1.4379357 -1.7750715 ]
[ 1.152713 -1.1086357 -1.0503062 -1.4047132 2.0060854 -1.1540136 ]
[-2.5986419 0.97180235 1.4190216 -1.3796597 0.29559672 -1.4235702 ]
[ 2.4803004 2.498159 -0.7950366 1.8512287 2.291289 -0.8069504 ]
[ 2.9575715 1.8804133 2.8104806 -1.9198297 -1.3981376 2.7783432 ]
[ 0.5030356 -1.099595 0.3222227 0.6970968 -0.53885055 -0.7117024 ]
[ 2.3374352 -1.5795385 2.6345415 0.8455149 2.956886 0.8089901 ]
[ 2.72245 -0.10884786 -0.5315385 -0.4300995 -1.4305451 0.99511087]
[ 1.7424549 2.3463657 2.444201 0.5814336 -0.8842765 0.9178352 ]
[ 2.8574386 2.663537 1.0705398 0.31068817 0.22017056 1.424388 ]
[ 1.5786017 1.0860821 -2.569758 -0.1683704 -0.87796944 2.7431 ]
[-2.030426 -2.789794 -1.2321734 -0.4800363 1.2280728 2.926302 ]
[ 1.3148888 2.8946493 2.2137816 -1.0343827 1.1032671 -0.5407205 ]] (converted from [[ 2.61811684 -0.63000021 0.88848855 2.82564638 0.70700445 0.10845122]
[ 1.78920188 0.97826541 0.77228246 -1.30203812 -2.24743741 -2.78699451]
[-1.70444284 1.35366083 1.67872335 -1.02340239 -0.56131508 -1.36175523]
[-0.67438734 -2.78156708 -2.82705339 1.19691717 0.64452832 -2.27967009]
[ 2.36038489 -0.04742741 0.59732205 -2.93320213 0.78612532 2.83905331]
[ 2.89955057 -2.76245673 1.41987839 2.64101165 -1.43793566 -1.77507154]
[ 1.15271291 -1.10863564 -1.05030615 -1.40471315 2.00608531 -1.15401369]
[-2.59864192 0.97180237 1.41902165 -1.37965962 0.29559672 -1.4235702 ]
[ 2.48030032 2.49815891 -0.79503662 1.85122868 2.291289 -0.80695038]
[ 2.95757162 1.88041332 2.81048062 -1.91982973 -1.39813751 2.77834323]
[ 0.50303558 -1.09959492 0.3222227 0.69709683 -0.53885057 -0.71170238]
[ 2.33743521 -1.57953841 2.63454156 0.84551489 2.95688615 0.80899011]
[ 2.72245013 -0.10884786 -0.53153849 -0.43009949 -1.43054515 0.99511088]
[ 1.74245491 2.3463657 2.44420105 0.58143359 -0.88427652 0.91783519]
[ 2.85743859 2.66353695 1.0705398 0.31068815 0.22017056 1.42438809]
[ 1.5786017 1.08608213 -2.56975798 -0.16837039 -0.87796944 2.74310004]
[-2.03042604 -2.78979406 -1.23217341 -0.48003628 1.22807274 2.92630186]
[ 1.31488889 2.89464926 2.21378162 -1.03438269 1.10326708 -0.5407205 ]]) has 108 elements, but got shape (1, 18, None, 1) with None elements).

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant