From 3b169441dfe8e420f88d1592708cc2a871daadb9 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 12 Feb 2024 09:16:06 +0200 Subject: [PATCH 1/6] sync : ggml (#5452) * ggml-alloc : v3 (ggml/727) * ggml-alloc v3 ggml-ci * fix ci ggml-ci * whisper : check for backend buffer allocation failures * whisper : avoid leaks when initialization fails * cleanup ggml-ci * style fixes ggml-ci * sync : ggml * update llama.cpp, clip.cpp, export-lora.cpp * update finetune.cpp, train-text-from-scratch.cpp ggml-ci * ggml-backend : reduce alignment to 32 to match gguf and fix mmap --------- Co-authored-by: slaren --- examples/export-lora/export-lora.cpp | 19 +- examples/finetune/finetune.cpp | 145 +-- examples/llava/clip.cpp | 152 +-- .../train-text-from-scratch.cpp | 112 +- ggml-alloc.c | 1053 +++++++++-------- ggml-alloc.h | 104 +- ggml-backend.c | 486 ++++---- ggml-backend.h | 15 +- ggml.c | 28 +- ggml.h | 18 +- llama.cpp | 181 +-- scripts/sync-ggml.last | 2 +- 12 files changed, 1120 insertions(+), 1195 deletions(-) diff --git a/examples/export-lora/export-lora.cpp b/examples/export-lora/export-lora.cpp index 4cd5d99bb21ec..2f7be8a1344fa 100644 --- a/examples/export-lora/export-lora.cpp +++ b/examples/export-lora/export-lora.cpp @@ -337,24 +337,14 @@ static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int params.mem_buffer = NULL; params.no_alloc = true; struct ggml_context * ctx = NULL; - struct ggml_allocr * alloc = NULL; - struct ggml_cgraph * gf = NULL; + struct ggml_gallocr * alloc = NULL; + struct ggml_cgraph * gf = NULL; ctx = ggml_init(params); - alloc = ggml_allocr_new_measure(tensor_alignment); + alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type()); gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling); - size_t alloc_size = ggml_allocr_alloc_graph(alloc, gf); - ggml_allocr_free(alloc); - ggml_free(ctx); - - static std::vector data_compute; - data_compute.resize(alloc_size + tensor_alignment); - ctx = ggml_init(params); - alloc = ggml_allocr_new(data_compute.data(), data_compute.size(), tensor_alignment); - gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling); - ggml_allocr_alloc_graph(alloc, gf); - ggml_allocr_free(alloc); + ggml_gallocr_alloc_graph(alloc, gf); struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads); static std::vector data_work; @@ -363,6 +353,7 @@ static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int ggml_graph_compute(gf, &cplan); + ggml_gallocr_free(alloc); ggml_free(ctx); return true; } diff --git a/examples/finetune/finetune.cpp b/examples/finetune/finetune.cpp index b7e19c5fe1122..b11c5602032f3 100644 --- a/examples/finetune/finetune.cpp +++ b/examples/finetune/finetune.cpp @@ -1,5 +1,6 @@ #include "ggml.h" #include "ggml-alloc.h" +#include "ggml-backend.h" #include "llama.h" #include "common.h" #include "train.h" @@ -13,8 +14,6 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif -static const size_t tensor_alignment = 32; - struct my_llama_hparams { uint32_t n_vocab = 32000; uint32_t n_ctx = 512; @@ -128,7 +127,7 @@ struct my_llama_lora_layer { struct my_llama_lora { struct ggml_context * ctx = NULL; - std::vector data; + ggml_backend_buffer_t data; my_llama_lora_hparams hparams; @@ -372,63 +371,6 @@ static void set_param_lora(struct my_llama_lora * lora) { } } -static void alloc_lora(struct ggml_allocr * alloc, struct my_llama_lora * lora) { - ggml_allocr_alloc(alloc, lora->tok_embeddings_a); - ggml_allocr_alloc(alloc, lora->tok_embeddings_b); - ggml_allocr_alloc(alloc, lora->norm_a); - ggml_allocr_alloc(alloc, lora->norm_b); - ggml_allocr_alloc(alloc, lora->output_a); - ggml_allocr_alloc(alloc, lora->output_b); - for (uint32_t i = 0; i < lora->layers.size(); ++i) { - auto & layer = lora->layers[i]; - ggml_allocr_alloc(alloc, layer.attention_norm_a); - ggml_allocr_alloc(alloc, layer.attention_norm_b); - ggml_allocr_alloc(alloc, layer.wq_a); - ggml_allocr_alloc(alloc, layer.wq_b); - ggml_allocr_alloc(alloc, layer.wk_a); - ggml_allocr_alloc(alloc, layer.wk_b); - ggml_allocr_alloc(alloc, layer.wv_a); - ggml_allocr_alloc(alloc, layer.wv_b); - ggml_allocr_alloc(alloc, layer.wo_a); - ggml_allocr_alloc(alloc, layer.wo_b); - ggml_allocr_alloc(alloc, layer.ffn_norm_a); - ggml_allocr_alloc(alloc, layer.ffn_norm_b); - ggml_allocr_alloc(alloc, layer.w1_a); - ggml_allocr_alloc(alloc, layer.w1_b); - ggml_allocr_alloc(alloc, layer.w2_a); - ggml_allocr_alloc(alloc, layer.w2_b); - ggml_allocr_alloc(alloc, layer.w3_a); - ggml_allocr_alloc(alloc, layer.w3_b); - } - ggml_allocr_alloc(alloc, lora->tok_embeddings_a->grad); - ggml_allocr_alloc(alloc, lora->tok_embeddings_b->grad); - ggml_allocr_alloc(alloc, lora->norm_a->grad); - ggml_allocr_alloc(alloc, lora->norm_b->grad); - ggml_allocr_alloc(alloc, lora->output_a->grad); - ggml_allocr_alloc(alloc, lora->output_b->grad); - for (uint32_t i = 0; i < lora->layers.size(); ++i) { - auto & layer = lora->layers[i]; - ggml_allocr_alloc(alloc, layer.attention_norm_a->grad); - ggml_allocr_alloc(alloc, layer.attention_norm_b->grad); - ggml_allocr_alloc(alloc, layer.wq_a->grad); - ggml_allocr_alloc(alloc, layer.wq_b->grad); - ggml_allocr_alloc(alloc, layer.wk_a->grad); - ggml_allocr_alloc(alloc, layer.wk_b->grad); - ggml_allocr_alloc(alloc, layer.wv_a->grad); - ggml_allocr_alloc(alloc, layer.wv_b->grad); - ggml_allocr_alloc(alloc, layer.wo_a->grad); - ggml_allocr_alloc(alloc, layer.wo_b->grad); - ggml_allocr_alloc(alloc, layer.ffn_norm_a->grad); - ggml_allocr_alloc(alloc, layer.ffn_norm_b->grad); - ggml_allocr_alloc(alloc, layer.w1_a->grad); - ggml_allocr_alloc(alloc, layer.w1_b->grad); - ggml_allocr_alloc(alloc, layer.w2_a->grad); - ggml_allocr_alloc(alloc, layer.w2_b->grad); - ggml_allocr_alloc(alloc, layer.w3_a->grad); - ggml_allocr_alloc(alloc, layer.w3_b->grad); - } -} - static void init_lora(const struct my_llama_model * model, struct my_llama_lora * lora) { const auto & lparams = lora->hparams; @@ -522,18 +464,8 @@ static void init_lora(const struct my_llama_model * model, struct my_llama_lora set_param_lora(lora); - // measure data size - size_t size = 0; - for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { - size += GGML_PAD(ggml_nbytes(t), tensor_alignment); - } - - // allocate data - struct ggml_allocr * alloc = NULL; - lora->data.resize(size + tensor_alignment); - alloc = ggml_allocr_new(lora->data.data(), lora->data.size(), tensor_alignment); - alloc_lora(alloc, lora); - ggml_allocr_free(alloc); + // allocate data for lora tensors + lora->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type()); } static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, float std, float min, float max) { @@ -579,7 +511,7 @@ static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, fl static struct ggml_tensor * llama_build_lora_finetune_graphs( struct my_llama_model * model, struct my_llama_lora * lora, - struct ggml_allocr * alloc, + ggml_gallocr_t alloc, struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, @@ -590,7 +522,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( const int n_tokens, const int n_batch, const bool enable_flash_attn, - const bool enable_checkpointing) { + const bool enable_checkpointing, + const bool measure_only) { ggml_set_scratch(ctx, { 0, 0, nullptr, }); const int n_past = 0; @@ -622,13 +555,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( // KQ_pos - contains the positions struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N); - ggml_allocr_alloc(alloc, KQ_pos); - if (!ggml_allocr_is_measure(alloc)) { - int * data = (int *) KQ_pos->data; - for (int i = 0; i < N; ++i) { - data[i] = n_past + i; - } - } + ggml_set_input(KQ_pos); // rope has so much parameters that we make a custom function for it auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale] @@ -780,7 +707,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( // input gradient ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f)); GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL); - ggml_allocr_alloc(alloc, t36->grad); + ggml_set_input(t36->grad); // KQ_pos ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f)); @@ -805,11 +732,23 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( // note: they will be freed in reverse order for (unsigned int i = 0; i < checkpoints.size(); ++i) { if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) { - ggml_allocr_alloc(alloc, checkpoints[i]); + ggml_set_input(checkpoints[i]); } } - ggml_allocr_alloc_graph(alloc, gb); + if (measure_only) { + ggml_gallocr_reserve(alloc, gb); + } else { + ggml_gallocr_alloc_graph(alloc, gb); + + // set KQ_pos + { + int * data = (int *) KQ_pos->data; + for (int i = 0; i < N; ++i) { + data[i] = n_past + i; + } + } + } // remove the additional nodes and leafs for (int i = n_leafs_before; i < gb->n_leafs; ++i) { @@ -1663,7 +1602,7 @@ int main(int argc, char ** argv) { printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples); printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens); printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs); - printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + lora.data.size()), (float) (ggml_used_mem(lora.ctx) + lora.data.size()) / (1024.0f*1024.0f)); + printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)), (float) (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)) / (1024.0f*1024.0f)); if (params.only_write_lora) { save_train_files_data save_data; @@ -1690,10 +1629,6 @@ int main(int argc, char ** argv) { int n_vocab = model.hparams.n_vocab; int n_batch = params.common.n_batch; - - std::vector mem_input_data; - std::vector mem_compute_data; - // context for input tensors without their data struct ggml_init_params ctx_input_params = { ggml_tensor_overhead() * 2, // mem_size @@ -1706,18 +1641,12 @@ int main(int argc, char ** argv) { struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch); struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); + // allocate input tensors // measure required memory for input tensors - size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) + - GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) + - tensor_alignment; + ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type()); + size_t max_input_size = ggml_backend_buffer_get_size(input_data); printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f)); - // allocate input tensors - mem_input_data.resize(max_input_size); - ggml_allocr_t alloc_inps = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment); - ggml_allocr_alloc(alloc_inps, tokens_input); - ggml_allocr_alloc(alloc_inps, target_probs); - // context for compute tensors without their data const size_t estimated_compute_size_wo_data = ( 2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() + @@ -1743,7 +1672,7 @@ int main(int argc, char ** argv) { // find best evaluation order for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) { ctx_compute = ggml_init(ctx_compute_params); - ggml_allocr_t alloc = ggml_allocr_new_measure(tensor_alignment); + ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type()); gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); gf->order = (enum ggml_cgraph_eval_order) order; gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); @@ -1756,14 +1685,15 @@ int main(int argc, char ** argv) { &logits, tokens_input, target_probs, n_tokens, n_batch, params.common.use_flash, - params.common.use_checkpointing + params.common.use_checkpointing, + true ); - size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment; + size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer if (max_compute_size < best_compute_size) { best_compute_size = max_compute_size; best_order = gf->order; } - ggml_allocr_free(alloc); + ggml_gallocr_free(alloc); ggml_free(ctx_compute); } size_t max_compute_size = best_compute_size; @@ -1774,9 +1704,8 @@ int main(int argc, char ** argv) { "invalid"); // allocate compute tensors - mem_compute_data.resize(max_compute_size); ctx_compute = ggml_init(ctx_compute_params); - ggml_allocr_t alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment); + ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type()); gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); gf->order = best_order; gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); @@ -1789,11 +1718,9 @@ int main(int argc, char ** argv) { &logits, tokens_input, target_probs, n_tokens, n_batch, params.common.use_flash, - params.common.use_checkpointing + params.common.use_checkpointing, + false ); - ggml_allocr_free(alloc); - ggml_allocr_free(alloc_inps); - // tokenize data std::vector train_tokens; @@ -1908,6 +1835,8 @@ int main(int argc, char ** argv) { ggml_free(ctx_work); ggml_free(ctx_compute); ggml_free(ctx_input); + ggml_gallocr_free(alloc); + int64_t t1 = ggml_time_ms(); printf("%s: total training time: ", __func__); diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index 9129052a223bb..ccd0d85ad7962 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -367,7 +367,7 @@ struct clip_ctx { ggml_backend_buffer_t params_buffer = NULL; ggml_backend_buffer_t compute_buffer = NULL; ggml_backend_t backend = NULL; - ggml_allocr * compute_alloc = NULL; + ggml_gallocr_t compute_alloc = NULL; }; static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) { @@ -405,31 +405,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size); - ggml_allocr_alloc(ctx->compute_alloc, inp_raw); - - if (!ggml_allocr_is_measure(ctx->compute_alloc)) { - float * data = (float *)malloc(ggml_nbytes(inp_raw)); - - for (size_t i = 0; i < imgs->size; i++) { - const int nx = imgs->data[i].nx; - const int ny = imgs->data[i].ny; - GGML_ASSERT(nx == image_size && ny == image_size); - - const int n = nx * ny; - - for (int b = 0; b < batch_size; b++) { - for (int k = 0; k < 3; k++) { - for (int y = 0; y < ny; y++) { - for (int x = 0; x < nx; x++) { - data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k]; - } - } - } - } - } - ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw)); - free(data); - } + ggml_set_name(inp_raw, "inp_raw"); + ggml_set_input(inp_raw); struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1); @@ -438,13 +415,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 // concat class_embeddings and patch_embeddings struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size); - ggml_allocr_alloc(ctx->compute_alloc, embeddings); - if (!ggml_allocr_is_measure(ctx->compute_alloc)) { - void* zero_mem = malloc(ggml_nbytes(embeddings)); - memset(zero_mem, 0, ggml_nbytes(embeddings)); - ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings)); - free(zero_mem); - } + ggml_set_name(embeddings, "embeddings"); + ggml_set_input(embeddings); embeddings = ggml_acc(ctx0, embeddings, model.class_embedding, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0); @@ -453,15 +425,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]); struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions); - ggml_allocr_alloc(ctx->compute_alloc, positions); - if (!ggml_allocr_is_measure(ctx->compute_alloc)) { - int* positions_data = (int*)malloc(ggml_nbytes(positions)); - for (int i = 0; i < num_positions; i++) { - positions_data[i] = i; - } - ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); - free(positions_data); - } + ggml_set_name(positions, "positions"); + ggml_set_input(positions); embeddings = ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions)); @@ -560,15 +525,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]); struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches); - ggml_allocr_alloc(ctx->compute_alloc, patches); - if (!ggml_allocr_is_measure(ctx->compute_alloc)) { - int* patches_data = (int*)malloc(ggml_nbytes(patches)); - for (int i = 0; i < num_patches; i++) { - patches_data[i] = i + 1; - } - ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches)); - free(patches_data); - } + ggml_set_name(patches, "patches"); + ggml_set_input(patches); // shape [1, 576, 1024] // ne is whcn, ne = [1024, 576, 1, 1] @@ -809,7 +767,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { } // data - size_t buffer_size = 0; + size_t model_size = 0; { for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx, i); @@ -817,7 +775,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { enum ggml_type type = gguf_get_tensor_type(ctx, i); struct ggml_tensor * cur = ggml_get_tensor(meta, name); size_t tensor_size = ggml_nbytes(cur); - buffer_size += tensor_size; + model_size += tensor_size; if (verbosity >= 3) { printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n", __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type)); @@ -825,8 +783,6 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { } } - buffer_size += n_tensors * 128 /* CLIP PADDING */; - clip_ctx * new_clip = new clip_ctx; // update projector type @@ -886,12 +842,12 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder); printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder); printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector); - printf("%s: model size: %.2f MB\n", __func__, buffer_size / 1024.0 / 1024.0); + printf("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0); printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0); } } - printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, buffer_size / (1024.0 * 1024.0), n_tensors); + printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors); // load tensors { @@ -925,12 +881,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { } // alloc memory and offload data - new_clip->params_buffer = ggml_backend_alloc_buffer(new_clip->backend, buffer_size); - ggml_allocr* alloc = ggml_allocr_new_from_buffer(new_clip->params_buffer); + new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx, i); struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name); - ggml_allocr_alloc(alloc, cur); const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i); fin.seekg(offset, std::ios::beg); if (!fin) { @@ -949,7 +903,6 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes); } } - ggml_allocr_free(alloc); fin.close(); } @@ -1077,15 +1030,12 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { // measure mem requirement and allocate { new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead()); - new_clip->compute_alloc = ggml_allocr_new_measure_from_backend(new_clip->backend); + new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend)); clip_image_f32_batch batch; batch.size = 1; ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch); - size_t compute_memory_buffer_size = ggml_allocr_alloc_graph(new_clip->compute_alloc, gf); - ggml_allocr_free(new_clip->compute_alloc); - new_clip->compute_buffer = ggml_backend_alloc_buffer(new_clip->backend, compute_memory_buffer_size); - new_clip->compute_alloc = ggml_allocr_new_from_buffer(new_clip->compute_buffer); - + ggml_gallocr_reserve(new_clip->compute_alloc, gf); + size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0); printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0); } @@ -1267,12 +1217,72 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima GGML_ASSERT(batch_size == 1); // TODO: support multiple images } - // reset alloc buffer to clean the memory from previous invocations - ggml_allocr_reset(ctx->compute_alloc); - // build the inference graph ggml_cgraph * gf = clip_image_build_graph(ctx, imgs); - ggml_allocr_alloc_graph(ctx->compute_alloc, gf); + ggml_gallocr_alloc_graph(ctx->compute_alloc, gf); + + // set inputs + const auto & model = ctx->vision_model; + const auto & hparams = model.hparams; + const int image_size = hparams.image_size; + const int patch_size = hparams.patch_size; + const int num_patches = ((image_size / patch_size) * (image_size / patch_size)); + const int num_positions = num_patches + 1; + + { + struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw"); + float * data = (float *)malloc(ggml_nbytes(inp_raw)); + + for (size_t i = 0; i < imgs->size; i++) { + const int nx = imgs->data[i].nx; + const int ny = imgs->data[i].ny; + GGML_ASSERT(nx == image_size && ny == image_size); + + const int n = nx * ny; + + for (int b = 0; b < batch_size; b++) { + for (int k = 0; k < 3; k++) { + for (int y = 0; y < ny; y++) { + for (int x = 0; x < nx; x++) { + data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k]; + } + } + } + } + } + ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw)); + free(data); + } + + { + struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings"); + + void* zero_mem = malloc(ggml_nbytes(embeddings)); + memset(zero_mem, 0, ggml_nbytes(embeddings)); + ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings)); + free(zero_mem); + } + + { + struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); + + int* positions_data = (int*)malloc(ggml_nbytes(positions)); + for (int i = 0; i < num_positions; i++) { + positions_data[i] = i; + } + ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); + free(positions_data); + } + + { + struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches"); + int* patches_data = (int*)malloc(ggml_nbytes(patches)); + for (int i = 0; i < num_patches; i++) { + patches_data[i] = i + 1; + } + ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches)); + free(patches_data); + } if (ggml_backend_is_cpu(ctx->backend)) { ggml_backend_cpu_set_n_threads(ctx->backend, n_threads); diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index eee9d4de33f05..2e2a8ce08ce07 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -1,5 +1,6 @@ #include "ggml.h" #include "ggml-alloc.h" +#include "ggml-backend.h" #include "common.h" #include "train.h" #include "llama.h" @@ -19,8 +20,6 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif -static const size_t tensor_alignment = 32; - struct my_llama_hparams { uint32_t n_vocab = 32000; uint32_t n_ctx = 512; @@ -58,7 +57,7 @@ struct my_llama_layer { struct my_llama_model { struct ggml_context * ctx = NULL; - std::vector data; + ggml_backend_buffer_t data = NULL; my_llama_hparams hparams; @@ -147,39 +146,6 @@ static void set_param_model(struct my_llama_model * model) { } } -static void alloc_model(struct ggml_allocr * alloc, struct my_llama_model * model) { - ggml_allocr_alloc(alloc, model->tok_embeddings); - ggml_allocr_alloc(alloc, model->norm); - ggml_allocr_alloc(alloc, model->output); - for (uint32_t i = 0; i < model->layers.size(); ++i) { - auto & layer = model->layers[i]; - ggml_allocr_alloc(alloc, layer.attention_norm); - ggml_allocr_alloc(alloc, layer.wq); - ggml_allocr_alloc(alloc, layer.wk); - ggml_allocr_alloc(alloc, layer.wv); - ggml_allocr_alloc(alloc, layer.wo); - ggml_allocr_alloc(alloc, layer.ffn_norm); - ggml_allocr_alloc(alloc, layer.w1); - ggml_allocr_alloc(alloc, layer.w2); - ggml_allocr_alloc(alloc, layer.w3); - } - ggml_allocr_alloc(alloc, model->tok_embeddings->grad); - ggml_allocr_alloc(alloc, model->norm->grad); - ggml_allocr_alloc(alloc, model->output->grad); - for (uint32_t i = 0; i < model->layers.size(); ++i) { - auto & layer = model->layers[i]; - ggml_allocr_alloc(alloc, layer.attention_norm->grad); - ggml_allocr_alloc(alloc, layer.wq->grad); - ggml_allocr_alloc(alloc, layer.wk->grad); - ggml_allocr_alloc(alloc, layer.wv->grad); - ggml_allocr_alloc(alloc, layer.wo->grad); - ggml_allocr_alloc(alloc, layer.ffn_norm->grad); - ggml_allocr_alloc(alloc, layer.w1->grad); - ggml_allocr_alloc(alloc, layer.w2->grad); - ggml_allocr_alloc(alloc, layer.w3->grad); - } -} - static void init_model(struct my_llama_model * model) { const auto & hparams = model->hparams; @@ -252,17 +218,8 @@ static void init_model(struct my_llama_model * model) { set_param_model(model); - // measure data size - size_t size = 0; - for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { - size += GGML_PAD(ggml_nbytes(t), tensor_alignment); - } - // allocate data - struct ggml_allocr * alloc = NULL; - model->data.resize(size + tensor_alignment); - alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment); - alloc_model(alloc, model); + model->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type()); } static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) { @@ -297,7 +254,7 @@ static void randomize_model(struct my_llama_model * model, int seed, float mean, static struct ggml_tensor * llama_build_train_graphs( struct my_llama_model * model, - struct ggml_allocr * alloc, + ggml_gallocr_t alloc, struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, @@ -308,7 +265,8 @@ static struct ggml_tensor * llama_build_train_graphs( const int n_tokens, const int n_batch, const bool enable_flash_attn, - const bool enable_checkpointing) { + const bool enable_checkpointing, + const bool measure_only) { ggml_set_scratch(ctx, { 0, 0, nullptr, }); const int n_past = 0; @@ -334,13 +292,7 @@ static struct ggml_tensor * llama_build_train_graphs( // KQ_pos - contains the positions struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N); - ggml_allocr_alloc(alloc, KQ_pos); - if (!ggml_allocr_is_measure(alloc)) { - int * data = (int *) KQ_pos->data; - for (int i = 0; i < N; ++i) { - data[i] = n_past + i; - } - } + ggml_set_input(KQ_pos); // rope has so much parameters that we make a custom function for it auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale] @@ -448,21 +400,31 @@ static struct ggml_tensor * llama_build_train_graphs( // KQ_pos ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f)); GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL); - - ggml_allocr_alloc(alloc, t36->grad); + ggml_set_input(t36->grad); // allocating checkpoints in one block to reduce memory fragmentation // note: they will be freed in reverse order for (int i = 0; i < (int) checkpoints.size(); ++i) { if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) { - ggml_allocr_alloc(alloc, checkpoints[i]); + ggml_set_input(checkpoints[i]); } } //int n_leafs_after = gb->n_leafs; //int n_nodes_after = gb->n_nodes; + if (measure_only) { + // FIXME: will still allocate + ggml_gallocr_reserve(alloc, gb); + } else { + ggml_gallocr_alloc_graph(alloc, gb); - ggml_allocr_alloc_graph(alloc, gb); + if (!measure_only) { + int * data = (int *) KQ_pos->data; + for (int i = 0; i < N; ++i) { + data[i] = n_past + i; + } + } + } // remove the additional nodes and leafs for (int i = n_leafs_before; i < gb->n_leafs; ++i) { @@ -1046,7 +1008,7 @@ int main(int argc, char ** argv) { printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples); printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens); printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs); - printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + model.data.size()), (float) (ggml_used_mem(model.ctx) + model.data.size()) / (1024.0f*1024.0f)); + printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)), (float) (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)) / (1024.0f*1024.0f)); if (params.only_write_model) { save_train_files_data save_data; @@ -1073,11 +1035,6 @@ int main(int argc, char ** argv) { int n_vocab = model.hparams.n_vocab; int n_batch = params.common.n_batch; - std::vector mem_input_data; - std::vector mem_compute_data; - - ggml_allocr * alloc = NULL; - // context for input tensors without their data struct ggml_init_params ctx_input_params = { ggml_tensor_overhead() * 2, // mem_size @@ -1091,16 +1048,10 @@ int main(int argc, char ** argv) { struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); // measure required memory for input tensors - size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) + - GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) + - tensor_alignment; - printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f)); - // allocate input tensors - mem_input_data.resize(max_input_size); - alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment); - ggml_allocr_alloc(alloc, tokens_input); - ggml_allocr_alloc(alloc, target_probs); + ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type()); + size_t max_input_size = ggml_backend_buffer_get_size(input_data); + printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f)); // context for compute tensors without their data const size_t estimated_compute_size_wo_data = ( @@ -1127,7 +1078,7 @@ int main(int argc, char ** argv) { // find best evaluation order for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) { ctx_compute = ggml_init(ctx_compute_params); - alloc = ggml_allocr_new_measure(tensor_alignment); + ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type()); gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); gf->order = (enum ggml_cgraph_eval_order) order; gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); @@ -1140,9 +1091,10 @@ int main(int argc, char ** argv) { &logits, tokens_input, target_probs, n_tokens, n_batch, params.common.use_flash, - params.common.use_checkpointing + params.common.use_checkpointing, + true ); - size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment; + size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer if (max_compute_size < best_compute_size) { best_compute_size = max_compute_size; best_order = gf->order; @@ -1157,9 +1109,8 @@ int main(int argc, char ** argv) { "invalid"); // allocate compute tensors - mem_compute_data.resize(max_compute_size); ctx_compute = ggml_init(ctx_compute_params); - alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment); + ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type()); gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); gf->order = best_order; gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); @@ -1172,7 +1123,8 @@ int main(int argc, char ** argv) { &logits, tokens_input, target_probs, n_tokens, n_batch, params.common.use_flash, - params.common.use_checkpointing + params.common.use_checkpointing, + false ); std::vector train_tokens; diff --git a/ggml-alloc.c b/ggml-alloc.c index f9be6e1cbc89f..c28c37c4fd9ff 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -17,6 +17,50 @@ //#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__) #define AT_PRINTF(...) + +static bool ggml_is_view(const struct ggml_tensor * t) { + return t->view_src != NULL; +} + +static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { + if (a->type != b->type) { + return false; + } + for (int i = 0; i < GGML_MAX_DIMS; i++) { + if (a->ne[i] != b->ne[i]) { + return false; + } + if (a->nb[i] != b->nb[i]) { + return false; + } + } + return true; +} + +static bool ggml_op_can_inplace(enum ggml_op op) { + switch (op) { + case GGML_OP_SCALE: + case GGML_OP_DIAG_MASK_ZERO: + case GGML_OP_DIAG_MASK_INF: + case GGML_OP_ADD: + case GGML_OP_ADD1: + case GGML_OP_SUB: + case GGML_OP_MUL: + case GGML_OP_DIV: + case GGML_OP_SQR: + case GGML_OP_SQRT: + case GGML_OP_LOG: + case GGML_OP_UNARY: + case GGML_OP_ROPE: + case GGML_OP_RMS_NORM: + case GGML_OP_SOFT_MAX: + return true; + + default: + return false; + } +} + // TODO: GGML_PAD ? static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { assert(alignment && !(alignment & (alignment - 1))); // power of 2 @@ -24,66 +68,102 @@ static size_t aligned_offset(const void * buffer, size_t offset, size_t alignmen return offset + align; } +// tallocr +struct ggml_tallocr { + ggml_backend_buffer_t buffer; + void * base; + size_t alignment; + size_t offset; +}; + +ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer) { + ggml_tallocr_t talloc = malloc(sizeof(struct ggml_tallocr)); + if (talloc == NULL) { + return NULL; + } + + void * base = ggml_backend_buffer_get_base(buffer); + size_t align = ggml_backend_buffer_get_alignment(buffer); + + assert(align && !(align & (align - 1))); // power of 2 + + *talloc = (struct ggml_tallocr) { + /*.buffer = */ buffer, + /*.base = */ base, + /*.alignment = */ align, + /*.offset = */ aligned_offset(base, 0, align), + }; + return talloc; +} + +void ggml_tallocr_free(ggml_tallocr_t talloc) { + free(talloc); +} + +void ggml_tallocr_alloc(ggml_tallocr_t talloc, struct ggml_tensor * tensor) { + size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor); + size = GGML_PAD(size, talloc->alignment); + + if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) { + fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n", + __func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset); + GGML_ASSERT(!"not enough space in the buffer"); + return; + } + + void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset; + talloc->offset += size; + + assert(((uintptr_t)addr % talloc->alignment) == 0); + + ggml_backend_tensor_alloc(talloc->buffer, tensor, addr); +} + +// dynamic tensor allocator + struct free_block { - void * addr; + size_t offset; size_t size; }; -struct ggml_tallocr { - struct ggml_backend_buffer * buffer; - bool buffer_owned; - void * base; +struct ggml_dyn_tallocr { size_t alignment; - int n_free_blocks; struct free_block free_blocks[MAX_FREE_BLOCKS]; - size_t max_size; - bool measure; - #ifdef GGML_ALLOCATOR_DEBUG - struct ggml_tensor * allocated_tensors[1024]; + struct { + const struct ggml_tensor * tensor; + size_t offset; + } allocated_tensors[1024]; #endif }; #ifdef GGML_ALLOCATOR_DEBUG -static void add_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { +static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) { for (int i = 0; i < 1024; i++) { - if (alloc->allocated_tensors[i] == NULL) { - alloc->allocated_tensors[i] = tensor; + if (alloc->allocated_tensors[i].tensor == NULL) { + alloc->allocated_tensors[i].tensor = tensor; + alloc->allocated_tensors[i].offset = offset; return; } } GGML_ASSERT(!"out of allocated_tensors"); } -static void remove_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { +static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) { for (int i = 0; i < 1024; i++) { - if (alloc->allocated_tensors[i] == tensor || - (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) { - alloc->allocated_tensors[i] = NULL; + if (alloc->allocated_tensors[i].offset == offset) { + alloc->allocated_tensors[i].tensor = NULL; return; } } - printf("tried to free tensor %s not found\n", tensor->name); + fprintf(stderr, "tried to free tensor %s not found\n", tensor->name); GGML_ASSERT(!"tensor not found"); } #endif -// check if a tensor is allocated by this buffer -static bool ggml_tallocr_is_own(ggml_tallocr_t alloc, const struct ggml_tensor * tensor) { - return tensor->buffer == alloc->buffer && (!tensor->view_src || tensor->view_src->buffer == alloc->buffer); -} - -static bool ggml_is_view(struct ggml_tensor * t) { - return t->view_src != NULL; -} - -void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { - GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources - GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated - - size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor); +static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) { size = aligned_offset(NULL, size, alloc->alignment); AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); @@ -109,16 +189,17 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { if (block->size >= size) { best_fit_block = alloc->n_free_blocks - 1; } else { - fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, largest block available %zu)\n", - __func__, tensor->name, size, max_avail); + // this should never happen + fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n", + __func__, size, max_avail); GGML_ASSERT(!"not enough space in the buffer"); - return; + GGML_UNREACHABLE(); } } struct free_block * block = &alloc->free_blocks[best_fit_block]; - void * addr = block->addr; - block->addr = (char*)block->addr + size; + size_t offset = block->offset; + block->offset = offset + size; block->size -= size; if (block->size == 0) { // remove block if empty @@ -128,59 +209,63 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { } } - AT_PRINTF("block %d, addr %p\n", best_fit_block, addr); - - tensor->data = addr; - tensor->buffer = alloc->buffer; - if (!alloc->measure) { - ggml_backend_buffer_init_tensor(alloc->buffer, tensor); - } + AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset); #ifdef GGML_ALLOCATOR_DEBUG - add_allocated_tensor(alloc, tensor); - size_t cur_max = (char*)addr - (char*)alloc->base + size; + add_allocated_tensor(alloc, offset, tensor); + size_t cur_max = offset + size; if (cur_max > alloc->max_size) { - printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0); + // sort allocated_tensors by offset + for (int i = 0; i < 1024; i++) { + for (int j = i + 1; j < 1024; j++) { + if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) { + const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor; + size_t tmp_offset = alloc->allocated_tensors[i].offset; + alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor; + alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset; + alloc->allocated_tensors[j].tensor = tmp_tensor; + alloc->allocated_tensors[j].offset = tmp_offset; + } + } + } + fprintf(stderr, "max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0); for (int i = 0; i < 1024; i++) { - if (alloc->allocated_tensors[i]) { - printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0); + if (alloc->allocated_tensors[i].tensor) { + fprintf(stderr, "%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name, + alloc->allocated_tensors[i].offset, + alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor), + ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0); } } - printf("\n"); + fprintf(stderr, "\n"); } #endif - alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->base + size); -} + alloc->max_size = MAX(alloc->max_size, offset + size); -// this is a very naive implementation, but for our case the number of free blocks should be very small -static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { - if (ggml_tallocr_is_own(alloc, tensor) == false) { - // the tensor was not allocated in this buffer - // this can happen because the graph allocator will try to free weights and other tensors from different buffers - // the easiest way to deal with this is just to ignore it - // AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer); - return; - } + return offset; - void * ptr = tensor->data; + GGML_UNUSED(tensor); +} - size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor); +// this is a very naive implementation, but for our case the number of free blocks should be very small +static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) { size = aligned_offset(NULL, size, alloc->alignment); - AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks); + + AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks); #ifdef GGML_ALLOCATOR_DEBUG - remove_allocated_tensor(alloc, tensor); + remove_allocated_tensor(alloc, offset, tensor); #endif // see if we can merge with an existing block for (int i = 0; i < alloc->n_free_blocks; i++) { struct free_block * block = &alloc->free_blocks[i]; // check if ptr is at the end of the block - if ((char*)block->addr + block->size == ptr) { + if (block->offset + block->size == offset) { block->size += size; // check if we can merge with the next block - if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) { + if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) { block->size += alloc->free_blocks[i+1].size; alloc->n_free_blocks--; for (int j = i+1; j < alloc->n_free_blocks; j++) { @@ -190,11 +275,11 @@ static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor * return; } // check if ptr is at the beginning of the block - if ((char*)ptr + size == block->addr) { - block->addr = ptr; + if (offset + size == block->offset) { + block->offset = offset; block->size += size; // check if we can merge with the previous block - if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) { + if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) { alloc->free_blocks[i-1].size += block->size; alloc->n_free_blocks--; for (int j = i; j < alloc->n_free_blocks; j++) { @@ -208,7 +293,7 @@ static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor * GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks"); // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster) int insert_pos = 0; - while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) { + while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) { insert_pos++; } // shift all blocks from insert_pos onward to make room for the new block @@ -216,337 +301,271 @@ static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor * alloc->free_blocks[i] = alloc->free_blocks[i-1]; } // insert the new block - alloc->free_blocks[insert_pos].addr = ptr; + alloc->free_blocks[insert_pos].offset = offset; alloc->free_blocks[insert_pos].size = size; alloc->n_free_blocks++; + + GGML_UNUSED(tensor); } -void ggml_tallocr_reset(ggml_tallocr_t alloc) { +static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) { alloc->n_free_blocks = 1; - size_t align_offset = aligned_offset(alloc->base, 0, alloc->alignment); - alloc->free_blocks[0].addr = (char *)alloc->base + align_offset; - - if (alloc->measure) { - alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows - } else { - alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset; - ggml_backend_buffer_reset(alloc->buffer); - } + alloc->free_blocks[0].offset = 0; + alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows + alloc->max_size = 0; } -ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) { - struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(data, size); - - ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr)); +static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) { + struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr)); - *alloc = (struct ggml_tallocr) { - /*.buffer = */ buffer, - /*.buffer_owned = */ true, - /*.base = */ ggml_backend_buffer_get_base(buffer), + *alloc = (struct ggml_dyn_tallocr) { /*.alignment = */ alignment, /*.n_free_blocks = */ 0, /*.free_blocks = */ {{0}}, /*.max_size = */ 0, - /*.measure = */ false, #ifdef GGML_ALLOCATOR_DEBUG - /*.allocated_tensors = */ {0}, + /*.allocated_tensors = */ {{0}}, #endif }; - ggml_tallocr_reset(alloc); - - return alloc; -} - -ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment) { - ggml_tallocr_t alloc = ggml_tallocr_new((void *)0x1000, SIZE_MAX/2, alignment); - alloc->measure = true; + ggml_dyn_tallocr_reset(alloc); return alloc; } -ggml_tallocr_t ggml_tallocr_new_measure_from_buft(struct ggml_backend_buffer_type * buft) { - // create a backend buffer to get the correct tensor allocation sizes - ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, 1); - - // TODO: move alloc initialization to a common ggml_tallocr_new_impl function - ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer); - alloc->buffer_owned = true; - alloc->measure = true; - ggml_tallocr_reset(alloc); - return alloc; -} - -ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) { - return ggml_tallocr_new_measure_from_buft(ggml_backend_get_default_buffer_type(backend)); -} - -ggml_tallocr_t ggml_tallocr_new_from_buft(struct ggml_backend_buffer_type * buft, size_t size) { - // create a backend buffer to get the correct tensor allocation sizes - ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size); - ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer); - alloc->buffer_owned = true; - return alloc; -} - -ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) { - return ggml_tallocr_new_from_buft(ggml_backend_get_default_buffer_type(backend), size); -} - -ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) { - ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr)); - - *alloc = (struct ggml_tallocr) { - /*.buffer = */ buffer, - /*.buffer_owned = */ false, - /*.base = */ ggml_backend_buffer_get_base(buffer), - /*.alignment = */ ggml_backend_buffer_get_alignment(buffer), - /*.n_free_blocks = */ 0, - /*.free_blocks = */ {{0}}, - /*.max_size = */ 0, - /*.measure = */ false, -#ifdef GGML_ALLOCATOR_DEBUG - /*.allocated_tensors = */ {0}, -#endif - }; - - ggml_tallocr_reset(alloc); - - return alloc; -} - -struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t alloc) { - return alloc->buffer; -} - -void ggml_tallocr_free(ggml_tallocr_t alloc) { - if (alloc == NULL) { - return; - } - - if (alloc->buffer_owned) { - ggml_backend_buffer_free(alloc->buffer); - } +static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) { free(alloc); } -bool ggml_tallocr_is_measure(ggml_tallocr_t alloc) { - return alloc->measure; +static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) { + return alloc->max_size; } -size_t ggml_tallocr_max_size(ggml_tallocr_t alloc) { - // FIXME: changes in the tensor sizes compared to the measure graph may cause allocations to fail - // to avoid this, we add a 10% margin to the buffer size - return alloc->max_size + alloc->max_size/10; -} + +///////////////////////////////////// // graph allocator struct hash_node { int n_children; int n_views; + int buffer_id; + size_t offset; // offset within the buffer + bool allocated; +}; + +// +struct tensor_alloc { + size_t offset; + size_t size_max; // 0 = pre-allocated, unused, or view +}; + +struct node_alloc { + int buffer_id; + struct tensor_alloc dst; + struct tensor_alloc src[GGML_MAX_SRC]; }; struct ggml_gallocr { - ggml_tallocr_t talloc; + ggml_backend_buffer_type_t * bufts; // [n_buffers] + ggml_backend_buffer_t * buffers; // [n_buffers] + struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers] + int n_buffers; + struct ggml_hash_set hash_set; - struct hash_node * hash_values; - size_t hash_values_size; - ggml_tallocr_t * hash_allocs; - int * parse_seq; - int parse_seq_len; + struct hash_node * hash_values; // [hash_set.size] + + struct node_alloc * node_allocs; // [n_nodes] + int n_nodes; }; -ggml_gallocr_t ggml_gallocr_new(void) { - ggml_gallocr_t galloc = (ggml_gallocr_t)malloc(sizeof(struct ggml_gallocr)); - - *galloc = (struct ggml_gallocr) { - /*.talloc = */ NULL, - /*.hash_set = */ {0}, - /*.hash_values = */ NULL, - /*.hash_values_size = */ 0, - /*.hash_allocs = */ NULL, - /*.parse_seq = */ NULL, - /*.parse_seq_len = */ 0, - }; +ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) { + ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(sizeof(struct ggml_gallocr), 1); + GGML_ASSERT(galloc != NULL); + + galloc->bufts = calloc(sizeof(ggml_backend_buffer_type_t) * n_bufs, 1); + GGML_ASSERT(galloc->bufts != NULL); + + galloc->buffers = calloc(sizeof(ggml_backend_buffer_t) * n_bufs, 1); + GGML_ASSERT(galloc->buffers != NULL); + + galloc->buf_tallocs = calloc(sizeof(struct ggml_dyn_tallocr *) * n_bufs, 1); + GGML_ASSERT(galloc->buf_tallocs != NULL); + + for (int i = 0; i < n_bufs; i++) { + galloc->bufts[i] = bufts[i]; + galloc->buffers[i] = NULL; + size_t alignment = ggml_backend_buft_get_alignment(bufts[i]); + galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment); + } + galloc->n_buffers = n_bufs; return galloc; } +ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft) { + return ggml_gallocr_new_n(&buft, 1); +} + void ggml_gallocr_free(ggml_gallocr_t galloc) { if (galloc == NULL) { return; } - if (galloc->hash_set.keys != NULL) { - free(galloc->hash_set.keys); - } - if (galloc->hash_values != NULL) { - free(galloc->hash_values); - } - if (galloc->hash_allocs != NULL) { - free(galloc->hash_allocs); - } - if (galloc->parse_seq != NULL) { - free(galloc->parse_seq); + for (int i = 0; i < galloc->n_buffers; i++) { + if (galloc->buffers != NULL) { + ggml_backend_buffer_free(galloc->buffers[i]); + } + if (galloc->buf_tallocs != NULL) { + ggml_dyn_tallocr_free(galloc->buf_tallocs[i]); + } } + + free(galloc->hash_set.keys); + free(galloc->hash_values); + free(galloc->bufts); + free(galloc->buffers); + free(galloc->buf_tallocs); + free(galloc->node_allocs); free(galloc); } -void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n) { - free(galloc->parse_seq); - galloc->parse_seq = malloc(sizeof(int) * n); +typedef struct ggml_gallocr * ggml_gallocr_t; - for (int i = 0; i < n; i++) { - galloc->parse_seq[i] = list[i]; - } - galloc->parse_seq_len = n; -} - -static struct hash_node * hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) { +static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) { size_t i = ggml_hash_find_or_insert(galloc->hash_set, t); return &galloc->hash_values[i]; } -static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { - if (a->type != b->type) { - return false; - } - for (int i = 0; i < GGML_MAX_DIMS; i++) { - if (a->ne[i] != b->ne[i]) { - return false; - } - if (a->nb[i] != b->nb[i]) { - return false; - } - } - return true; +static bool ggml_gallocr_is_own(ggml_gallocr_t galloc, struct ggml_tensor * t) { + return ggml_gallocr_hash_get(galloc, t)->allocated; } -static bool ggml_op_can_inplace(enum ggml_op op) { - switch (op) { - case GGML_OP_SCALE: - case GGML_OP_DIAG_MASK_ZERO: - case GGML_OP_DIAG_MASK_INF: - case GGML_OP_ADD: - case GGML_OP_ADD1: - case GGML_OP_SUB: - case GGML_OP_MUL: - case GGML_OP_DIV: - case GGML_OP_SQR: - case GGML_OP_SQRT: - case GGML_OP_LOG: - case GGML_OP_UNARY: - case GGML_OP_ROPE: - case GGML_OP_RMS_NORM: - case GGML_OP_SOFT_MAX: - return true; - - default: - return false; - } +static void ggml_gallocr_set_node_offset(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, size_t offset) { + struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); + hn->buffer_id = buffer_id; + hn->offset = offset; + hn->allocated = true; } -static ggml_tallocr_t node_tallocr(ggml_gallocr_t galloc, struct ggml_tensor * node) { - if (galloc->talloc != NULL) { - return galloc->talloc; - } - - return galloc->hash_allocs[ggml_hash_find_or_insert(galloc->hash_set, node)]; +static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor * t) { + return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated; } -static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool update_backend) { - ggml_tallocr_t alloc = node_tallocr(galloc, view); - - GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL); - if (update_backend) { - view->backend = view->view_src->backend; - } - // views are initialized in the alloc buffer rather than the view_src buffer - view->buffer = alloc->buffer; - view->data = (char *)view->view_src->data + view->view_offs; +static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) { + struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); - assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->buft == alloc->buffer->buft); + if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) { + hn->allocated = true; + assert(hn->offset == 0); - if (!alloc->measure) { - ggml_backend_buffer_init_tensor(alloc->buffer, view); - } -} + // try to reuse a parent's buffer (inplace) + if (ggml_op_can_inplace(node->op)) { + for (int i = 0; i < GGML_MAX_SRC; i++) { + struct ggml_tensor * parent = node->src[i]; + if (parent == NULL) { + break; + } -static void allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node) { - ggml_tallocr_t alloc = node_tallocr(galloc, node); + // if the node's data is external, then we cannot re-use it + if (!ggml_gallocr_is_own(galloc, parent)) { + AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data); + continue; + } - if (node->data == NULL) { - if (ggml_is_view(node)) { - init_view(galloc, node, true); - } else { - // see if we can reuse a parent's buffer (inplace) - if (ggml_op_can_inplace(node->op)) { - for (int i = 0; i < GGML_MAX_SRC; i++) { - struct ggml_tensor * parent = node->src[i]; - if (parent == NULL) { - break; - } + // outputs cannot be reused + if (parent->flags & GGML_TENSOR_FLAG_OUTPUT || (parent->view_src != NULL && parent->view_src->flags & GGML_TENSOR_FLAG_OUTPUT)) { + AT_PRINTF("not reusing parent %s for %s as it is an output\n", parent->name, node->name); + continue; + } - // if the node's data is external, then we cannot re-use it - if (ggml_tallocr_is_own(alloc, parent) == false) { - AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data); - continue; - } + if (!ggml_are_same_layout(node, parent)) { + AT_PRINTF("not reusing parent %s for %s as layouts are different\n", parent->name, node->name); + continue; + } - struct hash_node * p_hn = hash_get(galloc, parent); - if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) { - if (ggml_is_view(parent)) { - struct ggml_tensor * view_src = parent->view_src; - struct hash_node * view_src_hn = hash_get(galloc, view_src); - if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { - // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite - // the parent's data that it will need later (same layout requirement). the problem is that then - // we cannot free the tensor because the original address of the allocation is lost. - // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views - // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data) - AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); - node->view_src = view_src; - view_src_hn->n_views += 1; - init_view(galloc, node, false); - return; - } - } else { - AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); - node->view_src = parent; - p_hn->n_views += 1; - init_view(galloc, node, false); + struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); + if (p_hn->n_children == 1 && p_hn->n_views == 0) { + if (ggml_is_view(parent)) { + struct ggml_tensor * view_src = parent->view_src; + struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src); + if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { + AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); + assert(view_src_hn->offset == p_hn->offset); + hn->buffer_id = p_hn->buffer_id; + hn->offset = p_hn->offset; + p_hn->allocated = false; // avoid freeing the parent + view_src_hn->allocated = false; return; } + } else { + AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); + hn->buffer_id = p_hn->buffer_id; + hn->offset = p_hn->offset; + p_hn->allocated = false; // avoid freeing the parent + return; } } } - ggml_tallocr_alloc(alloc, node); } + // allocate tensor from the buffer + struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id]; + ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id]; + size_t size = ggml_backend_buft_get_alloc_size(buft, node); + size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node); + hn->buffer_id = buffer_id; + hn->offset = offset; + return; } } -static void free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) { - ggml_tallocr_t alloc = node_tallocr(galloc, node); +static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) { + // graph outputs are never freed + if (node->flags & GGML_TENSOR_FLAG_OUTPUT) { + AT_PRINTF("not freeing output %s\n", node->name); + return; + } - ggml_tallocr_free_tensor(alloc, node); + struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id]; + ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id]; + struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); + size_t offset = hn->offset; + size_t size = ggml_backend_buft_get_alloc_size(buft, node); + ggml_dyn_tallocr_free_tensor(alloc, offset, size, node); + hn->allocated = false; } -static void ggml_tallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * gf) { - const int * parse_seq = galloc->parse_seq; - int parse_seq_len = galloc->parse_seq_len; +static int get_node_buffer_id(const int * node_buffer_ids, int i) { + return node_buffer_ids ? node_buffer_ids[i] : 0; +} + +static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids) { + // clear hash tables + memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *)); + memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node)); + + // allocate all graph inputs first to avoid overwriting them + for (int i = 0; i < graph->n_nodes; i++) { + if (graph->nodes[i]->flags & GGML_TENSOR_FLAG_INPUT) { + ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i)); + } + for (int j = 0; j < GGML_MAX_SRC; j++) { + if (graph->nodes[i]->src[j] == NULL) { + break; + } + if (graph->nodes[i]->src[j]->flags & GGML_TENSOR_FLAG_INPUT) { + ggml_gallocr_allocate_node(galloc, graph->nodes[i]->src[j], get_node_buffer_id(node_buffer_ids, i)); + } + } + } // count number of children and views - for (int i = 0; i < gf->n_nodes; i++) { - struct ggml_tensor * node = gf->nodes[i]; + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; if (ggml_is_view(node)) { struct ggml_tensor * view_src = node->view_src; - hash_get(galloc, view_src)->n_views += 1; - if (node->buffer == NULL && node->data != NULL) { - // view of a pre-allocated tensor, didn't call init_view() yet - init_view(galloc, node, true); - } + ggml_gallocr_hash_get(galloc, view_src)->n_views += 1; } for (int j = 0; j < GGML_MAX_SRC; j++) { @@ -554,227 +573,283 @@ static void ggml_tallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr if (parent == NULL) { break; } - hash_get(galloc, parent)->n_children += 1; - if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) { - init_view(galloc, parent, true); - } + ggml_gallocr_hash_get(galloc, parent)->n_children += 1; } } // allocate tensors - // if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers - int last_barrier_pos = 0; - int n_nodes = parse_seq_len ? parse_seq_len : gf->n_nodes; - - for (int ind = 0; ind < n_nodes; ind++) { - // allocate a node if there is no parse_seq or this is not a barrier - if (parse_seq_len == 0 || parse_seq[ind] != -1) { - int i = parse_seq_len ? parse_seq[ind] : ind; - struct ggml_tensor * node = gf->nodes[i]; - - // allocate parents (leafs) - for (int j = 0; j < GGML_MAX_SRC; j++) { - struct ggml_tensor * parent = node->src[j]; - if (parent == NULL) { - break; - } - allocate_node(galloc, parent); + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + int buffer_id = get_node_buffer_id(node_buffer_ids, i); + + // allocate parents (only leafs need to be allocated at this point) + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * parent = node->src[j]; + if (parent == NULL) { + break; } + ggml_gallocr_allocate_node(galloc, parent, buffer_id); + } - // allocate node - allocate_node(galloc, node); + // allocate node + ggml_gallocr_allocate_node(galloc, node, buffer_id); - AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name); - for (int j = 0; j < GGML_MAX_SRC; j++) { - struct ggml_tensor * parent = node->src[j]; - if (parent == NULL) { - break; - } - AT_PRINTF("%s", parent->name); - if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { - AT_PRINTF(", "); - } + AT_PRINTF("exec: %s (%s) <= ", ggml_op_desc(node), node->name); + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * parent = node->src[j]; + if (parent == NULL) { + break; + } + AT_PRINTF("%s", parent->name); + if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { + AT_PRINTF(", "); } - AT_PRINTF("\n"); } + AT_PRINTF("\n"); // update parents - // update immediately if there is no parse_seq - // update only at barriers if there is parse_seq - if ((parse_seq_len == 0) || parse_seq[ind] == -1) { - int update_start = parse_seq_len ? last_barrier_pos : ind; - int update_end = parse_seq_len ? ind : ind + 1; - for (int i = update_start; i < update_end; i++) { - int node_i = parse_seq_len ? parse_seq[i] : i; - struct ggml_tensor * node = gf->nodes[node_i]; - - for (int j = 0; j < GGML_MAX_SRC; j++) { - struct ggml_tensor * parent = node->src[j]; - if (parent == NULL) { - break; - } - struct hash_node * p_hn = hash_get(galloc, parent); - p_hn->n_children -= 1; - - //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views); - - if (p_hn->n_children == 0 && p_hn->n_views == 0) { - if (ggml_is_view(parent)) { - struct ggml_tensor * view_src = parent->view_src; - struct hash_node * view_src_hn = hash_get(galloc, view_src); - view_src_hn->n_views -= 1; - AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views); - if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0) { - free_node(galloc, view_src); - } - } - else { - free_node(galloc, parent); - } + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * parent = node->src[j]; + if (parent == NULL) { + break; + } + struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); + p_hn->n_children -= 1; + + AT_PRINTF("parent %s: %d children, %d views, allocated: %d\n", + parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated); + + if (p_hn->n_children == 0 && p_hn->n_views == 0) { + if (ggml_is_view(parent)) { + struct ggml_tensor * view_src = parent->view_src; + struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src); + view_src_hn->n_views -= 1; + AT_PRINTF("view_src %s: %d children, %d views\n", + view_src->name, view_src_hn->n_children, view_src_hn->n_views); + if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) { + ggml_gallocr_free_node(galloc, view_src, buffer_id); } } + else if (p_hn->allocated) { + ggml_gallocr_free_node(galloc, parent, buffer_id); + } } AT_PRINTF("\n"); - if (parse_seq_len) { - last_barrier_pos = ind + 1; - } } } } -size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph) { +bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids) { size_t hash_size = graph->visited_hash_table.size; - // check if the hash table is initialized and large enough + // initialize hash table if (galloc->hash_set.size < hash_size) { - if (galloc->hash_set.keys != NULL) { - free(galloc->hash_set.keys); - } - if (galloc->hash_values != NULL) { - free(galloc->hash_values); - } - galloc->hash_set.keys = malloc(sizeof(struct ggml_tensor *) * hash_size); + free(galloc->hash_set.keys); + free(galloc->hash_values); galloc->hash_set.size = hash_size; - galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size); + galloc->hash_set.keys = calloc(sizeof(struct ggml_tensor *), hash_size); + galloc->hash_values = calloc(sizeof(struct hash_node), hash_size); + GGML_ASSERT(galloc->hash_set.keys != NULL); + GGML_ASSERT(galloc->hash_values != NULL); + } else { + // reset hash table + memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * galloc->hash_set.size); + memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size); } - // reset hash table - memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * hash_size); - memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size); - - galloc->talloc = talloc; - ggml_tallocr_alloc_graph_impl(galloc, graph); - galloc->talloc = NULL; - - size_t max_size = ggml_tallocr_max_size(talloc); - - return max_size; -} - -void ggml_gallocr_alloc_graph_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, struct ggml_hash_set hash_set, ggml_tallocr_t * hash_node_talloc) { - const size_t hash_size = hash_set.size; - - GGML_ASSERT(hash_size >= (size_t)(graph->n_nodes + graph->n_leafs)); + // reset allocators + for (int i = 0; i < galloc->n_buffers; i++) { + ggml_dyn_tallocr_reset(galloc->buf_tallocs[i]); + } - galloc->talloc = NULL; + // allocate in hash table + ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids); - // alloc hash_values if needed - if (galloc->hash_values == NULL || galloc->hash_values_size < hash_size) { - free(galloc->hash_values); - galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size); - galloc->hash_values_size = hash_size; + // set the node_allocs from the hash table + if (galloc->n_nodes < graph->n_nodes) { + free(galloc->node_allocs); + galloc->node_allocs = calloc(sizeof(struct node_alloc), graph->n_nodes); + GGML_ASSERT(galloc->node_allocs != NULL); } - - // free hash_set.keys if needed - if (galloc->hash_set.keys != NULL) { - free(galloc->hash_set.keys); + galloc->n_nodes = graph->n_nodes; + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + struct node_alloc * node_alloc = &galloc->node_allocs[i]; + node_alloc->buffer_id = get_node_buffer_id(node_buffer_ids, i); + if (node->view_src || node->data) { + node_alloc->dst.offset = SIZE_MAX; + node_alloc->dst.size_max = 0; + } else { + struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); + node_alloc->dst.offset = hn->offset; + node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node); + } + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (!src || src->view_src || src->data) { + node_alloc->src[j].offset = SIZE_MAX; + node_alloc->src[j].size_max = 0; + } else { + struct hash_node * hn = ggml_gallocr_hash_get(galloc, src); + node_alloc->src[j].offset = hn->offset; + node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src); + } + } } - galloc->hash_set = hash_set; - // reset hash values - memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size); + // reallocate buffers if needed + for (int i = 0; i < galloc->n_buffers; i++) { + size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0; + size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]); - galloc->hash_allocs = hash_node_talloc; - - ggml_tallocr_alloc_graph_impl(galloc, graph); + if (new_size > cur_size) { +#ifndef NDEBUG + fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); +#endif + ggml_backend_buffer_free(galloc->buffers[i]); + galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size); + if (galloc->buffers[i] == NULL) { + fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size); + return false; + } + } + } - // remove unowned resources - galloc->hash_set.keys = NULL; - galloc->hash_allocs = NULL; + return true; } -// legacy API wrapper - -struct ggml_allocr { - ggml_tallocr_t talloc; - ggml_gallocr_t galloc; -}; - -static ggml_allocr_t ggml_allocr_new_impl(ggml_tallocr_t talloc) { - ggml_allocr_t alloc = (ggml_allocr_t)malloc(sizeof(struct ggml_allocr)); - *alloc = (struct ggml_allocr) { - /*.talloc = */ talloc, - /*.galloc = */ ggml_gallocr_new(), - }; - return alloc; +bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) { + return ggml_gallocr_reserve_n(galloc, graph, NULL); } -ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment) { - return ggml_allocr_new_impl(ggml_tallocr_new(data, size, alignment)); -} +static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * node, struct node_alloc * node_alloc, struct tensor_alloc * tensor_alloc) { + assert(node->data || node->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[node_alloc->buffer_id], node) <= tensor_alloc->size_max); -ggml_allocr_t ggml_allocr_new_measure(size_t alignment) { - return ggml_allocr_new_impl(ggml_tallocr_new_measure(alignment)); -} + if (node->view_src != NULL) { + if (node->buffer == NULL) { + assert(tensor_alloc->offset == SIZE_MAX); + if (node->view_src->buffer == NULL) { + // this tensor was allocated without ggml-backend + return; + } + ggml_backend_view_init(galloc->buffers[node_alloc->buffer_id], node); + } + } else { + if (node->data == NULL) { + assert(tensor_alloc->offset != SIZE_MAX); + assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[node_alloc->buffer_id], node) <= tensor_alloc->size_max); + void * base = ggml_backend_buffer_get_base(galloc->buffers[node_alloc->buffer_id]); + void * addr = (char *)base + tensor_alloc->offset; + ggml_backend_tensor_alloc(galloc->buffers[node_alloc->buffer_id], node, addr); + } else { + if (node->buffer == NULL) { + // this tensor was allocated without ggml-backend + return; + } -ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) { - return ggml_allocr_new_impl(ggml_tallocr_new_from_buffer(buffer)); +#ifndef NDEBUG + size_t offset = + (char *)node->data - + (char *)ggml_backend_buffer_get_base(node->buffer); + size_t size = ggml_backend_buffer_get_alloc_size(node->buffer, node); + assert(tensor_alloc->offset == SIZE_MAX || offset == tensor_alloc->offset); + assert(tensor_alloc->offset == SIZE_MAX || size <= tensor_alloc->size_max); +#endif + } + } } -ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size) { - return ggml_allocr_new_impl(ggml_tallocr_new_from_backend(backend, size)); +static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct node_alloc * nalloc, struct tensor_alloc * talloc) { + ggml_backend_buffer_type_t buft = galloc->bufts[nalloc->buffer_id]; + size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node); + return talloc->size_max >= node_size; } -ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend) { - return ggml_allocr_new_impl(ggml_tallocr_new_measure_from_backend(backend)); -} +static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph * graph) { + if (galloc->n_nodes != graph->n_nodes) { +#ifndef NDEBUG + fprintf(stderr, "%s: graph has different number of nodes\n", __func__); +#endif + return true; + } -struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc) { - return ggml_tallocr_get_buffer(alloc->talloc); -} + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + struct node_alloc * node_alloc = &galloc->node_allocs[i]; -void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) { - ggml_gallocr_set_parse_seq(alloc->galloc, list, n); -} + if (!ggml_gallocr_node_needs_realloc(galloc, node, node_alloc, &node_alloc->dst)) { +#ifndef NDEBUG + fprintf(stderr, "%s: node %s is not valid\n", __func__, node->name); +#endif + return true; + } -void ggml_allocr_free(ggml_allocr_t alloc) { - if (alloc == NULL) { - return; + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + break; + } + if (!ggml_gallocr_node_needs_realloc(galloc, src, node_alloc, &node_alloc->src[j])) { +#ifndef NDEBUG + fprintf(stderr, "%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name); +#endif + return true; + } + } } - ggml_gallocr_free(alloc->galloc); - ggml_tallocr_free(alloc->talloc); - free(alloc); + return false; } -bool ggml_allocr_is_measure(ggml_allocr_t alloc) { - return ggml_tallocr_is_measure(alloc->talloc); -} +bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) { + if (ggml_gallocr_needs_realloc(galloc, graph)) { + if (galloc->n_buffers == 1) { +#ifndef NDEBUG + fprintf(stderr, "%s: reallocating buffers automatically\n", __func__); +#endif + if (!ggml_gallocr_reserve(galloc, graph)) { + return false; + } + } else { +#ifndef NDEBUG + fprintf(stderr, "%s: cannot reallocate multi buffer graph automatically, call reserve\n", __func__); +#endif + return false; + } + } -void ggml_allocr_reset(ggml_allocr_t alloc) { - ggml_tallocr_reset(alloc->talloc); -} + // reset buffers + for (int i = 0; i < galloc->n_buffers; i++) { + // zero size buffers are not allocated + if (galloc->buffers[i] != NULL) { + ggml_backend_buffer_reset(galloc->buffers[i]); + } + } -void ggml_allocr_alloc(ggml_allocr_t alloc, struct ggml_tensor * tensor) { - ggml_tallocr_alloc(alloc->talloc, tensor); -} + // allocate the graph tensors from the previous assignments + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + struct node_alloc * node_alloc = &galloc->node_allocs[i]; + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + break; + } + ggml_gallocr_init_tensor(galloc, src, node_alloc, &node_alloc->src[j]); + } + ggml_gallocr_init_tensor(galloc, node, node_alloc, &node_alloc->dst); + } -size_t ggml_allocr_max_size(ggml_allocr_t alloc) { - return ggml_tallocr_max_size(alloc->talloc); + return true; } -size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) { - return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph); +size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) { + GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers); + + if (galloc->buffers[buffer_id] == NULL) { + return 0; + } + return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]); } // utils @@ -795,17 +870,17 @@ static bool alloc_tensor_range(struct ggml_context * ctx, return false; } - ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer); + struct ggml_tallocr * tallocr = ggml_tallocr_new(buffer); for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) { if (t->data == NULL) { if (t->view_src == NULL) { ggml_tallocr_alloc(tallocr, t); - } else { + } else if (t->buffer == NULL) { ggml_backend_view_init(buffer, t); } } else { - if (t->view_src != NULL) { + if (t->view_src != NULL && t->buffer == NULL) { // view of a pre-allocated tensor ggml_backend_view_init(buffer, t); } @@ -838,7 +913,6 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte } if (this_size > max_size) { - // tensor is too large to fit in a single buffer fprintf(stderr, "%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n", __func__, t->name, ggml_backend_buft_name(buft), @@ -870,7 +944,6 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte } if (n_buffers == 0) { - // all the tensors in the context are already allocated #ifndef NDEBUG fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__); #endif diff --git a/ggml-alloc.h b/ggml-alloc.h index 4e59975213406..1d9085d15f793 100644 --- a/ggml-alloc.h +++ b/ggml-alloc.h @@ -6,88 +6,62 @@ extern "C" { #endif -struct ggml_backend; -struct ggml_backend_buffer; -struct ggml_backend_buffer_type; +typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t; +typedef struct ggml_backend_buffer * ggml_backend_buffer_t; +typedef struct ggml_backend * ggml_backend_t; -// -// Legacy API -// - -typedef struct ggml_allocr * ggml_allocr_t; - -// initialize allocator for use with CPU backend only -GGML_API ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment); -GGML_API ggml_allocr_t ggml_allocr_new_measure(size_t alignment); - -// initialize allocator for use with ggml-backend -GGML_API ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer); -GGML_API ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer -GGML_API ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend); - -GGML_API struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc); - -// tell the allocator to parse nodes following the order described in the list -// you should call this if your graph are optimized to execute out-of-order -GGML_API void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n); - -GGML_API void ggml_allocr_free (ggml_allocr_t alloc); -GGML_API bool ggml_allocr_is_measure (ggml_allocr_t alloc); -GGML_API void ggml_allocr_reset (ggml_allocr_t alloc); -GGML_API void ggml_allocr_alloc (ggml_allocr_t alloc, struct ggml_tensor * tensor); -GGML_API size_t ggml_allocr_max_size (ggml_allocr_t alloc); - -GGML_API size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph); +// Tensor allocator +typedef struct ggml_tallocr * ggml_tallocr_t; -// -// ggml-backend v2 API -// +GGML_API ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer); +GGML_API void ggml_tallocr_free(ggml_tallocr_t talloc); +GGML_API void ggml_tallocr_alloc(ggml_tallocr_t talloc, struct ggml_tensor * tensor); -// Separate tensor and graph allocator objects -// This is necessary for multi-backend allocation because the graph allocator needs to use multiple tensor allocators -// The original API is kept as a wrapper around the new API +// Graph allocator +/* + Example usage: + ggml_gallocr_t galloc = ggml_gallocr_new(ggml_bacckend_cpu_buffer_type()); -// Tensor allocator -typedef struct ggml_tallocr * ggml_tallocr_t; + // optional: create a worst-case graph and reserve the buffers to avoid reallocations + ggml_gallocr_reserve(galloc, build_graph(max_batch)); -GGML_API ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment); -GGML_API ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment); -GGML_API ggml_tallocr_t ggml_tallocr_new_from_buft(struct ggml_backend_buffer_type * buft, size_t size); -GGML_API ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer -GGML_API ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer); -GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_buft(struct ggml_backend_buffer_type * buft); -GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend); + // allocate the graph + struct ggml_cgraph * graph = build_graph(batch); + ggml_gallocr_alloc_graph(galloc, graph); -GGML_API struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t talloc); + printf("compute buffer size: %zu bytes\n", ggml_gallocr_get_buffer_size(galloc, 0)); -GGML_API void ggml_tallocr_free (ggml_tallocr_t talloc); -GGML_API bool ggml_tallocr_is_measure (ggml_tallocr_t talloc); -GGML_API void ggml_tallocr_reset (ggml_tallocr_t talloc); -GGML_API void ggml_tallocr_alloc (ggml_tallocr_t talloc, struct ggml_tensor * tensor); -GGML_API size_t ggml_tallocr_max_size (ggml_tallocr_t talloc); + // evaluate the graph + ggml_backend_graph_compute(backend, graph); +*/ +// special tensor flags for use with the graph allocator: +// ggml_set_input(): all input tensors are allocated at the beginning of the graph in non-overlapping addresses +// ggml_set_output(): output tensors are never freed and never overwritten -// Graph allocator typedef struct ggml_gallocr * ggml_gallocr_t; -GGML_API ggml_gallocr_t ggml_gallocr_new(void); -GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc); +GGML_API ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft); +GGML_API ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs); +GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc); -GGML_API void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n); -GGML_API size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph); +// pre-allocate buffers from a measure graph - does not allocate or modify the graph +// call with a worst-case graph to avoid buffer reallocations +// not strictly required for single buffer usage: ggml_gallocr_alloc_graph will reallocate the buffers automatically if needed +// returns false if the buffer allocation failed +GGML_API bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph * graph); +GGML_API bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids); -// Allocate tensors from the allocators given by the hash table -GGML_API void ggml_gallocr_alloc_graph_n( - ggml_gallocr_t galloc, - struct ggml_cgraph * graph, - struct ggml_hash_set hash_set, - ggml_tallocr_t * hash_node_talloc); +// automatic reallocation if the topology changes when using a single buffer +// returns false if using multiple buffers and a re-allocation is needed (call ggml_gallocr_reserve_n first to set the node buffers) +GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph); +GGML_API size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id); // Utils // Create a buffer and allocate all the tensors in a ggml_context -GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, struct ggml_backend_buffer_type * buft); -GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, struct ggml_backend * backend); +GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft); +GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend); #ifdef __cplusplus } diff --git a/ggml-backend.c b/ggml-backend.c index 532da8edadced..9ee81b766f1a8 100644 --- a/ggml-backend.c +++ b/ggml-backend.c @@ -475,6 +475,8 @@ ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) { // backend CPU +static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment + GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) { return "CPU"; @@ -482,7 +484,14 @@ GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t } GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { - return (void *)buffer->context; + uintptr_t data = (uintptr_t)buffer->context; + + // align the buffer + if (data % TENSOR_ALIGNMENT != 0) { + data = GGML_PAD(data, TENSOR_ALIGNMENT); + } + + return (void *)data; } GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { @@ -540,8 +549,6 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = { /* .reset = */ NULL, }; -static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512 - GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return "CPU"; @@ -550,9 +557,11 @@ GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned - void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC? - - GGML_ASSERT(data != NULL && "failed to allocate buffer"); + void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h) + if (data == NULL) { + fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size); + return NULL; + } return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size); } @@ -766,6 +775,9 @@ static struct ggml_backend_i cpu_backend_i = { ggml_backend_t ggml_backend_cpu_init(void) { struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context)); + if (ctx == NULL) { + return NULL; + } ctx->n_threads = GGML_DEFAULT_N_THREADS; ctx->work_data = NULL; @@ -774,6 +786,10 @@ ggml_backend_t ggml_backend_cpu_init(void) { ctx->abort_callback_data = NULL; ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend)); + if (cpu_backend == NULL) { + free(ctx); + return NULL; + } *cpu_backend = (struct ggml_backend) { /* .interface = */ cpu_backend_i, @@ -802,6 +818,7 @@ void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_ } GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) { + GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned"); return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size); } @@ -865,6 +882,8 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_back ctx->n_buffers = n_buffers; ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t)); + GGML_ASSERT(ctx->buffers != NULL); + size_t total_size = 0; for (size_t i = 0; i < n_buffers; i++) { ctx->buffers[i] = buffers[i]; @@ -886,6 +905,18 @@ GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, } } +// creates a copy of the tensor with the same memory layout +static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) { + struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor); + for (int i = 0; i < GGML_MAX_DIMS; i++) { + dup->nb[i] = tensor->nb[i]; + } + return dup; +} + +static bool ggml_is_view_op(enum ggml_op op) { + return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE; +} // scheduler @@ -894,7 +925,7 @@ GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, #define GGML_MAX_SPLIT_INPUTS 16 struct ggml_backend_sched_split { - ggml_tallocr_t tallocr; + int backend_id; int i_start; int i_end; struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS]; @@ -909,15 +940,17 @@ struct ggml_backend_sched { int n_backends; ggml_backend_t backends[GGML_MAX_BACKENDS]; ggml_backend_buffer_type_t bufts[GGML_MAX_BACKENDS]; - ggml_tallocr_t tallocs[GGML_MAX_BACKENDS]; ggml_gallocr_t galloc; // hash keys of the nodes in the graph struct ggml_hash_set hash_set; - // hash values (arrays of [hash_set.size]) - ggml_tallocr_t * node_talloc; // tallocr assigned to each node (indirectly this is the backend) - struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // copies of each node for each destination backend + // hash values + int * tensor_backend_id; + struct ggml_tensor * (* tensor_copies)[GGML_MAX_BACKENDS]; + + int * node_backend_ids; // [n_nodes] + int n_nodes; // copy of the graph with modified inputs struct ggml_cgraph * graph; @@ -927,77 +960,46 @@ struct ggml_backend_sched { struct ggml_context * ctx; + ggml_backend_sched_eval_callback callback_eval; + void * callback_eval_user_data; + // align context_buffer to GGML_MEM_ALIGN #ifdef _MSC_VER __declspec(align(GGML_MEM_ALIGN)) #else __attribute__((aligned(GGML_MEM_ALIGN))) #endif - char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)]; - - ggml_backend_sched_eval_callback callback_eval; - void * callback_eval_user_data; + char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)]; }; #define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node) -#define node_allocr(node) sched->node_talloc[hash_id(node)] - -static bool ggml_is_view_op(enum ggml_op op) { - return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE; -} +#define tensor_backend_id(node) sched->tensor_backend_id[hash_id(node)] +#define tensor_backend(node) (tensor_backend_id(node) == -1 ? NULL : sched->backends[tensor_backend_id(node)]) -// returns the priority of the backend, lower is better -static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) { +// returns the priority of the backend, lower id is higher priority +static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) { for (int i = 0; i < sched->n_backends; i++) { if (sched->backends[i] == backend) { return i; } } - return INT_MAX; + return -1; } -static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) { - for (int i = 0; i < sched->n_backends; i++) { - if (sched->tallocs[i] == allocr) { - return i; - } - } - return INT_MAX; -} - -static ggml_tallocr_t sched_allocr_from_buffer(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) { +static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) { if (buffer == NULL) { - return NULL; - } - - // check if this is already allocate in a allocr buffer (from user manual allocations) - for (int i = 0; i < sched->n_backends; i++) { - if (ggml_tallocr_get_buffer(sched->tallocs[i]) == buffer) { - return sched->tallocs[i]; - } + return -1; } // find highest prio backend that supports the buffer type for (int i = 0; i < sched->n_backends; i++) { if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) { - return sched->tallocs[i]; + return i; } } GGML_ASSERT(false && "tensor buffer type not supported by any backend"); } -static ggml_backend_t get_allocr_backend(ggml_backend_sched_t sched, ggml_tallocr_t allocr) { - if (allocr == NULL) { - return NULL; - } - for (int i = 0; i < sched->n_backends; i++) { - if (sched->tallocs[i] == allocr) { - return sched->backends[i]; - } - } - GGML_UNREACHABLE(); -} - #if 0 static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug only #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__) @@ -1008,37 +1010,39 @@ static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_I #endif // returns the backend that should be used for the node based on the current locations -static ggml_tallocr_t sched_allocr_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) { +static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) { + // TODO: use supports_op to check if the backend supports the op + // assign pre-allocated nodes to their backend // dst - ggml_tallocr_t cur_allocr = sched_allocr_from_buffer(sched, node->buffer); - if (cur_allocr != NULL) { + int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->buffer); + if (cur_backend != -1) { SET_CAUSE(node, "1.dst"); - return cur_allocr; + return cur_backend; } // view_src - if (node->view_src != NULL) { - cur_allocr = sched_allocr_from_buffer(sched, node->view_src->buffer); - if (cur_allocr != NULL) { + if (tensor->view_src != NULL) { + cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src->buffer); + if (cur_backend != -1) { SET_CAUSE(node, "1.vsrc"); - return cur_allocr; + return cur_backend; } } // assign nodes that use weights to the backend of the weights for (int i = 0; i < GGML_MAX_SRC; i++) { - const struct ggml_tensor * src = node->src[i]; + const struct ggml_tensor * src = tensor->src[i]; if (src == NULL) { break; } if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { - ggml_tallocr_t src_allocr = sched_allocr_from_buffer(sched, src->buffer); + int src_backend = ggml_backend_sched_backend_from_buffer(sched, src->buffer); // operations with weights are always run on the same backend as the weights SET_CAUSE(node, "1.wgt%d", i); - return src_allocr; + return src_backend; } } - return NULL; + return -1; } static char * fmt_size(size_t size) { @@ -1051,11 +1055,11 @@ static char * fmt_size(size_t size) { return buffer; } -static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { +static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { int cur_split = 0; for (int i = 0; i < graph->n_nodes; i++) { if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) { - ggml_backend_t split_backend = get_allocr_backend(sched, sched->splits[cur_split].tallocr); + ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id]; fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend), sched->splits[cur_split].n_inputs); for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) { @@ -1069,17 +1073,15 @@ static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgra if (ggml_is_view_op(node->op)) { continue; } - ggml_tallocr_t node_allocr = node_allocr(node); - ggml_backend_t node_backend = node_allocr ? get_allocr_backend(sched, node_allocr) : NULL; // FIXME: + ggml_backend_t tensor_backend = tensor_backend(node); fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name, - fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", GET_CAUSE(node)); + fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node)); for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { break; } - ggml_tallocr_t src_allocr = node_allocr(src); - ggml_backend_t src_backend = src_allocr ? get_allocr_backend(sched, src_allocr) : NULL; + ggml_backend_t src_backend = tensor_backend(src); fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name, fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src)); } @@ -1087,23 +1089,13 @@ static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgra } } -// creates a copy of the tensor with the same memory layout -static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) { - struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor); - for (int i = 0; i < GGML_MAX_DIMS; i++) { - dup->nb[i] = tensor->nb[i]; - } - return dup; -} - - //#define DEBUG_PASS1 //#define DEBUG_PASS2 //#define DEBUG_PASS3 //#define DEBUG_PASS4 // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend -static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { +static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { // reset splits sched->n_splits = 0; sched->is_reset = false; @@ -1125,28 +1117,28 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g // pass 1: assign backends to ops with pre-allocated inputs for (int i = 0; i < graph->n_leafs; i++) { struct ggml_tensor * leaf = graph->leafs[i]; - if (node_allocr(leaf) != NULL) { + if (tensor_backend_id(leaf) != -1) { // do not overwrite user assignments continue; } - node_allocr(leaf) = sched_allocr_from_cur(sched, leaf); + tensor_backend_id(leaf) = ggml_backend_sched_backend_id_from_cur(sched, leaf); } for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; - if (node_allocr(node) != NULL) { + if (tensor_backend_id(node) != -1) { // do not overwrite user assignments continue; } - node_allocr(node) = sched_allocr_from_cur(sched, node); + tensor_backend_id(node) = ggml_backend_sched_backend_id_from_cur(sched, node); // src for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { break; } - if (node_allocr(src) == NULL) { - node_allocr(src) = sched_allocr_from_cur(sched, src); + if (tensor_backend_id(src) == -1) { + tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src); } } } @@ -1161,22 +1153,22 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g // pass 2.1 expand gpu up { - ggml_tallocr_t cur_allocr = NULL; + int cur_backend_id = -1; for (int i = graph->n_nodes - 1; i >= 0; i--) { struct ggml_tensor * node = graph->nodes[i]; if (ggml_is_view_op(node->op)) { continue; } - ggml_tallocr_t node_allocr = node_allocr(node); - if (node_allocr != NULL) { - if (sched_allocr_prio(sched, node_allocr) == sched->n_backends - 1) { + int tensor_backend_id = tensor_backend_id(node); + if (tensor_backend_id != -1) { + if (tensor_backend_id == sched->n_backends - 1) { // skip cpu (lowest prio backend) - cur_allocr = NULL; + cur_backend_id = -1; } else { - cur_allocr = node_allocr; + cur_backend_id = tensor_backend_id; } } else { - node_allocr(node) = cur_allocr; + tensor_backend_id(node) = cur_backend_id; SET_CAUSE(node, "2.1"); } } @@ -1184,22 +1176,22 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g // pass 2.2 expand gpu down { - ggml_tallocr_t cur_allocr = NULL; + int cur_backend_id = -1; for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; if (ggml_is_view_op(node->op)) { continue; } - ggml_tallocr_t node_allocr = node_allocr(node); - if (node_allocr != NULL) { - if (sched_allocr_prio(sched, node_allocr) == sched->n_backends - 1) { + int tensor_backend_id = tensor_backend_id(node); + if (tensor_backend_id != -1) { + if (tensor_backend_id == sched->n_backends - 1) { // skip cpu (lowest prio backend) - cur_allocr = NULL; + cur_backend_id = -1; } else { - cur_allocr = node_allocr; + cur_backend_id = tensor_backend_id; } } else { - node_allocr(node) = cur_allocr; + tensor_backend_id(node) = cur_backend_id; SET_CAUSE(node, "2.2"); } } @@ -1207,17 +1199,17 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g // pass 2.3 expand rest up { - ggml_tallocr_t cur_allocr = NULL; + int cur_backend_id = -1; for (int i = graph->n_nodes - 1; i >= 0; i--) { struct ggml_tensor * node = graph->nodes[i]; if (ggml_is_view_op(node->op)) { continue; } - ggml_tallocr_t node_allocr = node_allocr(node); - if (node_allocr != NULL) { - cur_allocr = node_allocr; + int tensor_backend_id = tensor_backend_id(node); + if (tensor_backend_id != -1) { + cur_backend_id = tensor_backend_id; } else { - node_allocr(node) = cur_allocr; + tensor_backend_id(node) = cur_backend_id; SET_CAUSE(node, "2.3"); } } @@ -1225,17 +1217,17 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g // pass 2.4 expand rest down { - ggml_tallocr_t cur_allocr = NULL; + int cur_backend_id = -1; for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; if (ggml_is_view_op(node->op)) { continue; } - ggml_tallocr_t node_allocr = node_allocr(node); - if (node_allocr != NULL) { - cur_allocr = node_allocr; + int tensor_backend_id = tensor_backend_id(node); + if (tensor_backend_id != -1) { + cur_backend_id = tensor_backend_id; } else { - node_allocr(node) = cur_allocr; + tensor_backend_id(node) = cur_backend_id; SET_CAUSE(node, "2.4"); } } @@ -1247,9 +1239,9 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g // pass 3: assign backends to remaining src from dst and view_src for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; - ggml_tallocr_t cur_allocr = node_allocr(node); - if (node->view_src != NULL && cur_allocr == NULL) { - cur_allocr = node_allocr(node) = node_allocr(node->view_src); + int cur_backend_id = tensor_backend_id(node); + if (node->view_src != NULL && cur_backend_id == -1) { + cur_backend_id = tensor_backend_id(node) = tensor_backend_id(node->view_src); SET_CAUSE(node, "3.vsrc"); } for (int j = 0; j < GGML_MAX_SRC; j++) { @@ -1257,14 +1249,14 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g if (src == NULL) { break; } - ggml_tallocr_t src_allocr = node_allocr(src); - if (src_allocr == NULL) { + int src_backend_id = tensor_backend_id(src); + if (src_backend_id == -1) { if (src->view_src != NULL) { // views are always on the same backend as the source - node_allocr(src) = node_allocr(src->view_src); + tensor_backend_id(src) = tensor_backend_id(src->view_src); SET_CAUSE(src, "3.vsrc"); } else { - node_allocr(src) = cur_allocr; + tensor_backend_id(src) = cur_backend_id; SET_CAUSE(src, "3.cur"); } } @@ -1281,15 +1273,14 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; if (!ggml_is_view_op(node->op)) { - sched->splits[0].tallocr = node_allocr(node); + sched->splits[0].backend_id = tensor_backend_id(node); break; } } sched->splits[0].i_start = 0; sched->splits[0].n_inputs = 0; memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK - ggml_tallocr_t cur_allocr = sched->splits[0].tallocr; - size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr); + int cur_backend_id = sched->splits[0].backend_id; for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; @@ -1297,19 +1288,18 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g continue; } - ggml_tallocr_t node_allocr = node_allocr(node); + int tensor_backend_id = tensor_backend_id(node); - GGML_ASSERT(node_allocr != NULL); // all nodes should be assigned by now + GGML_ASSERT(tensor_backend_id != -1); // all nodes should be assigned by now - if (node_allocr != cur_allocr) { + if (tensor_backend_id != cur_backend_id) { sched->splits[cur_split].i_end = i; cur_split++; GGML_ASSERT(cur_split < GGML_MAX_SPLITS); - sched->splits[cur_split].tallocr = node_allocr; + sched->splits[cur_split].backend_id = tensor_backend_id; sched->splits[cur_split].i_start = i; sched->splits[cur_split].n_inputs = 0; - cur_allocr = node_allocr; - cur_backend_id = sched_allocr_prio(sched, cur_allocr); + cur_backend_id = tensor_backend_id; } // find inputs that are not on the same backend @@ -1318,43 +1308,25 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g if (src == NULL) { break; } - ggml_tallocr_t src_allocr = node_allocr(src); - GGML_ASSERT(src_allocr != NULL); // all inputs should be assigned by now - if (src_allocr != node_allocr) { + int src_backend_id = tensor_backend_id(src); + assert(src_backend_id != -1); // all inputs should be assigned by now + if (src_backend_id != tensor_backend_id) { // create a copy of the input in the split's backend size_t id = hash_id(src); - if (sched->node_copies[id][cur_backend_id] == NULL) { - ggml_backend_t backend = get_allocr_backend(sched, cur_allocr); + if (sched->tensor_copies[id][cur_backend_id] == NULL) { + ggml_backend_t backend = sched->backends[cur_backend_id]; struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src); ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name); - sched->node_copies[id][cur_backend_id] = tensor_copy; - node_allocr(tensor_copy) = cur_allocr; + sched->tensor_copies[id][cur_backend_id] = tensor_copy; + tensor_backend_id(tensor_copy) = cur_backend_id; SET_CAUSE(tensor_copy, "4.cpy"); int n_inputs = sched->splits[cur_split].n_inputs++; GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS); sched->splits[cur_split].inputs[n_inputs] = src; } - node->src[j] = sched->node_copies[id][cur_backend_id]; - -#if 0 - // check if the input is already in the split - bool found = false; - for (int k = 0; k < sched->splits[cur_split].n_inputs; k++) { - if (sched->splits[cur_split].inputs[k] == src) { - found = true; - break; - } - } - - if (!found) { - int n_inputs = sched->splits[cur_split].n_inputs++; - //printf("split %d input %d: %s (%s)\n", cur_split, n_inputs, src->name, ggml_backend_name(get_allocr_backend(sched, src_allocr))); - GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS); - sched->splits[cur_split].inputs[n_inputs] = src; - } -#endif + node->src[j] = sched->tensor_copies[id][cur_backend_id]; } } } @@ -1369,30 +1341,30 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g // sanity check: all sources should have the same backend as the node for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; - ggml_tallocr_t node_allocr = node_allocr(node); - if (node_allocr == NULL) { + ggml_backend_t tensor_backend = tensor_backend(node); + if (tensor_backend == NULL) { fprintf(stderr, "!!!!!!! %s has no backend\n", node->name); } - if (node->view_src != NULL && node_allocr != node_allocr(node->view_src)) { + if (node->view_src != NULL && tensor_backend != tensor_backend(node->view_src)) { fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n", - node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL", - node->view_src->name, node_allocr(node->view_src) ? ggml_backend_name(get_allocr_backend(sched, node_allocr(node->view_src))) : "NULL"); + node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", + node->view_src->name, tensor_backend(node->view_src) ? ggml_backend_name(tensor_backend(node->view_src)) : "NULL"); } for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { break; } - ggml_tallocr_t src_allocr = node_allocr(src); - if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now + ggml_backend_t src_backend = tensor_backend(src); + if (src_backend != tensor_backend /* && src_backend != NULL */) { fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n", - node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL", - j, src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL"); + node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", + j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL"); } - if (src->view_src != NULL && src_allocr != node_allocr(src->view_src)) { + if (src->view_src != NULL && src_backend != tensor_backend(src->view_src)) { fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n", - src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL", - src->view_src->name, node_allocr(src->view_src) ? ggml_backend_name(get_allocr_backend(sched, node_allocr(src->view_src))) : "NULL"); + src->name, src_backend ? ggml_backend_name(src_backend) : "NULL", + src->view_src->name, tensor_backend(src->view_src) ? ggml_backend_name(tensor_backend(src->view_src)) : "NULL"); } } } @@ -1406,32 +1378,45 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g struct ggml_backend_sched_split * split = &sched->splits[i]; split->graph = ggml_graph_view(graph, split->i_start, split->i_end); - // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split for (int j = 0; j < split->n_inputs; j++) { struct ggml_tensor * input = split->inputs[j]; - struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)]; + struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id]; + // add a dependency to the input source so that it is not freed before the copy is done - GGML_ASSERT(input_cpy->src[0] == NULL || input_cpy->src[0] == input); - input_cpy->src[0] = input; + struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input); + sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input); + graph_copy->nodes[graph_copy->n_nodes++] = input_dep; + + // add a dependency to the input copy so that it is allocated at the start of the split + sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id; graph_copy->nodes[graph_copy->n_nodes++] = input_cpy; } for (int j = split->i_start; j < split->i_end; j++) { + sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]); graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j]; } } sched->graph = graph_copy; } -static void sched_alloc_splits(ggml_backend_sched_t sched) { - ggml_gallocr_alloc_graph_n( - sched->galloc, - sched->graph, - sched->hash_set, - sched->node_talloc); +static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) { + // ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids); + if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) { +#ifndef NDEBUG + fprintf(stderr, "ggml_backend_sched: failed to allocate graph, reserving\n"); +#endif + ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids); + if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) { + fprintf(stderr, "ggml_backend_sched: failed to allocate graph\n"); + return false; + } + } + + return true; } -static void sched_compute_splits(ggml_backend_sched_t sched) { +static bool ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) { uint64_t copy_us[GGML_MAX_BACKENDS] = {0}; uint64_t compute_us[GGML_MAX_BACKENDS] = {0}; @@ -1439,20 +1424,18 @@ static void sched_compute_splits(ggml_backend_sched_t sched) { for (int i = 0; i < sched->n_splits; i++) { struct ggml_backend_sched_split * split = &splits[i]; - ggml_backend_t split_backend = get_allocr_backend(sched, split->tallocr); - int split_backend_id = sched_backend_prio(sched, split_backend); + int split_backend_id = split->backend_id; + ggml_backend_t split_backend = sched->backends[split_backend_id]; // copy the input tensors to the split backend uint64_t copy_start_us = ggml_time_us(); for (int j = 0; j < split->n_inputs; j++) { struct ggml_tensor * input = split->inputs[j]; - struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][split_backend_id]; + struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id]; GGML_ASSERT(input->buffer != NULL); GGML_ASSERT(input_cpy->buffer != NULL); - // TODO: avoid this copy if it was already copied in a previous split, and the input didn't change - // this is important to avoid copying constants such as KQ_mask and inp_pos multiple times ggml_backend_tensor_copy_async(split_backend, input, input_cpy); } //ggml_backend_synchronize(split_backend); // necessary to measure copy time @@ -1468,7 +1451,9 @@ static void sched_compute_splits(ggml_backend_sched_t sched) { uint64_t compute_start_us = ggml_time_us(); if (!sched->callback_eval) { - ggml_backend_graph_compute(split_backend, &split->graph); + if (!ggml_backend_graph_compute(split_backend, &split->graph)) { + return false; + } //ggml_backend_synchronize(split_backend); // necessary to measure compute time } else { // similar to ggml_backend_compare_graph_backend @@ -1488,7 +1473,9 @@ static void sched_compute_splits(ggml_backend_sched_t sched) { struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1); - ggml_backend_graph_compute(split_backend, &gv); + if (!ggml_backend_graph_compute(split_backend, &gv)) { + return false; + } if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) { break; @@ -1510,19 +1497,8 @@ static void sched_compute_splits(ggml_backend_sched_t sched) { } } #endif -} - -static void sched_reset(ggml_backend_sched_t sched) { - for (int i = 0; i < sched->n_backends; i++) { - ggml_tallocr_reset(sched->tallocs[i]); - } - // reset state for the next run - size_t hash_size = sched->hash_set.size; - memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); - memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size); - memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size); - sched->is_reset = true; + return true; } ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size) { @@ -1532,9 +1508,10 @@ ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_back struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1); // initialize hash table - sched->hash_set = ggml_hash_set_new(graph_size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS); - sched->node_talloc = calloc(sizeof(sched->node_talloc[0]) * sched->hash_set.size, 1); - sched->node_copies = calloc(sizeof(sched->node_copies[0]) * sched->hash_set.size, 1); + sched->hash_set = ggml_hash_set_new(graph_size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS); + sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size); + sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size); + sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), graph_size); sched->n_backends = n_backends; for (int i = 0; i < n_backends; i++) { @@ -1542,14 +1519,9 @@ ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_back sched->bufts[i] = bufts ? bufts[i] : ggml_backend_get_default_buffer_type(backends[i]); } - sched->galloc = ggml_gallocr_new(); + sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends); - // init measure allocs for each backend - for (int i = 0; i < n_backends; i++) { - sched->tallocs[i] = ggml_tallocr_new_measure_from_buft(sched->bufts[i]); - } - - sched_reset(sched); + ggml_backend_sched_reset(sched); return sched; } @@ -1558,49 +1530,54 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) { if (sched == NULL) { return; } - for (int i = 0; i < sched->n_backends; i++) { - ggml_tallocr_free(sched->tallocs[i]); - } ggml_gallocr_free(sched->galloc); ggml_free(sched->ctx); free(sched->hash_set.keys); - free(sched->node_talloc); - free(sched->node_copies); + free(sched->tensor_backend_id); + free(sched->tensor_copies); + free(sched->node_backend_ids); free(sched); } -void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) { - GGML_ASSERT(ggml_tallocr_is_measure(sched->tallocs[0])); // can only be initialized once +void ggml_backend_sched_reset(ggml_backend_sched_t sched) { + // reset state for the next run + size_t hash_size = sched->hash_set.size; + memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT + memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size); + memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size); - sched_split_graph(sched, measure_graph); - sched_alloc_splits(sched); + sched->is_reset = true; +} - // allocate buffers and reset allocators - for (int i = 0; i < sched->n_backends; i++) { - size_t size = ggml_tallocr_max_size(sched->tallocs[i]); - ggml_tallocr_free(sched->tallocs[i]); - sched->tallocs[i] = ggml_tallocr_new_from_buft(sched->bufts[i], size); +bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) { + ggml_backend_sched_split_graph(sched, measure_graph); + + if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids)) { + return false; } - sched_reset(sched); + ggml_backend_sched_reset(sched); + return true; } -void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { +bool ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS); if (!sched->is_reset) { - sched_reset(sched); + ggml_backend_sched_reset(sched); } - sched_split_graph(sched, graph); - sched_alloc_splits(sched); - sched_compute_splits(sched); -} + ggml_backend_sched_split_graph(sched, graph); + if (!ggml_backend_sched_alloc_splits(sched)) { + return false; + } -void ggml_backend_sched_reset(ggml_backend_sched_t sched) { - sched_reset(sched); -} + if (!ggml_backend_sched_compute_splits(sched)) { + return false; + } + return true; +} void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) { sched->callback_eval = callback; @@ -1611,37 +1588,30 @@ int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) { return sched->n_splits; } -ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) { - int backend_index = sched_backend_prio(sched, backend); - GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); - return sched->tallocs[backend_index]; -} - -ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) { - int backend_index = sched_backend_prio(sched, backend); +size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) { + int backend_index = ggml_backend_sched_backend_id(sched, backend); GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); - return ggml_tallocr_get_buffer(sched->tallocs[backend_index]); + return ggml_gallocr_get_buffer_size(sched->galloc, backend_index); } void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) { - int backend_index = sched_backend_prio(sched, backend); + int backend_index = ggml_backend_sched_backend_id(sched, backend); GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); - node_allocr(node) = sched->tallocs[backend_index]; + tensor_backend_id(node) = backend_index; } ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) { - ggml_tallocr_t allocr = node_allocr(node); - if (allocr == NULL) { + int backend_index = tensor_backend_id(node); + if (backend_index == -1) { return NULL; } - return get_allocr_backend(sched, allocr); + return sched->backends[backend_index]; } // utils void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { GGML_ASSERT(tensor->buffer == NULL); - //GGML_ASSERT(tensor->data == NULL); // views of pre-allocated tensors may have the data set in ggml_new_tensor, but still need to be initialized by the backend GGML_ASSERT(tensor->view_src != NULL); GGML_ASSERT(tensor->view_src->buffer != NULL); GGML_ASSERT(tensor->view_src->data != NULL); @@ -1665,7 +1635,7 @@ void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor ggml_backend_buffer_init_tensor(buffer, tensor); } -static struct ggml_tensor * graph_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, +static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) { GGML_ASSERT(src != NULL); @@ -1678,7 +1648,7 @@ static struct ggml_tensor * graph_dup_tensor(struct ggml_hash_set hash_set, stru struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src); if (src->view_src != NULL) { - dst->view_src = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src); + dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src); dst->view_offs = src->view_offs; } dst->op = src->op; @@ -1691,14 +1661,14 @@ static struct ggml_tensor * graph_dup_tensor(struct ggml_hash_set hash_set, stru if (s == NULL) { break; } - dst->src[i] = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s); + dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s); } node_copies[id] = dst; return dst; } -static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) { +static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) { size_t id = ggml_hash_find(hash_set, src); if (node_init[id]) { return; @@ -1707,7 +1677,7 @@ static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor struct ggml_tensor * dst = node_copies[id]; if (dst->view_src != NULL) { - graph_init_tensor(hash_set, node_copies, node_init, src->view_src); + graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src); ggml_backend_view_init(dst->view_src->buffer, dst); } else { @@ -1720,17 +1690,17 @@ static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor if (s == NULL) { break; } - graph_init_tensor(hash_set, node_copies, node_init, s); + graph_copy_init_tensor(hash_set, node_copies, node_init, s); } } struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) { struct ggml_hash_set hash_set = { /* .size = */ graph->visited_hash_table.size, - /* .keys = */ calloc(sizeof(hash_set.keys[0]) * graph->visited_hash_table.size, 1) + /* .keys = */ calloc(sizeof(hash_set.keys[0]), graph->visited_hash_table.size) // NOLINT }; - struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]) * hash_set.size, 1); - bool * node_init = calloc(sizeof(node_init[0]) * hash_set.size, 1); + struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]), hash_set.size); // NOLINT + bool * node_init = calloc(sizeof(node_init[0]), hash_set.size); struct ggml_init_params params = { /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false), @@ -1759,7 +1729,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s // dup nodes for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; - graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node); + graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node); } // allocate nodes @@ -1784,7 +1754,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s // copy data and init views for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; - graph_init_tensor(hash_set, node_copies, node_init, node); + graph_copy_init_tensor(hash_set, node_copies, node_init, node); } // build graph copy diff --git a/ggml-backend.h b/ggml-backend.h index 282b3a9b79bad..f13c69bffb98c 100644 --- a/ggml-backend.h +++ b/ggml-backend.h @@ -130,11 +130,7 @@ extern "C" { // in build_graph: build_graph(...) { - // allocating tensors in a specific backend (optional, recommended: pre-allocate inputs in a different buffer) - alloc_cpu = ggml_backend_sched_get_allocr(sched, backend_cpu); - ggml_allocr_alloc(alloc_cpu, tensor); - - // manually assigning nodes to a backend (optional, shouldn't be needed in most cases) + // manually assign nodes to a backend (optional, should not be needed in most cases) struct ggml_tensor * node = ggml_mul_mat(ctx, ...); ggml_backend_sched_set_node_backend(sched, node, backend_gpu); } @@ -164,20 +160,19 @@ extern "C" { GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size); GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched); // Initialize backend buffers from a measure graph - GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph); + GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph); // Get the number of splits of the last graph GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched); - GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend); - GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend); + GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend); GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend); GGML_API ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node); // Allocate and compute graph on the backend scheduler - GGML_API void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph); + GGML_API bool ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph); - // Reset all assignments and allocators - must be called before using the sched allocators to allocate inputs + // Reset all assignments and allocators - must be called before changing the node backends GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched); // Set a callback to be called for each resulting node during graph compute diff --git a/ggml.c b/ggml.c index e45b78d7eed91..d921d82fed7d3 100644 --- a/ggml.c +++ b/ggml.c @@ -2649,7 +2649,7 @@ static struct ggml_tensor * ggml_new_tensor_impl( /*.nb =*/ { 0, 0, 0, 0 }, /*.op =*/ GGML_OP_NONE, /*.op_params =*/ { 0 }, - /*.is_param =*/ false, + /*.flags =*/ 0, /*.grad =*/ NULL, /*.src =*/ { NULL }, /*.perf_runs =*/ 0, @@ -6551,7 +6551,7 @@ struct ggml_tensor * ggml_cross_entropy_loss_back( void ggml_set_param( struct ggml_context * ctx, struct ggml_tensor * tensor) { - tensor->is_param = true; + tensor->flags |= GGML_TENSOR_FLAG_PARAM; GGML_ASSERT(tensor->grad == NULL); tensor->grad = ggml_dup_tensor(ctx, tensor); @@ -15367,7 +15367,7 @@ static struct ggml_tensor * ggml_recompute_graph_node( return NULL; } - if (node->is_param) { + if (node->flags & GGML_TENSOR_FLAG_PARAM) { return node; } @@ -15401,7 +15401,7 @@ static struct ggml_tensor * ggml_recompute_graph_node( clone->op = node->op; clone->grad = node->grad; - clone->is_param = node->is_param; + clone->flags = node->flags; clone->extra = node->extra; for (int k = 0; k < GGML_MAX_DIMS; ++k) { clone->nb[k] = node->nb[k]; @@ -16433,7 +16433,7 @@ void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * for (int i = 0; i < gf->n_nodes; i++) { struct ggml_tensor * node = gf->nodes[i]; - if (node->is_param) { + if (node->flags & GGML_TENSOR_FLAG_PARAM) { GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node); ggml_build_forward_expand(gb, node->grad); } @@ -17918,7 +17918,7 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) { GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n", i, node->ne[0], node->ne[1], node->ne[2], - ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs, + ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs, (double) node->perf_cycles / (double) ggml_cycles_per_ms(), (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs, (double) node->perf_time_us / 1000.0, @@ -18011,7 +18011,7 @@ void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph continue; } - if (node->is_param) { + if (node->flags & GGML_TENSOR_FLAG_PARAM) { snprintf(color, sizeof(color), "yellow"); } else if (node->grad) { if (ggml_graph_find(gf, node)) { @@ -18185,7 +18185,7 @@ static enum ggml_opt_result ggml_opt_adam( int np = 0; int64_t nx = 0; for (int i = 0; i < gf->n_nodes; ++i) { - if (gf->nodes[i]->is_param) { + if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) { GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op); GGML_ASSERT(np < GGML_MAX_PARAMS); @@ -18548,7 +18548,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( int np = 0; int nx = 0; for (int i = 0; i < gf->n_nodes; ++i) { - if (gf->nodes[i]->is_param) { + if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) { GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op); GGML_ASSERT(np < GGML_MAX_PARAMS); @@ -19023,6 +19023,16 @@ enum ggml_opt_result ggml_opt_resume_g( //////////////////////////////////////////////////////////////////////////////// +void ggml_set_input(struct ggml_tensor * tensor) { + tensor->flags |= GGML_TENSOR_FLAG_INPUT; +} + +void ggml_set_output(struct ggml_tensor * tensor) { + tensor->flags |= GGML_TENSOR_FLAG_OUTPUT; +} + +//////////////////////////////////////////////////////////////////////////////// + void ggml_quantize_init(enum ggml_type type) { ggml_critical_section_start(); diff --git a/ggml.h b/ggml.h index 9cfec5bacf4db..01cecc1e1845f 100644 --- a/ggml.h +++ b/ggml.h @@ -505,11 +505,17 @@ extern "C" { enum ggml_log_level { GGML_LOG_LEVEL_ERROR = 2, - GGML_LOG_LEVEL_WARN = 3, - GGML_LOG_LEVEL_INFO = 4, + GGML_LOG_LEVEL_WARN = 3, + GGML_LOG_LEVEL_INFO = 4, GGML_LOG_LEVEL_DEBUG = 5 }; + enum ggml_tensor_flag { + GGML_TENSOR_FLAG_INPUT = 1, + GGML_TENSOR_FLAG_OUTPUT = 2, + GGML_TENSOR_FLAG_PARAM = 4, + }; + // ggml object struct ggml_object { size_t offs; @@ -543,7 +549,7 @@ extern "C" { // op params - allocated as int32_t for alignment int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)]; - bool is_param; + int32_t flags; struct ggml_tensor * grad; struct ggml_tensor * src[GGML_MAX_SRC]; @@ -2092,6 +2098,12 @@ extern "C" { ggml_opt_callback callback, void * callback_data); + // + // tensor flags + // + GGML_API void ggml_set_input(struct ggml_tensor * tensor); + GGML_API void ggml_set_output(struct ggml_tensor * tensor); + // // quantization // diff --git a/llama.cpp b/llama.cpp index d1ee26ce2a9c8..a5b873a7bf144 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1872,8 +1872,6 @@ struct llama_context { // memory buffers used to evaluate the model std::vector buf_compute_meta; ggml_backend_sched_t sched = nullptr; - // allocator for the input tensors - ggml_tallocr * alloc = nullptr; // input tensors ggml_backend_buffer_t buf_input = nullptr; @@ -7199,12 +7197,10 @@ struct llm_build_context { static struct ggml_cgraph * llama_build_graph( llama_context & lctx, - const llama_batch & batch) { + const llama_batch & batch, + bool worst_case) { const auto & model = lctx.model; - // check if we should build the worst-case graph (for memory measurement) - const bool worst_case = ggml_tallocr_is_measure(lctx.alloc); - // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.) llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) { if (il >= 0) { @@ -7225,77 +7221,6 @@ static struct ggml_cgraph * llama_build_graph( struct llm_build_context llm(lctx, batch, cb, worst_case); - // - // set input data - // - - if (!ggml_tallocr_is_measure(lctx.alloc)) { - if (batch.token) { - const int64_t n_tokens = batch.n_tokens; - - ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens)); - } - - if (batch.embd) { - const int64_t n_embd = llm.n_embd; - const int64_t n_tokens = batch.n_tokens; - - ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd)); - } - - if (batch.pos) { - const int64_t n_tokens = batch.n_tokens; - - ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos)); - } - - { - const int64_t n_kv = llm.n_kv; - const int64_t n_tokens = batch.n_tokens; - - GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); - float * data = (float *) lctx.inp_KQ_mask->data; - - for (int h = 0; h < 1; ++h) { - for (int j = 0; j < n_tokens; ++j) { - const llama_pos pos = batch.pos[j]; - const llama_seq_id seq_id = batch.seq_id[j][0]; - - for (int i = 0; i < n_kv; ++i) { - float f; - if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || - (llm.causal_attn && lctx.kv_self.cells[i].pos > pos)) { - f = -INFINITY; - } else { - f = 0; - } - data[h*(n_kv*n_tokens) + j*n_kv + i] = f; - } - } - } - } - - if (llm.do_rope_shift) { - const int64_t n_ctx = llm.n_ctx; - - GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer)); - int32_t * data = (int32_t *) lctx.inp_K_shift->data; - - for (int i = 0; i < n_ctx; ++i) { - data[i] = lctx.kv_self.cells[i].delta; - } - } - - { - GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_sum->buffer)); - float * data = (float *) lctx.inp_sum->data; - - for (int i = 0; i < batch.n_tokens; ++i) { - data[i] = 1.0f/float(batch.n_tokens); - } - } - } - llm.init(); switch (model.arch) { @@ -7384,6 +7309,83 @@ static struct ggml_cgraph * llama_build_graph( return result; } +static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { + // + // set input data + // + + const auto & hparams = lctx.model.hparams; + const auto & cparams = lctx.cparams; + const auto & kv_self = lctx.kv_self; + + if (batch.token) { + const int64_t n_tokens = batch.n_tokens; + + ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens)); + } + + if (batch.embd) { + const int64_t n_embd = hparams.n_embd; + const int64_t n_tokens = batch.n_tokens; + + ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd)); + } + + if (batch.pos) { + const int64_t n_tokens = batch.n_tokens; + + ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos)); + } + + { + const int64_t n_kv = kv_self.n; + const int64_t n_tokens = batch.n_tokens; + + assert(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); + + float * data = (float *) lctx.inp_KQ_mask->data; + + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j][0]; + + for (int i = 0; i < n_kv; ++i) { + float f; + if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) { + f = -INFINITY; + } else { + f = 0; + } + data[h*(n_kv*n_tokens) + j*n_kv + i] = f; + } + } + } + } + + + { + assert(ggml_backend_buffer_is_host(lctx.inp_sum->buffer)); + float * data = (float *) lctx.inp_sum->data; + + for (int i = 0; i < batch.n_tokens; ++i) { + data[i] = 1.0f/float(batch.n_tokens); + } + } + + if (kv_self.has_shift) { + const int64_t n_ctx = cparams.n_ctx; + + assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer)); + + int32_t * data = (int32_t *) lctx.inp_K_shift->data; + + for (int i = 0; i < n_ctx; ++i) { + data[i] = lctx.kv_self.cells[i].delta; + } + } +} + // decode a batch of tokens by evaluating the transformer // // - lctx: llama context @@ -7482,7 +7484,7 @@ static int llama_decode_internal( ggml_backend_sched_reset(lctx.sched); ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data); - ggml_cgraph * gf = llama_build_graph(lctx, batch); + ggml_cgraph * gf = llama_build_graph(lctx, batch, false); // the output is always the last tensor in the graph struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; @@ -7527,6 +7529,9 @@ static int llama_decode_internal( if (lctx.backend_cpu != nullptr) { ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads); } + + llama_set_inputs(lctx, batch); + ggml_backend_sched_graph_compute(lctx.sched, gf); // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched)); @@ -11278,23 +11283,27 @@ struct llama_context * llama_new_context_with_model( ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead()); ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES); - ctx->alloc = ggml_backend_sched_get_tallocr(ctx->sched, ctx->backend_cpu); // build worst-case graph int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch); int n_past = cparams.n_ctx - n_tokens; llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph - ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0)); + ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true); // initialize scheduler with the worst-case graph - ggml_backend_sched_init_measure(ctx->sched, gf); - ctx->alloc = ggml_backend_sched_get_tallocr(ctx->sched, ctx->backend_cpu); + if (!ggml_backend_sched_reserve(ctx->sched, gf)) { + LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); + llama_free(ctx); + return nullptr; + } - for (ggml_backend_t backend : ctx->backends) { - ggml_backend_buffer_t buf = ggml_backend_sched_get_buffer(ctx->sched, backend); + for (size_t i = 0; i < ctx->backends.size(); i++) { + ggml_backend_t backend = ctx->backends[i]; + ggml_backend_buffer_type_t buft = backend_buft[i]; + size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend); LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__, - ggml_backend_buffer_name(buf), - ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0); + ggml_backend_buft_name(buft), + size / 1024.0 / 1024.0); } // note: the number of splits during measure is higher than during inference due to the kv shift diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index 6ae75bc318adf..7a23ab162eb52 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -2c7cf49810d523b9632da393a9e8270b60bf3b24 +5070f078a67c18c11736e78316ab715ca9afde16 From 4a46d2b7923be83d6019251671ee63aa1fa0d6bc Mon Sep 17 00:00:00 2001 From: Daniel Bevenius Date: Mon, 12 Feb 2024 09:38:44 +0100 Subject: [PATCH 2/6] llava : remove prog parameter from ArgumentParser (#5457) * llava: remove prog parameter from ArgumentParser This commit removes the `prog` parameter from `ArgumentParser` so that it uses the default value which is the name of the script. The motivation for this change is that currently the usage output looks like this: ```console $ python examples/llava/convert-image-encoder-to-gguf.py --help usage: convert_hf_to_gguf.py [-h] ... ``` And with this change it will look like this: ```console $ python examples/llava/convert-image-encoder-to-gguf.py --help usage: convert-image-encoder-to-gguf.py [-h] ... ``` Signed-off-by: Daniel Bevenius * ci: add W503 to flake8 ignore list This commit adds W503 to the ignore list for flake8. This is done to avoid the following error: W503 line break before binary operator Signed-off-by: Daniel Bevenius --------- Signed-off-by: Daniel Bevenius --- .github/workflows/python-lint.yml | 2 +- examples/llava/convert-image-encoder-to-gguf.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/python-lint.yml b/.github/workflows/python-lint.yml index 56d17b66cecf1..ea0a05ea1a014 100644 --- a/.github/workflows/python-lint.yml +++ b/.github/workflows/python-lint.yml @@ -16,5 +16,5 @@ jobs: - name: flake8 Lint uses: py-actions/flake8@v2 with: - ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704" + ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503" exclude: "examples/*,examples/*/**,*/**/__init__.py" diff --git a/examples/llava/convert-image-encoder-to-gguf.py b/examples/llava/convert-image-encoder-to-gguf.py index f5a3c9b46f9e3..e204b56be90be 100644 --- a/examples/llava/convert-image-encoder-to-gguf.py +++ b/examples/llava/convert-image-encoder-to-gguf.py @@ -71,7 +71,7 @@ def bytes_to_unicode(): return dict(zip(bs, cs)) -ap = argparse.ArgumentParser(prog="convert_hf_to_gguf.py") +ap = argparse.ArgumentParser() ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True) ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16") ap.add_argument("--text-only", action="store_true", required=False, From 43fe07c1a4f3a58612e1d9543f7c6b556710f5d0 Mon Sep 17 00:00:00 2001 From: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com> Date: Mon, 12 Feb 2024 20:22:05 +0530 Subject: [PATCH 3/6] ggml-sycl: Replace 3d ops with macro (#5458) * use macro * use macro * fix format --- ggml-sycl.cpp | 75 ++++++++++----------------------------------------- 1 file changed, 14 insertions(+), 61 deletions(-) diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index dd562a89828eb..cd4b3a1e169c9 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -11578,11 +11578,8 @@ static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst, } char * dst_ptr = (char *) dst; - const int64_t ne0 = src->ne[0]; - const int64_t nb0 = src->nb[0]; - const int64_t nb1 = src->nb[1]; - const int64_t nb2 = src->nb[2]; - const int64_t nb3 = src->nb[3]; + GGML_TENSOR_LOCALS_1(int64_t, ne, src, ne); + GGML_TENSOR_LOCALS(int64_t, nb, src, nb); const enum ggml_type type = src->type; const int64_t ts = ggml_type_size(type); const int64_t bs = ggml_blck_size(type); @@ -12426,9 +12423,7 @@ inline void ggml_sycl_op_alibi(const ggml_tensor *src0, const ggml_tensor *src1, GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; + GGML_TENSOR_LOCALS_3(int64_t, ne0, src0, ne); const int64_t nrows = ggml_nrows(src0); //const int n_past = ((int32_t *) dst->op_params)[0]; @@ -12758,15 +12753,9 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0, ggml_sycl_op_mul_mat_t op, const bool convert_src1_to_q8_1) try { - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); const int64_t nrows1 = ggml_nrows(src1); GGML_ASSERT(ne03 == ne13); @@ -13337,23 +13326,13 @@ static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0, GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); - const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00); - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); - const int64_t nb01 = src0->nb[1]; - const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02); - const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03); + GGML_TENSOR_LOCALS(int64_t, nb0, src0, nb); - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); - const int64_t nb11 = src1->nb[1]; - const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12); - const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13); + GGML_TENSOR_LOCALS(int64_t, nb1, src1, nb); const int64_t ne1 = ggml_nelements(src1); const int64_t ne = ggml_nelements(dst); @@ -13655,23 +13634,15 @@ static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) { GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT); GGML_ASSERT(src1->type == GGML_TYPE_F32); - const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00); - const int64_t ne01 = src00->ne[1]; - const int64_t ne02 = src00->ne[2]; - const int64_t ne03 = src00->ne[3]; + GGML_TENSOR_LOCALS(int64_t, ne0, src00, ne); //const int64_t nb01 = src00->nb[1]; - const int64_t nb02 = src00->nb[2]; GGML_UNUSED(nb02); - const int64_t nb03 = src00->nb[3]; GGML_UNUSED(nb03); + GGML_TENSOR_LOCALS(int64_t, nb0, src00, nb); - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); + GGML_TENSOR_LOCALS(int64_t, nb1, src1, nb); //const int64_t nb11 = src1->nb[1]; - const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12); - const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13); const int64_t ne1 = ggml_nelements(src1); const int64_t ne = ggml_nelements(dst); @@ -13940,25 +13911,7 @@ static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1, GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX); GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - - - const int64_t nb00 = src0->nb[0]; - const int64_t nb01 = src0->nb[1]; - const int64_t nb02 = src0->nb[2]; - const int64_t nb03 = src0->nb[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - - - const int64_t nb10 = src1->nb[0]; - const int64_t nb11 = src1->nb[1]; - const int64_t nb12 = src1->nb[2]; - const int64_t nb13 = src1->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; SYCL_CHECK(ggml_sycl_set_device(g_main_device)); dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0]; From dbd8828eb03b9aa8d0af7e4c533d3c2f5b38aba6 Mon Sep 17 00:00:00 2001 From: Lee <44310445+lx200916@users.noreply.github.com> Date: Tue, 13 Feb 2024 01:29:57 +0800 Subject: [PATCH 4/6] py : fix persimmon `n_rot` conversion (#5460) * convert : fix persimmon offical weight conversion to write correct n_rot. * Update convert-persimmon-to-gguf.py --------- Co-authored-by: Georgi Gerganov --- convert-persimmon-to-gguf.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/convert-persimmon-to-gguf.py b/convert-persimmon-to-gguf.py index d2be805d12ed0..def210531e27b 100755 --- a/convert-persimmon-to-gguf.py +++ b/convert-persimmon-to-gguf.py @@ -88,7 +88,8 @@ def main(): gguf_writer.add_embedding_length(hidden_size) gguf_writer.add_block_count(block_count) gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size) - gguf_writer.add_rope_dimension_count(hidden_size // head_count) + # ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443 + gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2) gguf_writer.add_head_count(head_count) gguf_writer.add_head_count_kv(head_count_kv) gguf_writer.add_rope_freq_base(hparams.rotary_emb_base) From df334a11251b81fd0b6a0e51e7146e0ba9e973f2 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 12 Feb 2024 19:54:29 +0200 Subject: [PATCH 5/6] swift : package no longer use ggml dependency (#5465) * Revert "swift : update Package.swift to use ggml as dependency (#4691)" This reverts commit ece9a45e8ffb73ad461c792720c2fec28b0137bc. * spm : add ggml headers --- Package.swift | 24 +++++++++++++++++++----- spm-headers/ggml-alloc.h | 1 + spm-headers/ggml-backend.h | 1 + spm-headers/ggml.h | 1 + 4 files changed, 22 insertions(+), 5 deletions(-) create mode 120000 spm-headers/ggml-alloc.h create mode 120000 spm-headers/ggml-backend.h create mode 120000 spm-headers/ggml.h diff --git a/Package.swift b/Package.swift index 37524edee8cd4..b24c9204a7d83 100644 --- a/Package.swift +++ b/Package.swift @@ -13,17 +13,31 @@ let package = Package( products: [ .library(name: "llama", targets: ["llama"]), ], - dependencies: [ - .package(url: "https://github.com/ggerganov/ggml.git", .branch("release")) - ], targets: [ .target( name: "llama", - dependencies: ["ggml"], path: ".", - exclude: ["ggml-metal.metal"], + exclude: [ + "cmake", + "examples", + "scripts", + "models", + "tests", + "CMakeLists.txt", + "ggml-cuda.cu", + "ggml-cuda.h", + "Makefile" + ], sources: [ + "ggml.c", "llama.cpp", + "ggml-alloc.c", + "ggml-backend.c", + "ggml-quants.c", + "ggml-metal.m", + ], + resources: [ + .process("ggml-metal.metal") ], publicHeadersPath: "spm-headers", cSettings: [ diff --git a/spm-headers/ggml-alloc.h b/spm-headers/ggml-alloc.h new file mode 120000 index 0000000000000..a49d385a1b864 --- /dev/null +++ b/spm-headers/ggml-alloc.h @@ -0,0 +1 @@ +../ggml-alloc.h \ No newline at end of file diff --git a/spm-headers/ggml-backend.h b/spm-headers/ggml-backend.h new file mode 120000 index 0000000000000..17c2cf14fe02b --- /dev/null +++ b/spm-headers/ggml-backend.h @@ -0,0 +1 @@ +../ggml-backend.h \ No newline at end of file diff --git a/spm-headers/ggml.h b/spm-headers/ggml.h new file mode 120000 index 0000000000000..39215298f981b --- /dev/null +++ b/spm-headers/ggml.h @@ -0,0 +1 @@ +../ggml.h \ No newline at end of file From 099afc6274c859ca67146e725839f2d97a5ef313 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 12 Feb 2024 20:14:39 +0200 Subject: [PATCH 6/6] llama : fix quantization when tensors are missing (#5423) --- llama.cpp | 32 ++++++++++++++++++++++++-------- 1 file changed, 24 insertions(+), 8 deletions(-) diff --git a/llama.cpp b/llama.cpp index a5b873a7bf144..d316d067b9d58 100644 --- a/llama.cpp +++ b/llama.cpp @@ -772,22 +772,37 @@ struct LLM_TN { llm_arch arch; std::string operator()(llm_tensor tensor) const { + if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) { + return "__missing__"; + } return LLM_TENSOR_NAMES[arch].at(tensor); } std::string operator()(llm_tensor tensor, const std::string & suffix) const { + if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) { + return "__missing__"; + } return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix; } std::string operator()(llm_tensor tensor, int bid) const { + if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) { + return "__missing__"; + } return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid); } std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const { + if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) { + return "__missing__"; + } return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix; } std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const { + if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) { + return "__missing__"; + } return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid, xid) + "." + suffix; } }; @@ -10227,6 +10242,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty } ++qs.i_ffn_up; } + // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; //} // IK: let's remove this, else Q2_K is almost the same as Q3_K_S @@ -10286,19 +10302,19 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K_S: - case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break; + case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break; case LLAMA_FTYPE_MOSTLY_Q3_K_XS: case LLAMA_FTYPE_MOSTLY_Q3_K_S: case LLAMA_FTYPE_MOSTLY_Q3_K_M: - case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break; + case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break; case LLAMA_FTYPE_MOSTLY_Q4_K_S: - case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break; + case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break; case LLAMA_FTYPE_MOSTLY_Q5_K_S: - case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break; - case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break; - case LLAMA_FTYPE_MOSTLY_IQ2_XXS:quantized_type = GGML_TYPE_IQ2_XXS; break; - case LLAMA_FTYPE_MOSTLY_IQ2_XS :quantized_type = GGML_TYPE_IQ2_XS; break; - case LLAMA_FTYPE_MOSTLY_IQ3_XXS:quantized_type = GGML_TYPE_IQ3_XXS; break; + case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break; + case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break; + case LLAMA_FTYPE_MOSTLY_IQ2_XXS: quantized_type = GGML_TYPE_IQ2_XXS; break; + case LLAMA_FTYPE_MOSTLY_IQ2_XS: quantized_type = GGML_TYPE_IQ2_XS; break; + case LLAMA_FTYPE_MOSTLY_IQ3_XXS: quantized_type = GGML_TYPE_IQ3_XXS; break; default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); }