diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index cf930be17a6e0..af82cd6cd05c9 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -373,6 +373,29 @@ def from_model_architecture(cls, arch: str) -> type[Model]: except KeyError: raise NotImplementedError(f'Architecture {arch!r} not supported!') from None + def does_token_look_special(self, token: str | bytes) -> bool: + if isinstance(token, (bytes, bytearray)): + token_text = token.decode(encoding="utf-8") + elif isinstance(token, memoryview): + token_text = token.tobytes().decode(encoding="utf-8") + else: + token_text = token + + # Some models mark some added tokens which ought to be control tokens as not special. + # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2}) + seems_special = token_text in ( + "", # deepseek-coder + "", "<2mass>", "[@BOS@]", # gemma{,-2} + ) + + seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) + seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder + + # TODO: should these be marked as UNUSED instead? (maybe not) + seems_special = seems_special or (token_text.startswith("")) # gemma{,-2} + + return seems_special + # used for GPT-2 BPE and WordPiece vocabs def get_vocab_base(self) -> tuple[list[str], list[int], str]: tokens: list[str] = [] @@ -391,16 +414,18 @@ def get_vocab_base(self) -> tuple[list[str], list[int], str]: for i in range(vocab_size): if i not in reverse_vocab: tokens.append(f"[PAD{i}]") - toktypes.append(gguf.TokenType.USER_DEFINED) - elif reverse_vocab[i] in added_vocab: - tokens.append(reverse_vocab[i]) - if tokenizer.added_tokens_decoder[i].special: - toktypes.append(gguf.TokenType.CONTROL) - else: - toktypes.append(gguf.TokenType.USER_DEFINED) + toktypes.append(gguf.TokenType.UNUSED) else: - tokens.append(reverse_vocab[i]) - toktypes.append(gguf.TokenType.NORMAL) + token: str = reverse_vocab[i] + if token in added_vocab: + if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token): + toktypes.append(gguf.TokenType.CONTROL) + else: + token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces + toktypes.append(gguf.TokenType.USER_DEFINED) + else: + toktypes.append(gguf.TokenType.NORMAL) + tokens.append(token) return tokens, toktypes, tokpre @@ -559,7 +584,7 @@ def _set_vocab_qwen(self): for i in range(vocab_size): if i not in reverse_vocab: tokens.append(f"[PAD{i}]") - toktypes.append(gguf.TokenType.USER_DEFINED) + toktypes.append(gguf.TokenType.UNUSED) elif reverse_vocab[i] in added_vocab: tokens.append(reverse_vocab[i]) toktypes.append(gguf.TokenType.CONTROL) @@ -609,7 +634,7 @@ def _create_vocab_sentencepiece(self): tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] scores: list[float] = [-10000.0] * vocab_size - toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size for token_id in range(tokenizer.vocab_size()): piece = tokenizer.IdToPiece(token_id) @@ -644,6 +669,25 @@ def _create_vocab_sentencepiece(self): scores[token_id] = -1000.0 toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + tokenizer_config_file = self.dir_model / 'tokenizer_config.json' + if tokenizer_config_file.is_file(): + with open(tokenizer_config_file, "r", encoding="utf-8") as f: + tokenizer_config_json = json.load(f) + added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {}) + for token_id, token_data in added_tokens_decoder.items(): + token_id = int(token_id) + token: str = token_data["content"] + if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: + assert tokens[token_id] == token.encode("utf-8") + if token_data.get("special") or self.does_token_look_special(token): + toktypes[token_id] = SentencePieceTokenTypes.CONTROL + else: + token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + + scores[token_id] = -1000.0 + tokens[token_id] = token.encode("utf-8") + if vocab_size > len(tokens): pad_count = vocab_size - len(tokens) logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") @@ -1266,7 +1310,7 @@ def set_vocab(self): if (self.dir_model / "tokenizer.json").is_file(): self._set_vocab_gpt2() else: - # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab + # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab self._set_vocab_qwen() def set_gguf_parameters(self): @@ -1578,7 +1622,6 @@ def set_gguf_parameters(self): self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"]) self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"]) - self.gguf_writer.add_file_type(self.ftype) self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"]) self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"]) @@ -1872,7 +1915,7 @@ def set_vocab(self): tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] scores: list[float] = [-10000.0] * vocab_size - toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size for token_id in range(tokenizer.vocab_size()): @@ -1917,7 +1960,7 @@ def set_vocab(self): for token_id, foken_data in added_tokens_decoder.items(): token_id = int(token_id) token = foken_data["content"].encode("utf-8") - if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: + if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: assert tokens[token_id] == token tokens[token_id] = token scores[token_id] = -1000.0 @@ -1933,7 +1976,7 @@ def set_vocab(self): for foken_data in added_tokens: token_id = int(foken_data["id"]) token = foken_data["content"].encode("utf-8") - if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: + if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: assert tokens[token_id] == token tokens[token_id] = token scores[token_id] = -1000.0 @@ -2145,7 +2188,7 @@ def set_vocab(self): toktype = SentencePieceTokenTypes.BYTE # take care of ununsed raw token if piece.startswith('[UNUSED'): - toktype = SentencePieceTokenTypes.UNKNOWN + toktype = SentencePieceTokenTypes.UNUSED tokens.append(text) scores.append(score) @@ -2175,7 +2218,7 @@ def set_vocab(self): if token == chat_eos_token: chat_eos_token_id = token_id token = token.encode("utf-8") - if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: + if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: assert(tokens[token_id] == token) tokens[token_id] = token scores[token_id] = -1000.0 @@ -2194,7 +2237,7 @@ def set_vocab(self): if token == chat_eos_token: chat_eos_token_id = token_id token = token.encode("utf-8") - if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: + if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: assert(tokens[token_id] == token) tokens[token_id] = token scores[token_id] = -1000.0 @@ -2434,19 +2477,7 @@ class Gemma2Model(Model): model_arch = gguf.MODEL_ARCH.GEMMA2 def set_vocab(self): - tokens, scores, toktypes = self._create_vocab_sentencepiece() - # hack: This is required so that we can properly use start/end-of-turn for chat template - for i in range(108): - # including , , - toktypes[i] = SentencePieceTokenTypes.CONTROL - self.gguf_writer.add_tokenizer_model("llama") - self.gguf_writer.add_tokenizer_pre("default") - self.gguf_writer.add_token_list(tokens) - self.gguf_writer.add_token_scores(scores) - self.gguf_writer.add_token_types(toktypes) - - special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) - special_vocab.add_to_gguf(self.gguf_writer) + self._set_vocab_sentencepiece() self.gguf_writer.add_add_space_prefix(False) @@ -2770,7 +2801,7 @@ def set_vocab(self): tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] scores: list[float] = [-10000.0] * vocab_size - toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size for token_id in range(tokenizer.vocab_size()): @@ -3025,7 +3056,7 @@ def set_vocab(self): tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] scores: list[float] = [-10000.0] * vocab_size - toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size for token_id in range(tokenizer.vocab_size()): piece = tokenizer.IdToPiece(token_id) @@ -3243,15 +3274,14 @@ def set_vocab_chatglm3(self): if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size(): score = tokenizer.tokenizer.sp_model.get_score(token_id) - if len(piece) == 0: - text = f"[PAD{token_id}]".encode("utf-8") - if token_id >= tokenizer.tokenizer.sp_model.vocab_size(): if piece in special_tokens: - # show special tokens in prompt - toktype = SentencePieceTokenTypes.USER_DEFINED + toktype = SentencePieceTokenTypes.CONTROL + elif len(piece) == 0: + text = f"[PAD{token_id}]".encode("utf-8") + toktype = SentencePieceTokenTypes.UNUSED else: - toktype = SentencePieceTokenTypes.UNKNOWN + toktype = SentencePieceTokenTypes.USER_DEFINED tokens.append(text) scores.append(score) toktypes.append(toktype) @@ -3340,7 +3370,7 @@ def set_vocab(self): for i in range(vocab_size): if i not in reverse_vocab: tokens.append(f"[PAD{i}]") - toktypes.append(gguf.TokenType.USER_DEFINED) + toktypes.append(gguf.TokenType.UNUSED) elif reverse_vocab[i] in added_vocab: tokens.append(reverse_vocab[i]) if tokenizer.added_tokens_decoder[i].special: diff --git a/src/llama.cpp b/src/llama.cpp index 59b76a6d80cdf..77d34dca280fc 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -5419,6 +5419,7 @@ static void llm_load_vocab( } else if ( tokenizer_pre == "command-r") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R; + vocab.tokenizer_clean_spaces = false; } else if ( tokenizer_pre == "qwen2") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2; @@ -5652,7 +5653,7 @@ static void llm_load_vocab( // build special tokens cache { for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) { - if (!(vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL)) { + if (vocab.id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) { vocab.cache_special_tokens.push_back(id); } } @@ -15411,17 +15412,6 @@ struct llm_tokenizer_bpe { "[0-9][0-9][0-9]", }; break; - case LLAMA_VOCAB_PRE_TYPE_MPT: - // TODO: MPT pre-tokenization regexes are unknown - // the following are close, but not exact. run the following: - // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf - GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed"); - regex_exprs = { - "\\s?\\p{L}+", - "\\s?\\p{P}+", - "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", - }; - break; case LLAMA_VOCAB_PRE_TYPE_STARCODER: case LLAMA_VOCAB_PRE_TYPE_REFACT: case LLAMA_VOCAB_PRE_TYPE_COMMAND_R: @@ -15431,6 +15421,7 @@ struct llm_tokenizer_bpe { }; break; case LLAMA_VOCAB_PRE_TYPE_GPT2: + case LLAMA_VOCAB_PRE_TYPE_MPT: case LLAMA_VOCAB_PRE_TYPE_OLMO: case LLAMA_VOCAB_PRE_TYPE_JAIS: regex_exprs = { @@ -15457,8 +15448,8 @@ struct llm_tokenizer_bpe { break; case LLAMA_VOCAB_PRE_TYPE_VIKING: regex_exprs = { - "\\p{N}", " ?[^(\\s|.,!?…。,、।۔،)]+", + "\\p{N}", }; break; default: @@ -16178,12 +16169,20 @@ struct fragment_buffer_variant { // #define PRETOKENIZERDEBUG -static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list & buffer) { +static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list & buffer, bool parse_special) { // for each special token for (const llama_vocab::id special_id : vocab.cache_special_tokens) { const auto & data = vocab.id_to_token[special_id]; const auto & special_token = data.text; + if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) { + // Ignore control and unknown tokens when parse_special == false + continue; + // User-defined tokens are still pre-tokenized before everything else + // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726 + // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.) + } + // for each text fragment std::forward_list::iterator it = buffer.begin(); while (it != buffer.end()) { @@ -16296,7 +16295,7 @@ static std::vector llama_tokenize_internal(const llama_vocab & if (!raw_text.empty()) { fragment_buffer.emplace_front(raw_text, 0, raw_text.length()); - if (parse_special) tokenizer_st_partition(vocab, fragment_buffer); + tokenizer_st_partition(vocab, fragment_buffer, parse_special); } switch (vocab.type) { diff --git a/tests/test-tokenizer-0.cpp b/tests/test-tokenizer-0.cpp index 1f04b6f34ad7e..d3d21331bfd3d 100644 --- a/tests/test-tokenizer-0.cpp +++ b/tests/test-tokenizer-0.cpp @@ -195,7 +195,7 @@ int main(int argc, char **argv) { const bool add_special = false; for (const auto & test_kv : k_tests) { - const std::vector res = llama_tokenize(ctx, test_kv.first, add_special, true); + const std::vector res = llama_tokenize(ctx, test_kv.first, add_special, false); printf("\n"); printf("src: '%s'\n", test_kv.first.c_str()); @@ -253,7 +253,7 @@ int main(int argc, char **argv) { { const auto t_start = ggml_time_us(); - res = llama_tokenize(ctx, text, add_special, true); + res = llama_tokenize(ctx, text, add_special, false); const auto t_end = ggml_time_us(); diff --git a/tests/test-tokenizer-random.py b/tests/test-tokenizer-random.py index c50a8ca32f657..9ebe6c89185a3 100644 --- a/tests/test-tokenizer-random.py +++ b/tests/test-tokenizer-random.py @@ -20,7 +20,7 @@ from typing_extensions import Buffer import cffi -from transformers import AutoTokenizer +from transformers import AutoTokenizer, PreTrainedTokenizer logger = logging.getLogger("test-tokenizer-random") @@ -129,7 +129,7 @@ def decode(self, ids: list[int]) -> str: class TokenizerGroundtruth (Tokenizer): def __init__(self, dir_tokenizer: str): - self.model = AutoTokenizer.from_pretrained(dir_tokenizer) + self.model: PreTrainedTokenizer = AutoTokenizer.from_pretrained(dir_tokenizer) # guess BOS and EOS ids = self.encode("a") assert 1 <= len(ids) <= 3 @@ -143,7 +143,7 @@ def __init__(self, dir_tokenizer: str): self.vocab = list(sorted(self.vocab)) # tokens and lists self.special_tokens = list(self.model.all_special_tokens) - self.added_tokens = list(self.model.added_tokens_encoder) + self.added_tokens = self.model.batch_decode(self.model.added_tokens_encoder.values(), skip_special_tokens=False) self.bos_token = self.model.bos_token self.eos_token = self.model.eos_token @@ -232,6 +232,7 @@ def generator_custom_text_edge_cases() -> Iterator[str]: 'a\na', # bert fail '"`', # falcon ' \u2e4e', # falcon + '\n\x0b ', # falcon 'a\xa0\xa0\x00b', # jina-v2-es 'one ', # jina-v2-es lstrip=true 'a b', # rstrip phi-3