forked from stepchowfun/theorem-prover
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TheoremProver.py
586 lines (552 loc) · 18 KB
/
TheoremProver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
#!/usr/bin/python -O
# -*- coding: utf-8 -*-
# 2014 Stephan Boyer
# 2017, 2021 Kardi Teknomo
from prover import *
##############################################################################
# Command-line interface
##############################################################################
class InvalidInputError(Exception):
def __init__(self, message):
self.message = message
def lex(inp):
# perform a lexical analysis
tokens = []
pos = 0
while pos < len(inp):
# skip whitespace
if inp[pos] == ' ':
pos += 1
continue
# identifiers
identifier = ''
while pos < len(inp) and inp[pos].isalnum():
identifier += inp[pos]
pos += 1
if len(identifier) > 0:
tokens.append(identifier)
continue
# symbols
tokens.append(inp[pos])
pos += 1
# return the tokens
return tokens
def parse(tokens):
# keywords
keywords = ['not', 'implies', 'and', 'or', 'forall', 'exists']
tokens = [(token.lower() if token in keywords else token)
for token in tokens]
# empty formula
if len(tokens) == 0:
raise InvalidInputError('Empty formula.')
# ForAll
if tokens[0] == 'forall':
dot_pos = None
for i in range(1, len(tokens)):
if tokens[i] == '.':
dot_pos = i
break
if dot_pos is None:
raise InvalidInputError('Missing \'.\' in FORALL quantifier.')
args = []
i = 1
while i <= dot_pos:
end = dot_pos
depth = 0
for j in range(i, dot_pos):
if tokens[j] == '(':
depth += 1
continue
if tokens[j] == ')':
depth -= 1
continue
if depth == 0 and tokens[j] == ',':
end = j
break
if i == end:
raise InvalidInputError('Missing variable in FORALL quantifier.')
args.append(parse(tokens[i:end]))
i = end + 1
if len(tokens) == dot_pos + 1:
raise InvalidInputError('Missing formula in FORALL quantifier.')
formula = parse(tokens[dot_pos + 1:])
for variable in reversed(args):
formula = ForAll(variable, formula)
return formula
# ThereExists
if tokens[0] == 'exists':
dot_pos = None
for i in range(1, len(tokens)):
if tokens[i] == '.':
dot_pos = i
break
if dot_pos is None:
raise InvalidInputError('Missing \'.\' in exists quantifier.')
if dot_pos == 1:
raise InvalidInputError('Missing variable in exists quantifier.')
args = []
i = 1
while i <= dot_pos:
end = dot_pos
depth = 0
for j in range(i, dot_pos):
if tokens[j] == '(':
depth += 1
continue
if tokens[j] == ')':
depth -= 1
continue
if depth == 0 and tokens[j] == ',':
end = j
break
if i == end:
raise InvalidInputError('Missing variable in exists quantifier.')
args.append(parse(tokens[i:end]))
i = end + 1
if len(tokens) == dot_pos + 1:
raise InvalidInputError('Missing formula in exists quantifier.')
formula = parse(tokens[dot_pos + 1:])
for variable in reversed(args):
formula = ThereExists(variable, formula)
return formula
# Implies
implies_pos = None
depth = 0
for i in range(len(tokens)):
if tokens[i] == '(':
depth += 1
continue
if tokens[i] == ')':
depth -= 1
continue
if depth == 0 and tokens[i] == 'implies':
implies_pos = i
break
if implies_pos is not None:
quantifier_in_left = False
depth = 0
for i in range(implies_pos):
if tokens[i] == '(':
depth += 1
continue
if tokens[i] == ')':
depth -= 1
continue
if depth == 0 and (tokens[i] == 'forall' or tokens[i] == 'exists'):
quantifier_in_left = True
break
if not quantifier_in_left:
if implies_pos == 0 or implies_pos == len(tokens) - 1:
raise InvalidInputError('Missing formula in IMPLIES connective.')
return Implies(parse(tokens[0:implies_pos]),
parse(tokens[implies_pos+1:]))
# Or
or_pos = None
depth = 0
for i in range(len(tokens)):
if tokens[i] == '(':
depth += 1
continue
if tokens[i] == ')':
depth -= 1
continue
if depth == 0 and tokens[i] == 'or':
or_pos = i
break
if or_pos is not None:
quantifier_in_left = False
depth = 0
for i in range(or_pos):
if tokens[i] == '(':
depth += 1
continue
if tokens[i] == ')':
depth -= 1
continue
if depth == 0 and (tokens[i] == 'forall' or tokens[i] == 'exists'):
quantifier_in_left = True
break
if not quantifier_in_left:
if or_pos == 0 or or_pos == len(tokens) - 1:
raise InvalidInputError('Missing formula in OR connective.')
return Or(parse(tokens[0:or_pos]), parse(tokens[or_pos+1:]))
# And
and_pos = None
depth = 0
for i in range(len(tokens)):
if tokens[i] == '(':
depth += 1
continue
if tokens[i] == ')':
depth -= 1
continue
if depth == 0 and tokens[i] == 'and':
and_pos = i
break
if and_pos is not None:
quantifier_in_left = False
depth = 0
for i in range(and_pos):
if tokens[i] == '(':
depth += 1
continue
if tokens[i] == ')':
depth -= 1
continue
if depth == 0 and (tokens[i] == 'forall' or tokens[i] == 'exists'):
quantifier_in_left = True
break
if not quantifier_in_left:
if and_pos == 0 or and_pos == len(tokens) - 1:
raise InvalidInputError('Missing formula in AND connective.')
return And(parse(tokens[0:and_pos]), parse(tokens[and_pos+1:]))
# Not
if tokens[0] == 'not':
if len(tokens) < 2:
raise InvalidInputError('Missing formula in NOT connective.')
return Not(parse(tokens[1:]))
# Function
if tokens[0].isalnum() and tokens[0].lower() not in keywords and \
len(tokens) > 1 and not any([c.isupper() for c in tokens[0]]) and \
tokens[1] == '(':
if tokens[-1] != ')':
raise InvalidInputError('Missing \')\' after function argument list.')
name = tokens[0]
args = []
i = 2
if i < len(tokens) - 1:
while i <= len(tokens) - 1:
end = len(tokens) - 1
depth = 0
for j in range(i, len(tokens) - 1):
if tokens[j] == '(':
depth += 1
continue
if tokens[j] == ')':
depth -= 1
continue
if depth == 0 and tokens[j] == ',':
end = j
break
if i == end:
raise InvalidInputError('Missing function argument.')
args.append(parse(tokens[i:end]))
i = end + 1
return Function(name, args)
# Predicate
if tokens[0].isalnum() and tokens[0].lower() not in keywords and \
len(tokens) == 1 and any([c.isupper() for c in tokens[0]]):
return Predicate(tokens[0], [])
if tokens[0].isalnum() and tokens[0].lower() not in keywords and \
len(tokens) > 1 and any([c.isupper() for c in tokens[0]]) and \
tokens[1] == '(':
if tokens[-1] != ')':
raise InvalidInputError('Missing \')\' after predicate argument list.')
name = tokens[0]
args = []
i = 2
if i < len(tokens) - 1:
while i <= len(tokens) - 1:
end = len(tokens) - 1
depth = 0
for j in range(i, len(tokens) - 1):
if tokens[j] == '(':
depth += 1
continue
if tokens[j] == ')':
depth -= 1
continue
if depth == 0 and tokens[j] == ',':
end = j
break
if i == end:
raise InvalidInputError('Missing predicate argument.')
args.append(parse(tokens[i:end]))
i = end + 1
return Predicate(name, args)
# Variable
if tokens[0].isalnum() and tokens[0].lower() not in keywords and \
len(tokens) == 1 and not any([c.isupper() for c in tokens[0]]):
return Variable(tokens[0])
# Group
if tokens[0] == '(':
if tokens[-1] != ')':
raise InvalidInputError('Missing \')\'.')
if len(tokens) == 2:
raise InvalidInputError('Missing formula in parenthetical group.')
return parse(tokens[1:-1])
raise InvalidInputError('Unable to parse: %s...' % tokens[0])
def typecheck_term(term):
if isinstance(term, Variable):
return
if isinstance(term, Function):
for subterm in term.terms:
typecheck_term(subterm)
return
raise InvalidInputError('Invalid term: %s.' % term)
def typecheck_formula(formula):
if isinstance(formula, Predicate):
for term in formula.terms:
typecheck_term(term)
return
if isinstance(formula, Not):
typecheck_formula(formula.formula)
return
if isinstance(formula, And):
typecheck_formula(formula.formula_a)
typecheck_formula(formula.formula_b)
return
if isinstance(formula, Or):
typecheck_formula(formula.formula_a)
typecheck_formula(formula.formula_b)
return
if isinstance(formula, Implies):
typecheck_formula(formula.formula_a)
typecheck_formula(formula.formula_b)
return
if isinstance(formula, ForAll):
if not isinstance(formula.variable, Variable):
raise InvalidInputError('Invalid bound variable in ' \
'FORALL quantifier: %s.' % formula.variable)
typecheck_formula(formula.formula)
return
if isinstance(formula, ThereExists):
if not isinstance(formula.variable, Variable):
raise InvalidInputError('Invalid bound variable in ' \
'exists quantifier: %s.' % formula.variable)
typecheck_formula(formula.formula)
return
raise InvalidInputError('Invalid formula: %s.' % formula)
def check_formula(formula):
try:
typecheck_formula(formula)
except InvalidInputError as formula_error:
try:
typecheck_term(formula)
except InvalidInputError as term_error:
raise formula_error
else:
raise InvalidInputError('Enter a formula, not a term.')
def help():
s=""
s=s+'First-Order Logic Theorem Prover'+'\n'
s=s+'2014 Stephan Boyer'+'\n'
s=s+'2017,2021 Kardi Teknomo'+'\n'
s=s+''+'\n'
s=s+'Terms:'+'\n'
s=s+''+'\n'
s=s+' x (variable)'+'\n'
s=s+' f(term, ...) (function)'+'\n'
s=s+''+'\n'
s=s+'Formulae:'+'\n'
s=s+''+'\n'
s=s+' P(term) (predicate)'+'\n'
s=s+' not P (complement)'+'\n'
s=s+' P or Q (disjunction)'+'\n'
s=s+' P and Q (conjunction)'+'\n'
s=s+' P implies Q (implication)'+'\n'
s=s+' forall x. P(x) (universal quantification)'+'\n'
s=s+' exists x. P(x) (existential quantification)'+'\n'
s=s+''+'\n'
s=s+'Enter formulae at the prompt. The following commands ' \
'are also available for manipulating axioms:'+'\n'
s=s+''+'\n'
s=s+' axioms (list axioms)'+'\n'
s=s+' lemmas (list lemmas)'+'\n'
s=s+' axiom <formula> (add an axiom)'+'\n'
s=s+' lemma <formula> (prove and add a lemma)'+'\n'
s=s+' remove <formula> (remove an axiom or lemma)'+'\n'
s=s+' reset (remove all axioms and lemmas)'+'\n'
s=s+' quit (quit the program)'+'\n'
print(s)
return s
def interactive():
axioms = set()
lemmas = {}
while True:
try:
inp = input('\n> ')
commands = ['axiom', 'lemma', 'axioms', 'lemmas', 'remove', 'reset']
tokens = [(token.lower() if token in commands else token)
for token in lex(inp)]
for token in tokens[1:]:
if token in commands:
raise InvalidInputError('Unexpected keyword: %s.' % token)
if len(tokens) > 0 and tokens[0] == 'axioms':
if len(tokens) > 1:
raise InvalidInputError('Unexpected: %s.' % tokens[1])
for axiom in axioms:
print(axiom)
elif len(tokens) > 0 and tokens[0] == 'lemmas':
if len(tokens) > 1:
raise InvalidInputError('Unexpected: %s.' % tokens[1])
for lemma in lemmas:
print(lemma)
elif len(tokens) > 0 and tokens[0] == 'axiom':
formula = parse(tokens[1:])
check_formula(formula)
axioms.add(formula)
print('Axiom added: %s.' % formula)
elif len(tokens) > 0 and tokens[0] == 'lemma':
formula = parse(tokens[1:])
check_formula(formula)
result = proveFormula(axioms | set(lemmas.keys()), formula)
if result:
lemmas[formula] = axioms.copy()
print('Lemma proven: %s.' % formula)
else:
print('Lemma unprovable: %s.' % formula)
elif len(tokens) > 0 and tokens[0] == 'remove':
formula = parse(tokens[1:])
check_formula(formula)
if formula in axioms:
axioms.remove(formula)
bad_lemmas = []
for lemma, dependent_axioms in lemmas.items():
if formula in dependent_axioms:
bad_lemmas.append(lemma)
for lemma in bad_lemmas:
del lemmas[lemma]
print('Axiom removed: %s.' % formula)
if len(bad_lemmas) == 1:
print('This lemma was proven using that ' \
'axiom and was also removed:')
for lemma in bad_lemmas:
print(' %s' % lemma)
if len(bad_lemmas) > 1:
print('These lemmas were proven using that ' \
'axiom and were also removed:')
for lemma in bad_lemmas:
print(' %s' % lemma)
elif formula in lemmas:
del lemmas[formula]
print('Lemma removed: %s.' % formula)
else:
print('Not an axiom: %s.' % formula)
elif len(tokens) > 0 and tokens[0] == 'reset':
if len(tokens) > 1:
raise InvalidInputError('Unexpected: %s.' % tokens[1])
axioms = set()
lemmas = {}
elif len(tokens) > 0 and (tokens[0] == 'quit' or tokens[0] == 'exit') :
print('now I exit interactive mode')
break
else:
formula = parse(tokens)
check_formula(formula)
result = proveFormula(axioms | set(lemmas.keys()), formula)
if result:
print('Formula proven: %s.' % formula)
else:
print('Formula unprovable: %s.' % formula)
except InvalidInputError as e:
print(e.message)
except KeyboardInterrupt:
pass
except EOFError:
print('')
break
# wrapper to receive a list of axioms and lemmas in a statement
def prove(statement):
axioms = set()
lemmas = {}
output=""
for inp in statement:
try:
commands = ['axiom', 'lemma', 'axioms', 'lemmas', 'remove', 'reset']
tokens = [(token.lower() if token in commands else token)
for token in lex(inp)]
for token in tokens[1:]:
if token in commands:
raise InvalidInputError('Unexpected keyword: %s.' % token)
if len(tokens) > 0 and tokens[0] == 'axioms':
if len(tokens) > 1:
raise InvalidInputError('Unexpected: %s.' % tokens[1])
for axiom in axioms:
output=output+axiom+"\n"
print(axiom)
elif len(tokens) > 0 and tokens[0] == 'lemmas':
if len(tokens) > 1:
raise InvalidInputError('Unexpected: %s.' % tokens[1])
for lemma in lemmas:
output=output+lemma+'\n'
print(lemma)
elif len(tokens) > 0 and tokens[0] == 'axiom':
formula = parse(tokens[1:])
check_formula(formula)
axioms.add(formula)
output=output+ 'Axiom added: %s.' % formula+'\n'
print('Axiom added: %s.' % formula)
elif len(tokens) > 0 and tokens[0] == 'lemma':
formula = parse(tokens[1:])
check_formula(formula)
result,proof = proveFormula(axioms | set(lemmas.keys()), formula)
if result:
lemmas[formula] = axioms.copy()
output=output+'Lemma proven: %s.' % formula+'\n'
print('Lemma proven: %s.' % formula)
else:
output=output+'Lemma unprovable: %s.' % formula+'\n'
print('Lemma unprovable: %s.' % formula)
elif len(tokens) > 0 and tokens[0] == 'remove':
formula = parse(tokens[1:])
check_formula(formula)
if formula in axioms:
axioms.remove(formula)
bad_lemmas = []
for lemma, dependent_axioms in lemmas.items():
if formula in dependent_axioms:
bad_lemmas.append(lemma)
for lemma in bad_lemmas:
del lemmas[lemma]
output=output+'Axiom removed: %s.' % formula+'\n'
print('Axiom removed: %s.' % formula)
if len(bad_lemmas) == 1:
output=output+'This lemma was proven using that ' \
'axiom and was also removed:'+'\n'
print('This lemma was proven using that ' \
'axiom and was also removed:')
for lemma in bad_lemmas:
output=output+' %s' % lemma+'\n'
print(' %s' % lemma)
if len(bad_lemmas) > 1:
print('These lemmas were proven using that ' \
'axiom and were also removed:')
for lemma in bad_lemmas:
output=output+' %s' % lemma+'\n'
print(' %s' % lemma)
elif formula in lemmas:
del lemmas[formula]
output=output+'Lemma removed: %s.' % formula+'\n'
print('Lemma removed: %s.' % formula)
else:
output=output+'Not an axiom: %s.' % formula+'\n'
print('Not an axiom: %s.' % formula)
elif len(tokens) > 0 and tokens[0] == 'reset':
if len(tokens) > 1:
raise InvalidInputError('Unexpected: %s.' % tokens[1])
axioms = set()
lemmas = {}
else:
formula = parse(tokens)
check_formula(formula)
result,proof = proveFormula(axioms | set(lemmas.keys()), formula)
if result:
output=output+'Formula proven: %s.' % formula+'\n'
print('Formula proven: %s.' % formula)
else:
output=output+'Formula unprovable: %s.' % formula+'\n'
print('Formula unprovable: %s.' % formula)
except InvalidInputError as e:
output=e.message
print(e.message)
except KeyboardInterrupt:
pass
except EOFError:
output=""
print('')
break
return output,proof
if __name__ == '__main__':
help()
interactive()