diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 019648bddc4d9..0a63c1ecf3bfb 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -8898,6 +8898,12 @@ static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, gg (void) dst; } +static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]); +} + void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { const int64_t nrows = ggml_nrows(tensor); @@ -8947,8 +8953,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses if (ne0 % MATRIX_ROW_PADDING != 0) { - size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING) - * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type); + size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); } char * buf; @@ -9485,8 +9490,7 @@ static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_t if (ggml_is_quantized(tensor->type)) { if (ne0 % MATRIX_ROW_PADDING != 0) { - size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING) - * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type); + size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); } } diff --git a/ggml.c b/ggml.c index f6f8b82511a5a..1feb7ead33ef8 100644 --- a/ggml.c +++ b/ggml.c @@ -1997,12 +1997,6 @@ size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) { return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN); } -size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) { - static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); - - return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type); -} - int ggml_blck_size(enum ggml_type type) { return type_traits[type].blck_size; } @@ -2491,7 +2485,7 @@ static struct ggml_tensor * ggml_new_tensor_impl( view_src = view_src->view_src; } - size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type)); + size_t data_size = ggml_row_size(type, ne[0]); for (int i = 1; i < n_dims; i++) { data_size *= ne[i]; } @@ -9698,7 +9692,7 @@ static void ggml_compute_forward_mul_mat( if (params->type == GGML_TASK_INIT) { if (src1->type != vec_dot_type) { char * wdata = params->wdata; - const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type); + const size_t row_size = ggml_row_size(vec_dot_type, ne10); assert(params->wsize >= ne11*ne12*ne13*row_size); assert(src1->type == GGML_TYPE_F32); @@ -9721,7 +9715,7 @@ static void ggml_compute_forward_mul_mat( } const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; - const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type); + const size_t row_size = ggml_row_size(vec_dot_type, ne10); const int64_t nr0 = ne01; // src0 rows const int64_t nr1 = cne1*ne12*ne13; // src1 rows @@ -16326,7 +16320,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { } else #endif if (node->src[1]->type != vec_dot_type) { - cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type); + cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1])); } } break; case GGML_OP_MUL_MAT_ID: @@ -16343,7 +16337,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { } else #endif if (b->type != vec_dot_type) { - cur = ggml_type_size(vec_dot_type)*ggml_nelements(b)/ggml_blck_size(vec_dot_type); + cur = ggml_row_size(vec_dot_type, ggml_nelements(b)); } } break; case GGML_OP_OUT_PROD: @@ -18703,7 +18697,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p return NULL; } - const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type); + const size_t size_cur = ggml_row_size(info->type, ne); ctx->size += GGML_PAD(size_cur, ctx->alignment); } diff --git a/ggml.h b/ggml.h index 84d6ba8b1e75f..68f7833b62343 100644 --- a/ggml.h +++ b/ggml.h @@ -638,7 +638,6 @@ extern "C" { GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor); GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor); GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN - GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split); GGML_API int ggml_blck_size(enum ggml_type type); GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index afca85143fb30..df2c3fb6e031f 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -54,7 +54,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float)); } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) { GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0); - std::vector dataq(ggml_type_size(tensor->type)*size/ggml_blck_size(tensor->type)); + std::vector dataq(ggml_row_size(tensor->type, size)); int64_t hist[16]; ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size, hist); ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size()); @@ -72,6 +72,8 @@ static std::vector tensor_to_float(const ggml_tensor * t) { ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type); size_t bs = ggml_blck_size(t->type); + std::vector vq(ggml_blck_size(t->type)); + bool quantized = ggml_is_quantized(t->type); // access elements by index to avoid gaps in views for (int64_t i3 = 0; i3 < t->ne[3]; i3++) { @@ -85,9 +87,8 @@ static std::vector tensor_to_float(const ggml_tensor * t) { tv.push_back(*(float *) &buf[i]); } else if (t->type == GGML_TYPE_I32) { tv.push_back((float)*(int32_t *) &buf[i]); - } else if (ggml_is_quantized(t->type)) { - std::vector vq(ggml_blck_size(t->type)); - tt.to_float(&buf[i], vq.data(), ggml_blck_size(t->type)); + } else if (quantized) { + tt.to_float(&buf[i], vq.data(), bs); tv.insert(tv.end(), vq.begin(), vq.end()); } else { GGML_ASSERT(false); diff --git a/tests/test-quantize-perf.cpp b/tests/test-quantize-perf.cpp index 62d0190f9066c..09d410b7fbf63 100644 --- a/tests/test-quantize-perf.cpp +++ b/tests/test-quantize-perf.cpp @@ -286,7 +286,7 @@ int main(int argc, char * argv[]) { qfns.from_float_reference(test_data1, test_q1, size); return test_q1[0]; }; - size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); + size_t quantized_size = ggml_row_size(type, size); benchmark_function(size, quantized_size, iterations, quantize_fn); } printf("\n"); @@ -300,7 +300,7 @@ int main(int argc, char * argv[]) { qfns.from_float(test_data1, test_q1, size); return test_q1[0]; }; - size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); + size_t quantized_size = ggml_row_size(type, size); benchmark_function(size, quantized_size, iterations, quantize_fn); } printf("\n"); @@ -315,7 +315,7 @@ int main(int argc, char * argv[]) { qfns.to_float(test_q1, test_out, size); return test_out[0]; }; - size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); + size_t quantized_size = ggml_row_size(type, size); benchmark_function(size, quantized_size, iterations, quantize_fn); } printf("\n"); @@ -330,7 +330,7 @@ int main(int argc, char * argv[]) { vdot.from_float(test_data1, test_q1, size); return test_q1[0]; }; - size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); + size_t quantized_size = ggml_row_size(type, size); benchmark_function(size, quantized_size, iterations, quantize_fn); } printf("\n"); @@ -347,7 +347,7 @@ int main(int argc, char * argv[]) { qfns.vec_dot(size, &result, test_q1, test_q2); return result; }; - size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); + size_t quantized_size = ggml_row_size(type, size); benchmark_function(size, quantized_size, iterations, quantize_fn); } printf("\n");