diff --git a/README.md b/README.md index 67717c1e38b34..9396467537c16 100644 --- a/README.md +++ b/README.md @@ -786,7 +786,7 @@ And after 4.45 hours, you will have the final perplexity. ### Interactive mode If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter. -In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`. +In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMA emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`. Here is an example of a few-shot interaction, invoked with the command @@ -850,7 +850,7 @@ Sample run: ``` == Running in interactive mode. == - Press Ctrl+C to interject at any time. - - Press Return to return control to LLaMa. + - Press Return to return control to LLaMA. - If you want to submit another line, end your input in '\'. Below is an instruction that describes a task. Write a response that appropriately completes the request. diff --git a/convert-llama-ggml-to-gguf.py b/convert-llama-ggml-to-gguf.py index b331080629be0..cd9644fcb5213 100755 --- a/convert-llama-ggml-to-gguf.py +++ b/convert-llama-ggml-to-gguf.py @@ -373,7 +373,7 @@ def handle_metadata(cfg, hp): raise ValueError('Unable to load metadata') vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir) vocab_factory = convert.VocabFactory(vocab_path) - vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype, cfg.model_metadata_dir) + vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir) convert.check_vocab_size(params, vocab) return params, vocab, special_vocab @@ -398,8 +398,8 @@ def handle_args(): help ='Load HuggingFace/.pth vocab and metadata from the specified directory') parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir") - parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm", - help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)") + parser.add_argument("--vocabtype", default="spm,hfft", + help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)") return parser.parse_args() diff --git a/convert.py b/convert.py index 63a0a5d78075b..6e3a0319b1e46 100755 --- a/convert.py +++ b/convert.py @@ -1282,35 +1282,32 @@ def load_some_model(path: Path) -> ModelPlus: class VocabFactory: + _FILES = {"spm": "tokenizer.model", "bpe": "vocab.json", "hfft": "tokenizer.json"} + def __init__(self, path: Path): self.path = path - self.files: dict[str, Path | None] = { - "tokenizer.model": None, - "vocab.json": None, - "tokenizer.json": None, - } - self._detect_files() - - def _detect_files(self): - for file in self.files.keys(): - file_path = self.path / file - parent_file_path = self.path.parent / file - if file_path.exists(): - self.files[file] = file_path - elif parent_file_path.exists(): - self.files[file] = parent_file_path - print(f"Found vocab files: {self.files}") - - def _select_file(self, vocabtype: str | None) -> Path: - if vocabtype in ["spm", "bpe"]: - for file_key in self.files.keys(): - if (file := self.files[file_key]) is not None: - return file - raise FileNotFoundError(f"{vocabtype} vocab not found.") - if vocabtype == "hfft": - # For Hugging Face Fast Tokenizer, return the directory path instead of a specific file - return self.path - raise ValueError(f"Unsupported vocabulary type {vocabtype}") + self.file_paths = self._detect_files() + print(f"Found vocab files: {self.file_paths}") + + def _detect_files(self) -> dict[str, Path | None]: + def locate(file: str) -> Path | None: + if (path := self.path / file).exists(): + return path + if (path := self.path.parent / file).exists(): + return path + return None + + return {vt: locate(f) for vt, f in self._FILES.items()} + + def _select_file(self, vocab_types: list[str]) -> tuple[str, Path]: + for vtype in vocab_types: + try: + path = self.file_paths[vtype] + except KeyError: + raise ValueError(f"Unsupported vocabulary type {vtype}") from None + if path is not None: + return vtype, path + raise FileNotFoundError(f"Could not find any of {[self._FILES[vt] for vt in vocab_types]}") def _create_special_vocab(self, vocab: Vocab, vocabtype: str, model_parent_path: Path) -> gguf.SpecialVocab: load_merges = vocabtype == "bpe" @@ -1322,30 +1319,30 @@ def _create_special_vocab(self, vocab: Vocab, vocabtype: str, model_parent_path: n_vocab=n_vocab, ) - def load_vocab(self, vocabtype: str, model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]: - path = self._select_file(vocabtype) - print(f"Loading vocab file '{path}', type '{vocabtype}'") + def load_vocab(self, vocab_types: list[str], model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]: + vocab_type, path = self._select_file(vocab_types) + print(f"Loading vocab file {path!r}, type {vocab_type!r}") added_tokens_path = path.parent / "added_tokens.json" vocab: Vocab - if vocabtype == "bpe": + if vocab_type == "bpe": vocab = BpeVocab( path, added_tokens_path if added_tokens_path.exists() else None ) - elif vocabtype == "spm": + elif vocab_type == "spm": vocab = SentencePieceVocab( path, added_tokens_path if added_tokens_path.exists() else None ) - elif vocabtype == "hfft": + elif vocab_type == "hfft": vocab = HfVocab( - path, added_tokens_path if added_tokens_path.exists() else None + path.parent, added_tokens_path if added_tokens_path.exists() else None ) else: - raise ValueError(f"Unsupported vocabulary type {vocabtype}") + raise ValueError(vocab_type) # FIXME: Respect --vocab-dir? special_vocab = self._create_special_vocab( vocab, - vocabtype, + vocab_type, model_parent_path, ) return vocab, special_vocab @@ -1379,15 +1376,14 @@ def main(args_in: list[str] | None = None) -> None: if np.uint32(1) == np.uint32(1).newbyteorder("<"): # We currently only support Q8_0 output on little endian systems. output_choices.append("q8_0") - vocab_types = ["spm", "bpe", "hfft"] - parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file") + parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file") parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None) parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)") parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") - parser.add_argument("--vocab-type", choices=vocab_types, help="The vocabulary format used to define the tokenizer model (default: spm)", default="spm") + parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft") parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") parser.add_argument("--ctx", type=int, help="model training context (default: based on input)") @@ -1448,7 +1444,7 @@ def main(args_in: list[str] | None = None) -> None: model_parent_path = model_plus.paths[0].parent vocab_path = Path(args.vocab_dir or args.model or model_parent_path) vocab_factory = VocabFactory(vocab_path) - vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type, model_parent_path) + vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type.split(","), model_parent_path) if args.vocab_only: if not args.outfile: diff --git a/examples/infill/infill.cpp b/examples/infill/infill.cpp index d4b8729dd0283..91c39c5ae42e3 100644 --- a/examples/infill/infill.cpp +++ b/examples/infill/infill.cpp @@ -378,10 +378,10 @@ int main(int argc, char ** argv) { if (params.interactive) { const char *control_message; if (params.multiline_input) { - control_message = " - To return control to LLaMa, end your input with '\\'.\n" + control_message = " - To return control to LLaMA, end your input with '\\'.\n" " - To return control without starting a new line, end your input with '/'.\n"; } else { - control_message = " - Press Return to return control to LLaMa.\n" + control_message = " - Press Return to return control to LLaMA.\n" " - To return control without starting a new line, end your input with '/'.\n" " - If you want to submit another line, end your input with '\\'.\n"; }