diff --git a/docs/cpp_functions.rst b/docs/cpp_functions.rst index 4fe778c4..0a9a9655 100644 --- a/docs/cpp_functions.rst +++ b/docs/cpp_functions.rst @@ -115,7 +115,7 @@ The relative distance of each pixel of the ROI. * :download:`GooseEYE.hpp <../include/GooseEYE/GooseEYE.hpp>` * :ref:`Example `. -GooseEYE::Clusters +GooseEYE::clusters ------------------ Get clusters. diff --git a/docs/examples/W2.cpp b/docs/examples/W2.cpp index 4bd9f09a..ab0ccfcf 100644 --- a/docs/examples/W2.cpp +++ b/docs/examples/W2.cpp @@ -31,7 +31,7 @@ int main() prrng::pcg32 rng(0); rowmat += rng.normal({N * N}, 0.0, (double)(M) / (double)(N)); colmat += rng.normal({N * N}, 0.0, (double)(M) / (double)(N)); - auto dr = rng.random({N * N}) * 2.0 + 0.1; + auto dr = rng.normal({N * N}, 0.0, 2.0) + 0.1; r = r * dr; // generate image diff --git a/docs/examples/W2c.cpp b/docs/examples/W2c.cpp index d04349e4..f56edcc1 100644 --- a/docs/examples/W2c.cpp +++ b/docs/examples/W2c.cpp @@ -41,20 +41,30 @@ int main() W = xt::where(xt::equal(I, 1), 0, W); // compute individual damage clusters and their centers - GooseEYE::Clusters Clusters(W); - auto clusters = Clusters.labels(); - auto centers = Clusters.centers(); + auto labels = GooseEYE::clusters(W); + auto names = xt::unique(labels); + auto cpos = GooseEYE::labels_centers(labels, names); + auto centers = xt::zeros_like(labels); + int m = static_cast(labels.shape(0)); + int n = static_cast(labels.shape(1)); + for (size_t i = 0; i < names.size(); ++i) { + auto row = (int)round(cpos(i, 0)); + auto col = (int)round(cpos(i, 1)); + row = row < 0 ? 0 : (row >= m ? m - 1 : row); + col = col < 0 ? 0 : (col >= n ? n - 1 : col); + centers(row, col) = names(i); + } // weighted correlation auto WI = GooseEYE::W2({101, 101}, W, I, W); // collapsed weighted correlation - auto WIc = GooseEYE::W2c({101, 101}, clusters, centers, I, W); + auto WIc = GooseEYE::W2c({101, 101}, labels, centers, I, W); // check against previous versions H5Easy::File data("W2c.h5", H5Easy::File::ReadOnly); MYASSERT(xt::all(xt::equal(I, H5Easy::load(data, "I")))); - MYASSERT(xt::all(xt::equal(clusters, H5Easy::load(data, "clusters")))); + MYASSERT(xt::all(xt::equal(labels, H5Easy::load(data, "labels")))); MYASSERT(xt::all(xt::equal(centers, H5Easy::load(data, "centers")))); MYASSERT(xt::all(xt::equal(W, H5Easy::load(data, "W")))); MYASSERT(xt::allclose(WI, H5Easy::load(data, "WI"))); diff --git a/docs/examples/W2c.h5 b/docs/examples/W2c.h5 index d79cc2cb..cec317c3 100644 Binary files a/docs/examples/W2c.h5 and b/docs/examples/W2c.h5 differ diff --git a/docs/examples/W2c.py b/docs/examples/W2c.py index da78ae54..538cd099 100644 --- a/docs/examples/W2c.py +++ b/docs/examples/W2c.py @@ -30,15 +30,21 @@ W[img == 1] = 0 # compute individual damage clusters and their centers -Clusters = GooseEYE.Clusters(W) -clusters = Clusters.labels() -centers = Clusters.centers() +labels = GooseEYE.clusters(W) +names = np.unique(labels)[1:] +cpos = GooseEYE.labels_centers(labels, names) +cpos = np.rint(cpos).astype(int) +cpos[:, 0] = np.clip(cpos[:, 0], 0, labels.shape[0] - 1) +cpos[:, 1] = np.clip(cpos[:, 1], 0, labels.shape[1] - 1) +index = np.ravel_multi_index(cpos.T, labels.shape) +centers = np.zeros_like(labels) +centers.flat[index] = names # weighted correlation WI = GooseEYE.W2((101, 101), W, img, fmask=W) # collapsed weighted correlation -WIc = GooseEYE.W2c((101, 101), clusters, centers, img, fmask=W) +WIc = GooseEYE.W2c((101, 101), labels, centers, img, fmask=W) # if __name__ == "__main__": @@ -58,7 +64,7 @@ with h5py.File(root / "W2c.h5", "w") as file: file["I"] = img - file["clusters"] = clusters + file["labels"] = labels file["centers"] = centers file["W"] = W file["WI"] = WI @@ -69,7 +75,7 @@ with h5py.File(root / "W2c.h5") as file: assert np.all(np.equal(file["I"][...], img)) - assert np.all(np.equal(file["clusters"][...], clusters)) + assert np.all(np.equal(file["labels"][...], labels)) assert np.all(np.equal(file["centers"][...], centers)) assert np.all(np.equal(file["W"][...], W)) assert np.allclose(file["WI"][...], WI) @@ -90,7 +96,7 @@ np.array([[0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 1.0]], dtype="float64") ) - fig, axes = plt.subplots(figsize=(18, 6), nrows=1, ncols=3) + fig, axes = plt.subplots(figsize=(20, 6), nrows=1, ncols=3, constrained_layout=True) # --- @@ -152,5 +158,5 @@ cbar.set_ticks([-phi, 0, +phi]) cbar.set_ticklabels([r"$-\varphi$", "0", r"$+\varphi$"]) - fig.savefig(root / "W2c.svg") + fig.savefig(root / "W2c.svg", bbox_inches="tight") plt.close(fig) diff --git a/docs/examples/W2c.svg b/docs/examples/W2c.svg index 5bf77c91..2cdf903e 100644 --- a/docs/examples/W2c.svg +++ b/docs/examples/W2c.svg @@ -1,12 +1,12 @@ - + - 2023-11-23T16:29:57.649379 + 2023-12-06T14:40:38.987457 image/svg+xml @@ -21,53 +21,53 @@ - - - + +iVBORw0KGgoAAAANSUhEUgAAAf0AAAH9CAYAAAAQzKWIAAA+JElEQVR4nO2d25LkKg5F8cT5/1/2PFS7yun0DZCEJNaK6Oi6pY1BaBsQYlnXdS0XLMty9Ss1bopzSW05W+4hwb6cEmWQbB+xOjkpU20pLdpnhG1DbGrsclmWsv9rD9ZGv/KLpSb97+oXoxpvWZbX9675241Rgn+8d2/9Zu5cFs820g5gDpbD/wBH1nU190XLcaTvVUzWde0umxdH3zvil24j8XoRGO2Xot9eXm0dfFI70veEpe/z9uwRGDLSbxk1W+K5bLUcR/yaMxtvryt4se8fNV9Kt8337eDjdRA8U9NPAbyylEn8nZdR/p475yAxs1GDpzX9M9TaT6m8kJc7W/Qo+CN838dsZqFPPaHSRlsbrOvv10sp5T/5O4EEHp3HG7ZSS3f0ZVnMnNd2l5gtANocl+ei9lVNjj3VW1DjDPz64mX5qPPLQD7Qx+PsgxQzduzM7QnnIPj19PaSjP1M2o721ztemZG+I0ZOg0mMpDUdoFpH3019ff2q3LfHWZmOP0MUAPqgn8kyxZq++zfDC4MdYcatdRV2m91Nua9+42HHBcBbhvi/B3t/6g2e/ZAmFvlbppjej2oII15VWuoqav220Nop3b94QkqG2d3Dfe9+21Pm6P3MIn/LFKIfGe/Cn1Hwl3I+Eul1KNEdEsRjWP9sHOlL9JHo/ay1zd5+jjV9OOVoQFmjlN/uNpByJFnrEaAXSbHe+lnU/raV+U2d1D7fFGv6pTh/++tc/5oJyXZ821k0bCeiI4KYRFjTJ2PgOyReYqaZ3nfd0B3rX9a4fnkCCEL6fnSXwMiwGGeMyHcvhYSOTTPSL8VxR3M+0n+qN+sXKssTCjVt5ncKr4xvY9BjdM7+4X7vkBzmyMjyuR4MKjHNSL+UORu4lzcd0vyUqCQnFK7l7417/zXkobZvpFxKGv3SccObHADZcB3IpxGEYZnOFfRobcfhDvABRv05kNh25t1Wa/AcUPck/F7L3Yq7kf623rJV+vF7CSI1YpyS/mD5OuXhhEKAI5I7PaTA9tvJNkh0taavsT1B4p7qOMrIt6e6bm7yPVsiNaowsQ2nbQ9teJ6e9+DrzrYCRyHLi5Mb0Z812MX7EZRv6yVrUJqqXSD46fAs+qX4ENmjr/BQprdkEH4X0/segl08EN+ccjwDQAtafinbNP8xgDUiUctdihPR70Gq8kd0Bg8dEHyBRcREeyCyv37vnfA7fUR/YQkt+tErPwJvHAROpI19jv+rfP8AG2dbPFu3ehLY2sbx5S6i9gxf0+96Qz4YrYQJWy0dRO1wnrfeaOF9nRbGMzLo8/fXHZc2XTI9e44gS7bLsnwIZsRePHykL3WikFTlWzjjyA4/ctkBJMgYU2Tar4PX33L4PxrDR/qltHUi7WhxrY6NaMYkWzAVvMeNyBuk6x46Y+Glnm/I0HeHj/R70WoCjcbNYDCzItV22EAc3B3MEuhgriac940sfdeF6FefB2xU+VLBLgTN5CBLzn94xpXYbzg/mEsCr33Ea7lacCH6AAAAoI8b0a/JoW5N60idEX4+pAJPwS8uR/kT8Bsg56yveCtPLy4C+fbcdTiPlT9iC9uM2+Y8MuKsCNDFteAnCeSrDcK23kad3b+6E/092Su/hmgvQ5p4tQuv5YJ3uBb8Um5FX9LqNOtB6iAs6SPSZ+q3rkUffmBE+cdHXSxLiuAl8IF30bc81CpKQiqJcs7iOzfcrOkDvGHroAuCD4JEEfxSckTpS8GOmnoQ/WT4dl0yzNhRZ8K7AFuT4TAwzWcguLYOpvedU+UAGQ1AQDwsX3l+0RgpTtGmzz3YkncQ/QDUGLLFeh+AFDWioumsvYr+/plHBor2pEofCcG13yD6AeDtFTLiRUg8C76nXTteXtCgD0Q/AIg+ZKNHaLML/36/eM3fj4CRdDwI5AvAU6ei00EkegXWk0BLE60vRysvlPLf6ALAO7ys7QF4IUz8yllfFe7DYeoChsNIPyAIPnjGYiS+7v73Pu5fyi6v/PbvoQ/X1OH2t97rAXyA6APALU0CFEyItF6kW5Pq1JTnN2FVxfVhXhB9ADhlXdcPEa8JKL0SIrFZgMN1orxcaIHgw1sQfYAXZAoe6w6ke/j93ShVbER9uI7EVSNloQNohS17ABd42iPdy5PQH5/n9u87p5NFXqAURH/DUxa6TDYIPkD0AQ5E2B9dQ+vznH1uWZbuSHEpUdWMWPeWR6AUdu2ADO6n94+BQQCatASteUbjebzIjmY5PB7i8ubaEWwSxuJqpE+axz94q7en1WF6bqfaZzo7w0HDFj2OpK/wmBGztV0BXIh+JAdQS4vD/KiPgOfGR31h6RV9jwlSWsRh/wnN5/GSe7+WaAff7PFQfzCW4aLvKWimF8m14GjCmSHgqEf0a4Syt23ffr65bykGyR1hdu8d0tP2M9fl7AwVfUlDHn3oRAtZOp7H6c9aum1x/3w7UZYWtdpZIM8j/Y0M9qOJ1jq9aBrgYIOUmRkm+hqGPMLomG7L47S9BEG9SdH6tj4l1vStQUD+0LbJ3hknjeuCLkOi97UM2dppS9zPi9BY4eFpvdf5U/Y7C4c60mUjGD+YnGHQeI+nz3nvYzNjOtK3MgQLp8Ea2w9V9dCYh7yH6M5Hwi6y5R2YBa/+kjiM2Ljfpw++edupl936s9U6cXTBL8Uu0BXn7AtL29XMTZGhD3pAsh7NRH+kEUvfWeNZ9tfM3E28BIZFQkr4t3/H7xF80CZXj7Tl49ArgeulHemvu39n33vkrLxQRzbB1wCR980IG9YcdKyH/6GOjxd1geulFf07IhlfhLI+iYiVyETY2tQKLzOgzdMgqdkGJ5nF1ETSB/0ndiWYmr1RjthypSmKCC7MzLZ9c1mWtr4wIIAXrplypN+DqgBcXDua5GQSfE/MEvcBubAM4IVnTER/iFN+2kfaeFlVQbu4Np0FNqLFqQCUgg/zhInoD1kTfVpnNioGfCP5EjjLKP8Jj7VA29QztM5u7r39ptaXe4iHgU9Y03dO9C5z5cTOfo6DiAvtLEPzurnMza9/9fFn78pIO/sE0XfE7/nlJa/Yv/kMziIOtPOcPAk/besXszS85m+vL99aWyEN7znWJydOOYWsbNtvyHJCpke8j/TP4JCkOKSN3l92/86+B3mkndWUgv5EMsHXuB7I8sauEPw4mIm+pVEc76VxZ8nnydBhRpyciFjYk+WETPiGQdIcpB3pWyAh1gh++/Uz1F0kRrXzbIyw6/096VW5MRV9i8M9rDtMz/0QLZBC25KsBBnhB9BlyEhfS+xGiWjty0ymk80QA1uYgp2DkcuhkJthW/ak96N6MNyzMhDVClKMmoK1fuGiz0Av67qWInQqXTaGrulLdWzPDsJz2XoZIQa/X5veGUYya1tb+I6s/knqGNqMDA/k6zW6rEYL5xxzzz+lW5ZkpK2NuveoZZV1XTlnoOi2O75zToaLfilta9yZ1sUhDtjceBB+n9eEGJhl5GuF9T2/DBkFXtmCclmu4jUsGGn/QwMoOTTri972wJeCi5H+HRgpvGLANChrrmBN6wwnM6Ow4X6kD/4Yvn3uznkNPhMh244URvqxYGYUnkD0jcnUKV1N75fdKYVC5eppp54yeLGP4S93pSD8AMIg+spkPnfaq+iX4kd0a8rh0Q4Y6QPkYlhynuzUOEvOF5dnq8vRokvCJgDwBKIvTM/ICDFo56rWPIoubQwAo3AfvR8JialQF+uojpHIPY/oxocWbAP/Aoz0gzB6dHqG9PkJb+9His25oe3fc9Y/jz/z5ldAFwL5hBj1Bj26w3oYOUjVgccXKw+MaON9O6wFoW9hdDwL+ITpfQAAgElgpC/E6BHvtKlad7TUwVPZGQGNH+lDPS1tRp3PASP9JKzr6kZ8R1H7/G/+fvY6LcVeDBCfPlptFlufA0Q/GbOPynBcMDO99k//yQ+iL4C3jjK78Gvgq4XtsWrf7HYUidltPiuIvgAeHdXMwi89bb/97exOULt9vdjP7Kzlz9b3X0MOEP3EjBJ+T877qgZqyrj9rZ+nGodW23qyGYDM/K8Uf9PTEJ/R4i89WkGS/pBuV0+CH9kXipX9LKGPzJXBAct6YSmeOmIEPDsLb215lQRHtA5Prn/8ydv7eas/T3g5zbCXs+fwVL63iPShF30HYrG3i8vpfc8i5pFoDmJk66oL/s8Fv3/0ohxHorWrNS0zOqNngWrAC/aBjoznK+3y1Uj/9w+CdE4PeDbwZVluHZiHVrYe6Z/dH3uXI0p93tpdsHgOiT70eyx1qX/uN/ePYBNZOGuPx0A+z0LmDc/G/NSKtLLv9otIlPq8KufsAZw1z12THIxEYjZc1fGr6H0a6D2Rpi6PZGrlsyN4AWoZaTcjUulqpLKW/pwUo++vyd2zPU7v//5hx5TPzLgxrJedOZqTuyLqixeMZeSShOTUuNULg+RygiX7cmf0FXft8nqfPgkb2thG/hkNSxqpOqKuoZVRAiQ9Nd4SXDkLx/qbLfkWyXmMGD7if+tUlIsBAH9oTo2/FfJWwZfyaV8iLHLVa47PO1vsxuvp/Z+/Zv9mD0OFP8D0/kaWvd8Ad0j5gxqbl1y+kF6Ou8yeKXaXT6LsLqnlqV3ej/QRfDCitSNm7MCQE0nBrBu3+ewjd0+gNVTyWhe9PD0X0/vgkpo4CGImIBIaM37Dlw8hDP+9/cPNpRK9nxeP7XoU86xTcgCRUMmgedOv0R05qkf60hXPG6oNT+0WpUMh+BAZTX9nGRAn3g8frkevv6fGrl6N9LUDP75yAyd17MuyjHnJOYlO5c0ZICfrydf09bz8bjn8N1uylHuteRzpSwhwbdpF0jTKc8ytgBMAyMeV1/TuTe/8Eb7qnt8th/8E//jzI7eiLyX4Iz7rFfNZjOOauO3dAQBecZY6G8F/x9P5EXsuRX+04EteAwBgNCa+7OYe0nfXyqCJ0MtyrN//trn/rOvoHhm2tv8P1vMB7DHp9zd+nD4/L3t9/9/xB1KMSj4RBZOXrKspH/07A8AEjDjVD/oIk5xnC+7LFOSHwQOAJFceRdPTkEEzFmFE/wjC33g/07vFIotNwdycBcSp35MMmmFYilJAt5UDzWI8GvW11Q1r+N/U1ncWO4PxaPlGjzZKvJg/VEb6liOmLKMz6Y6xvx5d7pMWm8liZwCWIPj+UBF964bGIcMbeuNBMsWTwDg0/CPiCm8Ju6Z/RWSXrLXvFdhNAr6Q7KP0d6ghjejv08weU85GIuMWmNEiyVGm4BGJvu6xv4Nv0oi+Z6yCxjw5gOP2ymzbLaWhXuYkQ1+HWKhF75cywJGddATLrqEh7m+u6c0BeCqztg22PoeXOiK62g9ebAJyk0f0Bwp+73PWdOQITrrGeWluJ/S4bbSlTNpHW2vdD/qI0NchHqqiX4qh8A8Qfelny9LB34q+9lG/1qL/9ALTU54e22i9bxZ7BIA/1Nf0rRyHdRYqgsPOefsMx7+L/ORvgkh727b18xxtDQB7TAL5LKNMLe6i6QyjO9qaVJwf32sUZiD7VpRq09rrcLQ1ABwxjd7fxH//b/t573WtsHCCszja5fB/RqTbsnUmxeKeAOCf4Vv2JITfyimRXlie6EF8/252/mO7Enzel6UnALhguOjviSD88MxTO1rMzJgGoV3dS8km97aO1QNADerR+y2MinK+Y9RLRYYI6lFbj0buHPlXANN7LsUuLwEnN0IPbEccx3+jC3DG0RiaTkUrOZ1SxOeasXOPeJu2uN968nW01kVwxvC1Y2f3Pe1hh0vR72W/fUrClEYuHazr+jWq097fDnVsbRDxhUyCCM+N4IzlyYfyImZH95q+tiD2blNyt3YhTPbni8TeZam/KBLD8po3ggN6jNhxAtc0zULeNY7G21qNMWhkehtujC/qlHfkc0bm3le999l9B8cweLTBWt8BsoxMOw3nVI3035yS5uEktRn2f8M7NB2IO+dkUZ5Agt8CY00/RD4i3TOvRX9ENrAesjghgLdEt/nRPmM9/A/jOAsYBRlc7dO/ojW1qwSjHdG/Qjz/iUExoqJhF6NH+dZnTTyVpZVtZnDrZ8fve69b+aG/L7vuDqXInhfhpT1c6EEnr9b0JfbNS0T4WscSvLmvCazpiyDVjtpH6fbcP9I+fYvz46vqY3cv+pMMrWv6x0+Nag8LG7VGfcve1TRNSzXtK/dpi8ebLSBsE5mLX8FKfNTssixqwr8IimJNRLflYV0Rth/OwH40OqI9avrQ9rcR/EMpSfbpXzXQ2c+PTjFag0E/LcLYah/SIpzBTlvigzKd0gnv8Dy6v/pchP75OL0v4rAEIn4tptivGsz79L5/M4uBZqeVsKGRywqS9dKzjatlJJ5xijYSkbZNWvfTETwG8nU/QBDB/7if6d368G1esfC8va/285LP4sWJtUbXezgAamZGBmLDNyGi9wEAAKAf9ej93pG++dT6RbCSl1P2CDSKjXWGsl67lR59SfqS1pJFWXvNxqjdV2+ZJfZGPZCv5zASa6GNcGyo13LBO2p2EEg4jp5AQq38BhLbuHpK5tkhZ6Zm91UWPGrJ69z70UYoLbzZ4mfJDJ0CfrBwgm/t10s59kR4IYfYiPr3kz7kxW5TbNkDiI7FC97ZPaKNuOKUFMAnrwP5RkYPe8HymTLWH/hjhJ3hS8Ab4rO4jlMJV0XvL8vyavtL1E56bPj15HejRmQAmWAbF3hC3M4cT++/XtO/QmN6cGgynO1ZnETrA2TGe0Q3zMMsa/rdoq/F8Cx4A8DJwcxEiy+4IstzzIbGlj2PgacE8jkABwEQsx/UnvsBc+GxxRnpDwQnABATiePGwR8z5N5npC9Mhm1RAHCOhChwsieMxO1Iv5TYo306NEAuNPwRfsIf2WdxXB+4E6ECASA/WgOQyAObrLTqThS9cj3S34jaMSwiOFk6ANDFwv/Qh31idUaGJYi+Jop7NYkOhhp4OWzD0vfQPv7J0I8I5DNGe9+mx32hMIavDJO776M7LoARZOg3rtf0NzJUtCRPe4ODzouAIE8j1HVd486gGWFdP7QHWMBIX5N1PZ3i7x2NX51Jvp05zisSQExYtgNtQoz0Swlq+Bdl1nySgLUEg2F8+Y2nUfe6rmUttBPIECKQb4+nzviIgehnCCwBWar7yD/7wYr+cOtnloV2gi7CjPQ3ogucdOmj14cFbh24EjU2sSD4sfg36gdoJeSa/tWatjc2R8o6ux0cgFIPtRCMq1ghZv3gBeFG+lIsy6LaQfbXphvq0xKNTgQ7ZOF35w4zAS7w7FfCremXInsSklbj8MZtxwwnY7VwVy8Zn1cKzw57z7ENGemPJUp/Cyf6kh1SQ/g9Ne4M0HbvQBDqiCL8pXzaLUuJY4iUrnfa6f09Uo3hpVFnQdoxR3L0tWCbeVl3/86+B13e+g0v/iWU6Ks6+U6niFO1hVPPAJ7Bmv0yqm1Cib4GH2/EyY9UzIK2MBPgNx7qHzJznJWxJOSWPVU2AQ+0RgMQnTORP/6M/gbeaNkxpJGavYblpxwxgnxU3v5fZs2LUkfZsR4BEiSlS0t7WvXDULMND3XSUmP4vHfU2Mlv8Pjx54LleSzDelNiTw2u2gEH5MiHNswd8U0fwD766GlLC98URvSVBH9/fWz9mhbRL8VuEHEs3+2avqe1TbVOjuBDIz56Rkx6/YqFX/I06LHmNz0zgq+Gdr1e6ferQD5P4g8AsZHyJfgkXWZ+6anhbT1ZLkvd9Y2q6P1ZOhmmDqBDtNwK0YUvdunHUWtXT3biKQ6lOno/W3AHh+LEYchL50W07e+vC3aTHe8HfO192P57eIfUIV0f6/UDdPKtjd4G8t1+cJDwk3Z1bjwF8pWCg61Bs+32UdFabeJW+E9sFLt8xnsgaQ01z8I+fQAIz3rxtaRr9j7i38MM1DUSbbhdw5v4v6E5I98o4ydPPgC8RdpLaR/JDbpEiynRKEPINLy9nY5OCxJgRfPiSvyv1qSNi+Edzuv4oXlN//cCAzOWec7mBTqQkS8mJu3mJJHSVRCXWh2Qa+SREXkdLIL5mjSwV/Q9dLRIZxlDP1bCj83IMiKrZin+xE+8HhD9WywHCldxH1q+pOXZVAP5rEZGI96wAAC8gvcbw932Py+aFHJN/wkvlQs6aLevq/Va6GKGVlzK33PuvwZ/6+0eSpNS9CE/WqKM2MfkTPi8tqTkDqT9tbw+L/ywvYCMFv5+0X94kxr9gJAXaYFG8HWxeFGjBWHD2yh/i72QstHW5+sXfTKWwUDI2wARYdsx9NJqA0zvQ3hwoHFgduaP1rJHfuZpOWz9HQlpeCEFv7nXK6a8cJ5jkEpnm6H9auw2w/NOw7I8HtY1ClXR9/e4kJ2rpCg4TF/0Cn+29mTbcUKctl/39P4xUtZ75Cxc4y7wRQicp0+Y3r5mhmfUZLgvcxzg3pWRD8PMw94MaFewhultkGao8BsGuNc+J2v68GU067+1KFwsWMH0NoANzdP7dMg8HNtyQfBLKQ6mCCcG/wLwjtq+wpY9KKX8Gc7sznZd199/+++94yXbFwDcM9rDNon+7MKQldnb9U7cW4Xf+kTAuVsQwDda/bPGd1eL/uzCAHNTI+H72YLazwLcEWH2aTSjtGpbHrXe0fb2eZneBwAAmISqLXstb05E4UIEXneDyml0C/unj+XnrX1iB5+MmBEZ3QZPz/xK9N8+RG0Fj64cgD2PnWVZylpYNwc7WkUL3/qHpfB7qver577dp68l9sfPeaoogDuwVLCiR6yY/YGrcx2Wn5+1G4jUWxQGCh64smfsEyzBr8piMdqPUtdL6Qgqlq7IKJUGc8BoCUaB6MujKfyj67nGVzWLvlYFjq48gBZ4QQApGEzpoaFbo+r37lnuytQk+tpTJRgpeIcDYkALLdEnCPUHyfod0cdryn9WvmrRt84wBuCJFvvHlqEGcR974fhnp6eeR21fl/A/nLIH8JKeXSoIP4AeLX3sKrr9zWfelKfm55b+oWqkb53ogGkp8IKE7SP88ISaj0002tcQ6bN7tI7me7i7p8TMxFpK+d9a/OYE35dtPXwPAJANlRfDSQW/5e83Rgi+1DVOr1v+tDNk7n2EHyyR6ogckgLQRs8R1xbHY0teX7usv6KPOwKwg/4GVpyd+BYJ7y/dGtc9XrP7HrvP/4p+NEMAiMjZkhWABdF8vMYI3fv1rq7dveyz+/zr6f0hU5M398RZAkBGJNf1CR79xvvMgfY9/vd2umeI8TxkFQLQRrzTnVyPF1iATyKtwUdgr/MhA/kArBB/2U0USQ16SNhd1FG+lSBv92m5m+VLQ+9ptPvPLQXRBwBwSY9oRxV8a6JsCZcsW0jRx5whKtEjqcGWZVmqBLz276cn2nJbY9bBPa7T8G7FJSMfZAN7hhqOzpvUzrq41pyt3a1O2ePAHZgR0vAC2DAkyO6ib171WPMyPvmOipfAkNP7AACQjwhR9d62r5dSqqb9q0XfYrTCiAi80WuT2DTAM8P6icEhPl083LOmRE0jfc2HxjmCVyS2zADANUNH+tGC+hppnt7XcGQ4R/BOTXQ0kdQAdXjsL5638rXQFb2/LIvYm5nHxga4gmhqgLnwGtFfW6buQL6ZM0cBbGDDAKDFsvt39n0NItH7rdOYTH8CAEA0LHXreK/eO4sm5zmrCKY9AQAgBOt6GynvdYq/hurkPAAAAJoMi+Kv3BqnXU6NATPJeQAAABqIuH0d0QcAAFdEWhKOtn0d0QcAAHd4C/S+K4lkObWfGdEHAAC3mEbKl/atcVG2rxPIBwAA7okUNFdbVusXG0QfAADcoyX8FqLrZfs60/sAABACD6LZipeyI/oAABAGafH0IsZWIPoAhgw9OhQgCVJCPZvgl8KaPoAaNQI/o/MBqOVsXbzlRTp6f+uJD0D0AYTpGc1Hd0YAUrztR7VHvEfsY2+e7+1zIfoAgkhM30d0SgBStPahsxmA6H1JYxYD0QcQQnK9PrqzAmihtw9l6jdaM4YE8gEIIB2gR8AfzIaEzWfpN73Pcfd5RB+gEy1Hk8WBATwhaev0m3sQfYAOtB0MDgyy24DG80WuM6myX10H0QcVInc6AC9s/Yj+BK0cLQfRB3FmcVRWz7e/T+4a1SWaPR7L+9uvRhRGCc02od/8Pfe6+/q/QWWBpJw6qmV5dTQlXLNefE29fnMnJGe/8xrxfdx/vpXTZ2l9ctZvZq8/RvogytGBLgi+KrOOYM5Y17Vp5Nj6OQt+hd7pi0lEfLb0D+J2eByEFUQfFMBRgSVSou1V/OlH8yDe1sdBWEH0QQkclTAOxcgDRH7HxaSeL+4xcwsj+gANDBEGHNgHVkFgoIPJwODiHrMMSZbd/9vXaqJPp4HMDJvJOAtEG1CM0Vj4l6d74OMgAkf/IBa9f9YBjj9jylePDIdLAHjlSuAj7QaAH7y3Tu2pgXfXOf156ZwdlDoRCeqQPGoR2hg60jsJ0JmFKCNs+t8z2m25tcFa7PtIz0BMU/RZ0wcAAJiErpE+xyDao3G+MrThaaT/+2PjYowgykh/g/53j1Z7WtZ7zTO8LZe7o3U5BtGe1vp6E28BOcjeqhHtNmKZ4R0tuR3efqb1peXpc00jfWkj5k34Gak1HgKPZBnm0G/aLHNrRhZQ+tk1EUf7muvuLfd6ey1EPwhWAS9Qh8cp/lLyCn9k0S+FfnaHZttK1/toDewJEqye3tfOgBW7S+tgdpqbyV1yMcyJTyj4kBvvo3KNa7Ves6eu3ETv74/+238NNmQ8ttMKRm/wFu0XeGZCdMmQBbJ6el+tYAOjkb0ntrEwhmVZbveyeq8jD1g63K29vn5uVgJ7ogvahlQ/elsfUfutRnvv66J2776ZKCu3l1hGvmicnvv+j6idpJftqWuyj5Uyb30dkcqk9fp+//4fkXjEguOLpnX9arF/rpa2a4kWLyVePz0rr8iusZOvY9VMH1UjffUOZzTat8xm1ztCNnFy/868J++CDFYzMxm5q7ssol9KafZ19NH+/estM2TWdtczI/F47TLh9L6m6D9du+W6onW+3X9dP78WJINjkYAdF3WkEfQ3NARiStVPZLsRqYMGrTG3TcVAXTeBfF6paeo3huHGsSkJ/s8lnTzjYJZlCe1gwQ/eo8+t6O1Pd4fQRKG39VyL/qhR/vZ3+90EUtet/Vtp9ucqawj+36XjOhZptISfra4AUIsb0d+L0YcwSd/nbdaif+vcW3m0GOasHZxHboGHMpSiKPwlx1ZXL+1kxs3zHn9DbhRZrLTGK9Wir+G8PiJ0xa/eh4XgP3U6qTr/jRg2dLAjnPmW2/o398Dh+1FYTfVHdOLTLYM4SK4U9YVRKif926sM8RsP9+wpkZuRfmRajOJry6BUYSbnqS1mEX6AFvBD3wzpsy8OzWmlSfQlK2FEhT6eQlRZppZnqH3rlApgGTXy9nSfkcIvfu+rnAqydwFwhYWPzkrzSF+iEkc2xBZZvZXh+L1JGQ7/P/690lGLI/AiStblEG+LBNHIGx7t1JpjDai+oAZ/YXzjr2fcQfO4bbx0tnGrUWZrCMsDE97e73iP0VPb2uuYNc93TNJhaY0qeReOP5a7wzCG26siNRn5MuRGsUIrXbjnffq1WtCdhrdm2jib0O+pyRamMUsSPTd+b9apptSkilmvRpLlObLiOXA5OpF94J79U1z5ppZt4suyyOXezyZCLbwRfq06yVDXPcJbm6J15Ehfkq3cmV5aYBzY0DmWKaDfxHu1lmVd1/KfljhnEKEWePmJw7a2Zd06Ug6EEWM8PPkCXhhj0us72LKnjKdODt/QOuCd2XKjeMXCl1vc43+l5A6YgR9ctPGbswk6Ll+TbXE0WjnEwS+0mQ96T+nT4s21RWYI139X6TnfGWIwXPhfGLV2FL83x9vSJt6eQYPhtiqMRJtxyl49tXE+GteVvLeo6J855HlMYw6GO1Ij0d8TJaZi9t0vZwy3VyEk2623TmaxIYvRvHRcjtU9xaL3ATwSxckRAOqQZek6mEprLZ7cKPf0CuPbvtcbkDuqPf5G+j+l+P4Dy9KAKsNHTor5pEeAMOviyl6Vpol7sMwLEgVJm9Ga7m9tD7HlHab358GVEz3+yrAYrTAFb4tney2llOLwpW/mF1ENe+mpS422YE0fqhnlSL+mr0sc+yLYbgyeRZ/W9YWmrXjqyxLP+btPfyl/hrz/GkCDKPbVk/kK+hh+IFc594tRbHcWtPtatr78lZzHi0Fnq2gveDzK2CsSAUGQg5gWPJZ1XcOc2DcTy7qu62inbBEEAX9Yi1G0NrPYgzvz2mstEe2V9rXB0ja85LLpfeahW/ZaCr8/LQjqGDHypJ2u6/3s59RXfLZ2RfhzsV58Ha2FtzNHTPAWXTkTCP47PEzJR6w3bUadcFbLaTn/xQeAPKb91VFgZ89zmx24o9U4Hpy0dxD8WKzril0fiHLYydexqAg+KNBqq8uy2Ig+0ZXjQPDjgl1/Mvqwk9pr0Q9Ak2VZqg4Z+7XLUjG937pGFWVqLiMjAl0i41FoM9SrJKMOOwE5JOIdhvRVR1P8VzzV7SvR7wk4ihh5mwXqvg6Pgl9K/HqVZO/QOHwGZl3T7+Exev8u8phOA5noPUBDixn72l07IPYAbazrWv47dqDqo/7K9VvOCAc6o4M8Y3Tdj97Lmo1Z6lZK0NnaC3Den74C+faRw08d8PfvJEqnTIQyZmAtf3W9Hr6HPrLXrcSL6l7sEXywoNXKNAdmdzuALqf3t5HFXcGWZbkcdYycJv0t+/Hnu69xB7ZkHp2Ohrr9hNk+0GCzqJ7+dtTF3pn2N/c4crtl79VRonXlMeOp5JlGSCAHYjEG6UECuQ7mwKq/7u+jObK3OO/jcZ/+VaVmcI64BIDxaE9zAoymxg61bfZR9Lepsn3CiQyCn5mhju4u6tqwGD24tfEEdXvEwlYR/txo99UR+QQ0P1OXkc+jI4QvhgpWkr2spTiczUpUtwCSaPXV0T5A43X1leifRQ3f/r2HN+uXZXBQUnDM6E6fGUs/8RVAZXZnsEK6r47u++vhfylUcu+Prqx/hXj3Z8rFgPi4ne6HKo7bHDNue5wdqX4qdZ2uF9vdZyVt9J3onxScjgI1ZJDMTfy9xbhkqNvR4M/y0NsfNQ5favzw35cPf1rzcvGYhvd487eFgDmR2MsaBWuxn6luAXpoOZ9h9Mv7ke1gnDelqkkh/k70k3KXPtibAdQyIo+8xF7WqGjX98x1C9DKmR+P5N81Svlqen/Z3Xz/tWeeynj8/ZbMY5+CmAQfUEPWCGINhvSrp7TiRsWAsZjP0DXcT7OMVYF8NcUY6ah+11vL+QvLmeDfEVX4LdsgozCBHkPs5eGeWDBoUWPv2n2jOSNfNHpPAowq/GBLtm1DEAv8lF/e9OWe/v72s8v6YCUjshH1UFPelrJFdMLabRCxTrSRqPPs9WouUMlG+m/rL7sdRUUjtkAk9z4AAADkANFvINoEmuabPqOIc3r273vY+z8b0Wrb0wEu0IZGH39zzVcH7mgXQgqLe2mlRtRmlIHNTm0dUad6vA3s9Y7VAS4Qkycf8rim//ZCT3hbV+4qT/A90z3PjijJEGmvsCZWYpSlri0GYdhmfO7s5LXol+JX+FvL1VSe4IK/J3K2KsgBov8eqbo61sWb62aov1l4as/wGflGpELNkgY1erYqiI9F5kjs+ZyWuADqMj5VgXx7I2npppIBSiODnTKbPZ36E9ZC9SHQ1Ja1tNs1/cE3r2Ztaqb3fz7Rf/iOpzVlprhhg33P9UjODEkKSsY28iS4Ges3A2aiX4qu8GsbGGtac9PqTGe0Ce2+QlKjczwJ/kbGeo6Oa9HfuI0yNDQqL+UAWyJtSR2JZfZKTzOBnkD44Qkd0S9FXPg3vASReSkH6KIVDZ2NUSLsaTbQA4g+3PF6eXL0SB9gFIj+M96m22d+Ifco+qX8tW+WXU2RIfc+wAWSDvR4LZ+uuR6pOiJALzdr+cxUmsX+s1Iv+icdmG4YG68jiGjg/ECTSC882L5f2kb6W6KGguBHZxN8hL+Pq9qLWqvS9pB1NsSaSMIPPmmf3kckwvPliNcVZwyqMBvSjzvhv9AC2tYekVP27mB0GJujgSzLMsXMjYrd3lyTXvJDttmQkdQIv/pLAsHdoejOvT9zNG0GttznM7WhSr73m/qbp2bBEs7OgDOe/BvR+4CTgA/UZvAmmA0ZPfvppS/7KMW83NmBiOi3HMQzunMASHLVxSI6PzXhSD4bMmtQ7D6gm+BuP1z1Y7GjddeTr/e3POsI+595eUMFaGWzYJKUzMdZUGxxFCOjdYTx3m97eVb44aq9Vaf3f6N0XxjbbG/HMBbJl8yvgEixK+ci02zIkVmDYiEe6mv6NWKO8APkJvNU8Cb8Xmctpcvl9TnhXkvlRF86mYfo1QC+kXBaWR2ftkBY15rVgMK7PUiVz/tzzsyTrYut6d8F6dSyT96BaYEmPWudOD6/EEN0Te/6/sx1lwHd6f0GwyJdJ1izLEt1spMZHF/UUSExRM+0tskMdp+d+qN1L690YQzVJ/cuH0KPicFISHbSJ5AeBX/P7G1byrs6o57iYDe9L8hSmNoHH+Ds2qeDvQv+9pnZ2/j4/NRJblyKfikIPoAnNhHIPCpkoPFD1PaDd/1TRvTvMm1VjBIwNgDfZB0VEjwMGXijtya59984hQyOA2A2vPTbnrgDgodhJsym97OOEABGQj/6oXfrJcHDvsHO5VAd6d81EQ0I0MesB7xosBz+Bz/s7RxL70dE9M9Sa9J5APQ4O+AFh9gHPssn+/TGtFE/3fv0GbEDjIEMc9+wTx9AMfc+HQZgHN4PeBlBbWZFgIzc2bZJ9D4A6IBwfcNuIXhi5jiY5ul9Og0ARIHo77nJnFTqjrPnbhrpZ6wcAMgLPmte3o5rM47+z+y+SvRnOV3MMxkNEwBAg1p/mdG/HnX7tegj9j6gHQAAnmkV8IzCX8ou8Lccsk6y9gVgA30NQAcJ4c7aN7/S8GZ9UAAPnCXV2aDvAfgj2yFMbNkDMOJp9JF1WhEgImv5PH0xS+9E9AEcksXBAIAvEH0AZ6yH/wHgPWIzZifXydAnEX0wY+bp69a9wvPWGEAbYrExJ9fJsLaP6IM667p+Ho85ofi/dUTHv8vgZADAD4g+DGU++X+Gs90BxnN2ZHwGEH1Q5WpUvz//HeH/JouDAYhOtr6I6IMqV9Pay7JMN6J9muJnnz6ADL19KXNf/MrIByDN2Wg/c6d6Cxn5AHRpiR/K3icRfTADkQMAa2qEfwb/xPQ+mDFDh4IYzLiDZFZad85khZE+AEwF5x2A91lHzfJNI/reGxkA9Dkd4e+CSiXvg7+BGu5mnyRtKb3oE0QGAHu0RvpWThvy8Wa5ScqGWNMHAACYhNSif5cYBvJBu8IbthGT1Sj/ze9hTmrSkkvZUOrp/TfTbWuZJzlMRphShdGwJQxaaBXxXhtKO9J/8+ZNGtjYMLrqhzoaA7UOvbTa0H+PFw4ahbosCyP9xNRMiUW0Xy3O6o0tbLbsBxvUNrTQY0OX0/sZot6Z+s0JqTXrqa2z2evrLU0zJRyfPD3dM2wdNlQ9vR9pWurusBeYj0i2K0mLg2Ha/x21vuT493iiOenRoF4bOhX9p6j3SO5gWZaPaF0Ef06I3wAvzHa6JMjTY0Onov80Qo5orIh9DppHoLvPzST8PSP2ddI6swBvBL202lD19D7GCiNpfnnbfQ4bfs9aPmdJEP9vONAFWmixBwkbuhR9psUhE0ypgiZP/hH/CWfUaKuUDaVOzgM5IXr/HWLBeCd1N19t1sFWUaiFA3cAbiAL2juktwaVguDDHIx8ceNoXQN4M4+H5clUUUH09cBn5CKbP7myz+lFP0MSopkhAdM9vaJP5spvrH0GLxe6ZFkufPvSMrXoIxi5wDmeM+pgj4xo+wyWrWzpeSn2VP81z/E/Mm9dQ83EwlMnhDlp9Rk1R6weP4MPb6O33rzUe3WK7fXfJ2ZzmK8qKnAyIoA9rbn3mT35Q8NnSAsHbfUOyXofWedNSxPr7lOzGczTVB3rmJANKWc3m6/YkPQZWiPFWdumhgyi3/oM57n3u4qSB7qOnykskGFLBtKbcItp5XNGC772tTMgXT/R0lV/jPRn3J5D9P451EtumFZup7dvWInyTG1Sg0r9D9BO0ZH+TJBu+JunUxYhNhrtOJNt4DPgDV57xKfon3RcrwWXho77Hg5eiQvTynK0+AzLOpqtPWaip20/RX/C6X345MmYoq1fwR8WIoDQ+Gb21lGzz6vZUZ27dQ1Sp5/eh09qTgvjhRDgPSNeiNZ1/Z2ZOx6RPOMLgNqM7sV1PfrID9FfyucRpB4LDOPBNuLBtDKcQUvNx+lIH4c+N1dvw8Q9AOQD4dfBq7f8FX0th85b/z1e64cI5TyMmlb+/dr87gC2jJglb/XJy7quq6RDf+tgZhcR9sGDFcNeLAOtc1rgrR0+/sSgGJ7IkJFvo/ZZ/jdC8Gv/Nhvsg4eZmdHKh/btF/eesU2yUKvhYtH7LUaNyJ1DrQDkYuhokJH+F1LtMXqUv/G2HMuylKUIaEyveHupOAs43Q+s8TitnNW2704l9NgOv39iUAyP9LSJd926ssXukb6EIc804n+7D963OUEUvE4rZ+3x3oUAPmkOhgvQzldldJecJ6szqMG/OUEUvE4rY+N+mL0tanYnZdjJ9N/oAmysJ1/HrtprlmUheh8AhoPH+ePof++WaiLjRvRnYzOmrIYFAJ9cvexr33PPWhD6t2T1y13T+6IGPOkJf1kNC+AKLH4c1H0ctF4Qu6P3xQrGCX/TwOyGLaOC+X5nswp9eY9Ve9DH4lBjE73tyvQ+qHNm0Mef4aD0GD2tTMsCfNPaJ7fPtfpMN9H7nPCXk7eGPdO2TdBnXVe3NmXxgstLtC8+zqIQss3W67iZ3sdI89FkkNiBGpmnlSOe+aG2ZuvoGcGm39W0efdIX8LAMNJ89E5dAbyhdrTjaQZAw+/hS/1h0SY1Ni0yvd/zULMbqRcHJEnvM2WsEw9km1busRMvNiaV7CVD0hjo4/VsVxHcGVfbkWY00jd1FL1eJBwqkd96ZJhWzrqsaBnFDTaMzs3w9fsivB0+4tqaBTOtb4sYOVs4VZF2RBEFf8N7P2OL6zOe6yi96B/p3V6QgcwnOZ2B6Mcimn16EX3PQjML3tOZj86Rcfq7oiT6Tw/rqWE0kZzqjoCokSP8pkSYWtZemnhaTrq7f6R+moU70fewNOhF9Pd1saylrNIVwxT/H7OJfimM9DPhbTSr5kRf2NsM8TiRuG0PB8mhhgeL3h2tK1m02u0zmZF6vuN1ctcaeGJmEfs4+ZMkU+64ss1lWT4SvcEnv1v2JEy1xeDpJO9Zy1877b/OCBkawQu1Pgqf5gN8xjlu0vDSTe65qp/s9UbHhQ1VMb24ds8ds/dND+zzE5Cr4B0uRH89/A+x6e14dFw4Q9UurqaKGy+HT7OlxjZmn4lZ1oNdNht5b0U6CLyQRMWwHrZheGOm3ARgg2Ug378bilwTqx7HiABMNy8WJ8/1MdLveeyuSkvYOcTFK5jgl1JfBwg+eGIpHTaZ0KdFo+acBekzGVz4srvo/dEQaZmXt8bvopPAtEgHjuLTxsKBX9f8N7oAG3SOe66yKEWot69EEc72fkMclmVRccwamUOx8DFIHPiV2T+5GOkDAACAPr+iL/Fe0/J2lPmNSpose9dpc/CKRC537Bs8879SZMWjxuCzdw6p5zteJ3qtzbBuBnpo+40e4c/u07yjlQU1Exy4o8yMufePZMtZnn3NLwrajvmsjTlwxxeaNiBxcI/LA3eKQf6I2Z1ktKNLJYlwctsT2V5aMjHS6c/u10ZiIqYCh355Ef2P3xWSRpkwY6Ka6M8cvfwzoeFcl2X5cI60rA/MhFTopE9r4X96WUX0jZll1Bh5dqO3k44uP3xuwetqz2TxNNExHzlHHO0/lBnRH0zGKcLIcQxSHTRbm0anddaGkb4fvIlnDSNnJ35/9e9/9ukPBnG4hzdSGAmZ9XwQPZrek59H9MEla/k8qcyiy0s6luhOCv7w467nZFgwXBFOzWwh/Dd1tf0G0QdQBvkfDwl2oJVReWwab3D9q3//I/ogithb+cl1oonniNkKuIYEO7GQPvmuBk0bWJZlqI0h+iCKmDELBtEAbDzZJ4IPpfy9pGu+cmjY2tUV9z93c8oewEhURhTr+vXy0pPdC2TYO9uMu2egk+B9divrVbkZ6YNLrA8XUnH8zFa4B8GHD4ztQXKq/+0ZLYg+uAaXDAAmTPICiOiDOL1vrllGX5GPQmbL4Tx4bOshZXqx3U0LS59JRj5QI1ruemlHE+XlJcOhSPCeKKnAPWTg+/2VUREsfCaiD6pEE5RZ0vByvsB8zP4S/ogD0d/QfDEjeh9UeXvgCSJig5Qj3R9oA/5pbXd2N4zhWOeS7cBIH8zx7kiyjoK1Rk5enxd+iHoAlpeRfjbrJpAPzPEuEj3baLw+m6YD9RgIBlDLWeCtl94s2ccY6QM8EH15wkqUPdfBrIiKRfDjru/waLt3z91TXtb0AR7QXF/TxnIUHqleoJ2WDHXYRh1P/banPpneB6gE5wUz0nqA1CZg67o2TStr97fZ+jOiD+awBmzDiHqmbeHIJqrLsjSvkWsJc3TBb3qJavwcQBVa61NwjZdjST0dWDLTNLNK+w8+TyJDjMITVc+4vVBVXB/RB3WiB8JFZPiI20mik9ltT9QOnBwgFXULYg1v7bblhZrpfVDlbQcdLlJKZH2uHrRrZF3X3381fw8x4GyPP1qehOh9cIen6eBW9iJC9rpvtNq4R7xnmvpv4emcdku2doqW5tsDpqKP84Mn9tHBUa3kyhEhKrpIjNZpo2c81c5ZW2Vow6f05T3Pp76m/9QRozcOXNPkhA/2ENE63nRW7Zea4dPVL/q15PPPekLiG2ZYA8+O5IuM6pr+G2Mb7pwmR7P+q498TC742+/3sxkjymDCm74vdiv553VRhwD/kHzpUhP9mk5DB7NnH7zkKZBpOfwfjafOud+rrPWMLkZlxiN9uIbAN9jjLnrfh/T84EUIpblbc/bADC5mhme0wOogIR89o51sB0hBO66i90cGcdUIYfaOIFn/TwEp+7/LwtUzZ3rGWVhPvo7aijUR79hqXlQC+Zrfvges6faMFCJ2jFfP25Dlqee+EevxLaMiiYfP2jwtcwjdRv05k5yxfmeHGaLd4T1q0fu1nXHLLvT7vWxxvpghneMVTwJsEVkerc6i4Vn0PUftfxFc9JlxgiOu1vStgrikHcVwByuMdv3jdPQZWcdbsOL2r+y+DiX4Pzc5/7H+nbvxHrsDY3Al+qXEE3zt62pwJQiIMWgQepdC8JH+HXE8FkiiJvo1HdJKbLSFOZrwfxx5ieCnY0SbYkc+eJMvohSEf0ZUR/pvHEAWwd/fJ5r4A8B7IvSYN/kiSonxLCCL+pa9vfGRex8gLxn7tadDZqTJ9jzwDtM1/VHTyCNG3pFG+yCHt3a36m+jBF/zvvtrRxRIYnd08NbHa3GVnCczGUcK8MfMR+nO8pwR2SfkoZ362acut9jerIG76H1pRr6VbYer7DMN7r+H/GRvaw9ColEGD88lSbbnGcU++LmUeIJfisHRuqMZPhVjlKQExnFrY06cwwxHz0o9o8dnA5Ai/UjfM6nftibiae1UQ0JaMl5K4Hl7p0S5vD4bgBSs6QMoIiEhUodBvTn8KPoa8NsDnq4+C5Adpve1MTp4BHwgLZYt9ltz/6ji/hZOlAP4JLXoDxf8DYQfKpGwXcTsm+wvOQBPpBN9N0K/geBDJTOfAAkAuqQK5HMn+ACVcAIkAGiSSvQBAAA84PWFG9EfCBOvsIdjnwHisz90zeMBbGlE31vFPoHgwx7rY5/JDAkgw1kK7ru/GU2affo9+3O1+DhhsCD0MJaz3rH/GfYJ8I6vl+gK7RmtBWlG+gAAAHAPom8Eoyjwjq95MgCftM4obwewlTK2ryH6SrA/2g5vyzoAAEeWZfkd/Fmqw9E//pfp7G+P6/ogi1Qe+ilZ18dkUQCgi2YPfOMfl/XwV/sDN/bfR+SYctPihSByfXmmp+28t4n5iypZIgGa8HqYU025vkT/8QPOHegTmg42et14ZJaUtF6E328NAfjg7SFOFuc8tPiN6jX9UckGpO6p1QieBSUqpKQFgKh4FPxSGkb6Hx9WfCjtIzFnGUFGZbYZmWEvJIe68FczAL6o0Sat0X7XcmeP6Jci70C1zw+XuJ/EfeGaGWMvvIh+KQg/wBN3/fUYF/fvh2L9qtdXuBL9kQJcFQjhTDAyYSl+ntrRk+iXgvADvOVuNK8x0h8u+qXIOE8Jp6dRuaOEYeS9RzKr6JcySPgRfYAwiOikpOi35hTOtL7eutVRO4YhAiNEz1udIvwAcIWEfxA5cGc9+fqtw9CI0LZ25GfP8JEM4aY8VQc1JMid4JnRB2EMAcEHCIGUVpKGt4O32xev/q4nh3M2Rj3Tlg97nxN7/88aXugAQBMZ0T8TtFcf03GrZ2eHa9+j9jO9z55R+D0yo/Dz2gEwHi0fLyP6Trf9nI3gPCDVmMwU2DBK+C3Efynl4xAQD/0WYHY2H63hq9NO719VlUQV9jSEB8EdPZKE92hmkNxfG4sA8MHXTPXuSF4JxEWf0YItH0sGA8sBeliN+kEPDy/7EINjX1+W5XQJvfn6Elv2tun9Grdk0gluHGWPC3XXgZ0ur7zFRX2+EFUPdeoxnwWc8yZrG8AVWqfE9ot+xxShqrOfRfBLSbHtami9BhH8DVJH+4e8GyABa/oOoKPCaFptENsFiIHmabZ9ou84EOiqPN7KKcKFcUiajMsZjompWecnJkCP7q23QuWAPGj72vaMfIKnBmmxlS99pjWF6f23yYRmEBPPT3is/1nPbLDkLLp6Y1mW1057XddSlsWtf8KW7DE5YbR2Td/biUFnWBiqq5GvsOjXPpuXA5eaUYr/gHy8Xat//XfFh41xyuh4rHzg65E+DR0LK8HfPtNrHzUjJEk+omOLDwcMPqkawb9ktL31ZBZFE2Lyak1fs3Glr917vbedoOU+aolWikxWtehJh3rBhcEsSASKaQabzYbpkeJvpvejTJe3lLNma01rGc/WXaWQahuxPaBGL10SMFKBGmqnwL3u04+6pJoZS7/3OL1v1Zi907sa59e3/C38wFQ5ZKLWB2xBersfuBBGzUPOPDwfPPN/2Sof/y+WDu8AAAAASUVORK5CYII=" id="imageb0574d20cb" transform="scale(1 -1) translate(0 -366.48)" x="56" y="-27.159647" width="366.48" height="366.48"/> - - + - - + - + - + - + - + - + - - + - - + - + @@ -219,17 +219,17 @@ L 3.5 0 - + - + - + @@ -238,7 +238,7 @@ L 3.5 0 - + - - - - - + - - + +iVBORw0KGgoAAAANSUhEUgAAAf4AAAH+CAYAAAB9b2wlAABUM0lEQVR4nO29W6htWX6fN+Zac6299zmnbl1d1ZfqVne7pJblViIjW8JgOTZ5cZwQQrBxLgZjG/JgyEPIhUAeAomf8pC7c4U85QLGgUAICQEHZAJ5ErY6ltOWhFXdUndXX+p66lz23usy81DSQ+r/zei3zlzndFeN73scZ8w55hxzzDn2gu/8/sPf+Z13p/YRbvbHjza13RHaDuVQZLUaStvlelXa7mzXpe1iXY/dQtsIY8wxwWUfW2081FtG4FbaBq6HrvES7mVNx0770jbsrmvb/qa23T6CYx/XtsNtaWu72jbtoR8wjFv+h3GsbavaNq3heOq3uaht4yWcb1PPt4bzwRg4bu3VcBVOsJDCtuFQn3tbwYJLgfd4fuwdHA/XQ8dSPxh7OB7q6YbwXR5gHmBu4nVE6wPGmGDN4Png2GP2yfzwlDANdHx6Sjr2AB9D+j4u4UhjLDhf+l2mZURzSqttBQfDp/p3x8n3noQJ5isdg66R2hZ8QUREROTjhhu/iIhIR7jxi4iIdIQbv4iISEeMJF6kkLRHIsEGhBsS+Ub4M4SEOBL+NnPmBUCSC/iM+FcRSYArVroKNNU7uBiS+1BkwkFCkQwg0eqYinyr+jxPIrw/Er9Ioorni2S3AdpAVhtoDOpHgl74TLBfeChBz3h+HLgXkvbg/gZa7KnQSNdHwuUEYiAcOgz1+mjNoMxIz5juY03rqB57ylsy0NzQPITrn598ne1DqN6dWwJMSV06FN3g20pfCpLp5vxxlgOzfjyFtWe8u9HahPfTX/wiIiId4cYvIiLSEW78IiIiHeHGLyIi0hEjJTdRG0HpdCTZkdxHx16Omch3CRbgXHIfNR9AqNtBvz0dS6l/Z0+6gkY0Q0JZCoQulLTwYsh6zP5eHNasMpFYtUjQw0HIgMvUKpKqWH578vmP5T4iFhcpPY+fe5q0t+T+0jWHa4GOReEvfXZwvnAN0vqYUklxIUMD2RYSMil9cg1t9H1cTbWREwPTDx+d78k/mqnHTXtMKu2lwt5c37n3LDp2wbchFYn9xS8iItIRbvwiIiId4cYvIiLSEW78IiIiHTGmpXVJ0CPH63KsAlUq8l2BtHcB/aiU7aw4BLc3QllNSnS6hbnZkTu0QO6j8o8IyUNUvnGBGDIdQNKih0zSFwlGc/eWinznFv4ITLp68qTDVOqJBZ5UYFsyxgnHn1vkS5P7YuGPSusCKOhRR5pDEv6WyIenQOV/KTkR3tEJ0gUpCXBN90fXAu83bSfrsIA1ltGlcfFSMmnvhIDXOsYpndO01FQaTscI9wl/8YuIiHSEG7+IiEhHuPGLiIh0hBu/iIhIR2BZXhLOUpGPkvZY0KsnvAqT+4bbR/Vi5mQikoJA7hvXVU4b4BpJQKEkwDR8j85HAkpc2jXth1IJiFt7KFUaluDF0qxtrhTlMyAWbsKSsrTmUK4J558SDekCSRoLWSJ/zkKiXJh4h6dLBc4zi56xkBhCaX447ky/dB5QhiQvFr4NXMYYygmHoi0mpUIS4BB+BNJUvVjaW1C2fOl6O3d57iXfKX/xi4iIdIQbv4iISEe48YuIiHSEG7+IiEhHjJS0hOV2w9K6JPJRIh+1bckfuXlQ2/Y3teMp0tIB5KhVLXe53lyWtu2qSoCkBKVXswa779yiCkpLJGSByDdRSV+S+0gMnCnLGws2C0rr8jw8+bXgHGJiWliCNxWFxqwEbCr8zQljKJhhX7i/9HzYMSx7+6NKdgxLE+N94JchB6W9+N2Bo9PSwfCtj0VDEgPDtRlLe2EJ6TgVLywzHkunc2OnnFnko2+Xv/hFREQ6wo1fRESkI9z4RUREOsKNX0REpCNGkicu0vK40HZ3k4l84wQSwnVN5Bt2j2vbvop4s3JfLFFBch8JFbUbyiskgkDAH5NKKUskkP0C8QgEtukI80xlflvDuEIUutKysLQeoARpnCaXSnuhNBlDEhRdCxyaLq3FyX2pULckIY2GhbnGe6YoTBo2/ckTvmMTDZLebiiXzV0PMZeaWU9HohycDwfJUlGJMVwzmHYXJuDhO0vjko9L36il4mh6z6kgvKDNX/wiIiId4cYvIiLSEW78IiIiHeHGLyIi0hEjiXwbKq0LJWrvgMhH/VDkg9K6KPLtrmvbAUrFLiWVIkgyWm9K2wCi1hCKLyRg4T0vKOmIpCl9KSSptNaGqZ6TJKNc+IO/X1HsAWFngUiTJiKmQhzOQT0yLvm8GEpwo3lYIj09g4SzReIdDUsCYQqJfDPzF6cV4sHhGk6PTcfFBM8wLY8EZvwuhAJzWkqbpN8FqZVz52SL8LzSXirv+otfRESkI9z4RUREOsKNX0REpCPc+EVERDpivByraLUFue+Kkvug3xZqnw63IOhBaV1K5COpDVO8Tig3iglulEZHqWmpeDHAde8XpJ6R5EKJdalwNiPe1UPTsrwk8LAYOO3gOW9qJOJEa4nujxLvUonnzHINEpbRjcuwUmlimv+PK3E6XViyeFggqKbQexyKfFNYtnZ2nCXrcIEgFpfqpWNB8F2URHru9/MU6ZTmIfz+nPuZ4LFQbt1f/CIiIh3hxi8iItIRbvwiIiId4cYvIiLSEeMFCXph27iCJLQDSHsk6B1A8CKRLJTVTik3irIJyXMk4qSlIyml78wJZ4vS/AiU9qgELzwnOB0ENv7uODAPIPzxsfUah3VWghSvEUsEQ/rbXInhci2ZSIblUNdQ8/ncLJWWzj32uQUs/DbAe4y1Z0P5Ni2jS9+PU+b03ImI6XczLAs+ULJjdHHLZLV4XpakHJ4iUT6DpL14XCxjXL+t/uIXERHpCDd+ERGRjnDjFxER6Qg3fhERkY4YUeQDaW8DbWsSZNI0uVBCiMWJc4tIrXFaXioAQVoSsajEJ7BIFllAKvy11lgYpPAyLNNZUyCntHQwyEiUQkiCUppgiCVzQ+EPWSKc0Tt2CmmSWirghmmRKalIhjwLaW+phPYs3uVQ5ENI+GvZWoglx3Rel3z/n9VzOvdeRsmyJNLv6zfTX/wiIiId4cYvIiLSEW78IiIiHeHGLyIi0hFu/CIiIh0xUuzumqJ4yT6fwHRO6yenLDQhqdY1me9Y2/v3v7rFDEv+9krnlerQbxbEw6Z2dmrbL2Si/0kCsIUP//si/l8C0G+s6w3XEazL2AxP7fMTWFL3HGO1oS2NPUZgXhGsdw/Piebw3Lb+Us5s9S+q6U7rg6D/sUOx2OG6pu83gs/uvP9janZoiITm/y0B78kSgx+eCb6L+9rmL34REZGOcOMXERHpCDd+ERGRjnDjFxER6YgREns5nhf6YR36UJyLZZGnENm4KC4yZcGxqZQyLBHEBnh2IEGtQAI8d236U85JIt9whHHOLSCSDBYfC4ISyk2hyJRCUufcvKQiH8Vqh0LRjxXPStD7KKms3GZkvAVCbxrPG0cr03OnS0m/SUdog1cChb/0eabv2AkC7UQRx/TukIAI50NBjweubSTV3hrZKyIi0jVu/CIiIh3hxi8iItIRbvwiIiIdMW7A2iORj9qwbjMJByQBUq37BeJKnPA0c3w8zrnToBYks6HIh8LHBtpA4KH0wjSpDTgp+ZAeH4yzAmFw2lXhbCJRaAGU+kfyYioexf1GeHaxmHZC8tuCRD4S+TBNkb4XsNaHMUyVDNc/yWpTmNwXJ3qGzyT+xrXG382zp/mdObERB1mQiHigzWiB4JimA6bf1tbw5zPNDX5L03VD32uaf/oWwrvoL34REZGOcOMXERHpCDd+ERGRjnDjFxER6YhxjSUTQahIRR9qO7OQckqpTCzJmQp1oZQSJ2ydu+znAimFRJNU4JkWSkexUJQmDtIapuQ4EmQWlA5G0XPBM47PR8+dnh2t6aXJffDsJjrnHsodp8D5hglEynDN4bySaLg+8++gBWVw59rjVL10nDBpNU3pSyFFGlPsaL0tkcDDd/EAv4lXM9I1CqC0T6Tf9QUpmiTyTY8fljZ/8YuIiHSEG7+IiEhHuPGLiIh0hBu/iIhIR2BZXqjKy+UbQbxAMSSVm0BawnQoOnYNCWettbaG0rUkR1GJW0prWyKbpODcgISW3hsNQfOKCYsgE62XJTGyHEiSaShXhusrFaOoRDCm9EVnm2FhaeknPd9c8mQsHgETiHwo/BFLZDW6F/qG0DuLdln47cJrOSHp7aOQaNhm1uuCUr2xhJymH4altBuU9kbOXcocS2nX9UEi3wFebmprrbUNpU+ieJ3tZUj67EiqhfXlL34REZGOcOMXERHpCDd+ERGRjnDjFxER6YiRUvqWFJ5FQY/6YWJUJvyR6DZtLvmC6HgSAUmUIzmKRykMabpdKHdMVKqURBUKxYPzrUd4ThgIB9IellwlWXAmvS0tf4oJYiA5HuHCl6RK0vo6s/h19vLOKXPXvChBMuw3I7F9FCzpC2OswgTIWMI8d7ImAd+FWemU3r0FyaipoIfpb/TswiRMLKU9ZCVqj2GaJUF7Ry7ynaDuHus1btN3IiVM0TzSM4Y2f/GLiIh0hBu/iIhIR7jxi4iIdIQbv4iISEdkMW+txWl5aYlClO7SpKtU2GutNZDipjW0UWnG0O8gTWsNYzQoo8gnzCTHY5guNZEEEsplazD+1huQ86hE5Mw5OTQtTLWiP1VR5AslwLAE6VwKYTndmSU5PF8IphyedIIzJ1KGDGGpZEyOW6ffkDOnJD4F4vK4VIIaOJI0SamLmP4WpvSN9Tt8vAEx8+Kqjgunw9TFMHkVv6MwBol8B/q4zkBLaYI3Dctk4zN+8vcufXf8xS8iItIRbvwiIiId4cYvIiLSEW78IiIiHTGS+HUAMWFF8kSqBqIslckTmHBG0sZMch+JIDuqZghW3DG8xhVc4wi1jTcg/KUyJLkmqX6Cqkg6/9QNJJX1CPN/QkrckIp3NF+0NlMxihIWSZA5JcnrjKSlVFHkW1DC9cMTZImDKBRR+mE+ciUVntJ7hvNNkGaJ0ti5OeGZoOxGaW2311E/lPtImqRjqVR7KJel4Pcf0zYzqZaWEQZAwrXM+n7wD/T9p2RCLIcd3guWage5cnV1t7bVI0VEROSTihu/iIhIR7jxi4iIdIQbv4iISEeMmE6HIlOVFdJUt7gcKl1KmIR2oJqyjaW9HcgYWJoR+pHINwxxsV44H0lZ9chUNiFZk/66S1MJoeJk28PAE8gsI6UXtplnSmuESMuapgmSaYlgupYlqVtpclxacjW8llmpdokIGEpGA6YpZqVd4/k6d6regtLLsYQWhuLNgXLfuUU+Ap4xMVB6KsmfYfoeti1IuyOJm7+tfPxE/iH0w3c0vb8w/RbnmoQ/uD4RERH5hOLGLyIi0hFu/CIiIh3hxi8iItIRI4luBAkQGxC6MNWNyuBGo86VUaxtc/dBgt4eHAsqzchpebVxDdIenQ+lvbT0b1hGNwUDscLrQ/WHJovWR2ttnZbVTGUYKjcKxs1wINkKSjzXXiwfYhLXwrS8Mu6TJ9ahyLcwuQ+fEz3ONchbOyjdfMx+e1Ai3EBjLJH7wmOxBDjNP80VrCNMYGutDQulvzJOKvKFc439tjXBE59T+g1YP/3kRBK26fv9VEjfx3RdQ/okCX/+4hcREekIN34REZGOcOMXERHpCDd+ERGRjhjJYSCRj8ojkuhGqgL9dUGy2hKhgtLkWmuNfC4SAXEe4P4mimla0cEktoEYiEmA9UjSf9Cdg4NpalAnCv1BSgck5rzRVFPEVEOS8Sjwa1fLksbpaktkPGJBqtgiaW/hvWGpX+oYCpJ4LAhnLO3B92dJqt6S0qd0PpDQJpJOKW1t4NRKTpp8csl32ECSZprSRyIfpTNCG5bWBfAZp2l+eMK61tdYaroeSp9v6tda/j3D55muL0yzhLVE3wuT+0RERPrGjV9ERKQj3PhFREQ6wo1fRESkI0YS6kiIo9KzJG/lAW5PLvKdUjKRREW6Z5Yc4YQg8pG7hW4faSBwPkoCTA0S6rYOj6XnhHMdCoRzUPLiTMhfJRR7YgEOktSwfGYqxdFiSAW9lKchJKapden8U0IdJd5RedY0sZGkQmojuWxB6dMJktAIrBSOSXkzcxqKbZTMhkBZ3tay0rpxqeSZFMKPsihhEU+YvduYIgsfH3qbFof5paIiphqCAEprk74124t6KF6giIiIfCJx4xcREekIN34REZGOcOMXERHpiBEFPRLvqDwrJcItEbdCTjkdleDFUrOhnbYHN2cNN3iACaOAP7IAj1S/FxhhXJprmq+0H4mBaSrbKS4MHc+JgyTKpeJdKPIdQKQJxzh7ql6aNvisCK8HE9dQcnzye+EktKy0Kx1LKX0TlYVdIkJSAt4pohv1pVKsIBFiwmUo46XS3rlLJaMkmiZKwntMx3KZcPimn2Aws8/+DN7b8J3wF7+IiEhHuPGLiIh0hBu/iIhIR7jxi4iIdARlS8UpdmvyfEIJEAXCp0Aq8tE1phzhfFRul3Q3SvgjoQ4FSXBFSPjbUEgZSDMpJCOR+jMn9aSODN8zJXQtSLIDAYjEKGSBtBenA5454WxWtDp3klpIKgEiS1L6lpR7DcESqVjynMel94zmC9cSpLUNe1jrYQnkcyc7Eigk0vtJMikk8lEJY6yAvIbyvXS+Eyx1+oYPqTQcrn96Tuma8Re/iIhIR7jxi4iIdIQbv4iISEe48YuIiHQEyn3kdqR/IVDJW4JL64bHhtcyBwuI2dgDZTKF5XvJ5KPKllNagjcUA+OKt6HwF5dmJYGqtbb+EYlki8rtPotxz319aenZU44nnkUiWSrjhXLTIpHvGSUnUpLgQPF7YUlaSvhL0w+x37nnkGTIA5QSPobjYspkaBbDsePM9wyh+UdR8bySO64Z6OcvfhERkY5w4xcREekIN34REZGOcOMXERHpiJHcghXoAFRmNk34S8W59HxPA0rao+umNgp0OqDIB8l9cC1jqOPRNWO4FEkz+9toDDw2LHN6kgT1oyo/SzIYlv6F9U8izSG85gUiH6e/hWlrJyT34Tnx0AXpewsEMbw+smUXjIspcWE/TJQ85VroXkBso9S6VOhNxUda6+k7G5eqJiEuTLPERD6afyqzfISUPnruI/SbvR74vi6RdxfIlRNE7PqLX0REpCPc+EVERDrCjV9ERKQj3PhFREQ64oQoogqJdySXpaV6SZx7GnIfyngLxEKeB1SAaj9oW8MFUrldTOnD9KsziyaUQEXCX3a2ec6cZEcCIl03ij2hqDWtN1G/JSmCqciH4tZM+hjKW6Eoh3OD8ZNUvLkyTAsEvXMnzNFaX5BoiKVU555JWpYXpDhch7S+aP3TtYSpdShD0hyGEmxcPpz60XM6wH2s4Vg431y5bnx36DtMxy8RmOn9DNemv/hFREQ6wo1fRESkI9z4RUREOsKNX0REpCPGY6hgpSVgydkY4OA1jHsEIYgluZxnkfxHsiCV78V5gD+9NnBCaltPJKCAqBKm9KUlItHbwpSsmb8rU6FlSb+03Gg6xipN1SOhK0w4oxOm9xaXqGXBDlPJUoktnBsC5yuVHFN5EcvMkoUcznVK+kxmTwDJkKnESZz7/mgIaEORdU/yG0mAtSzvtMu+Z6tNXdOctgnrg8adEw0hOfFZEJebhjZ/8YuIiHSEG7+IiEhHuPGLiIh0hBu/iIhIR2BZ3rAaJ6bOYSVJUD6obO0Gy9ZmFzPnpaXlKQmSFye4FyqPS8eSBEjHUkrfSKViQ5FvUWIUpd1hUFsoq7XGiyQta3ruUr2pIEOkYlpacviwoDQxSV+Q3jZbWpQEpQWlemPOnmYWinxnltpoTWNSJN7bjJxH51zyToQlczFdMBR/G6WEpsD37HjzuLRNt9dwLMwBzN9Act/l3dq2CUsEt8bJf5SIiO9TtkZQECZCqdlf/CIiIh3hxi8iItIRbvwiIiId4cYvIiLSESMl26GYhkl00I8ENjh2QxIgRMKRU0Ky4Jx7kib3Tam8siCRbwuTs4XJpvnHspMk8kHi1LAHGQZKZRKx/ENSyUzJz0VJY0QqzxEkg1G6HSZihaVPp6xUb3of6TPB+Z8rAUtlXKnUcvrscJBQTKMyrjMlUcvpUpEPJaiwDHEoUKHMRe/x3LA4zoJytiDAoYyavjs0Rvw84djbm3o6EPmmG5L7svXRLq5g3Ho+Wm+z5ZhRTIbrwXWYvbco/IWJgfRO+ItfRESkI9z4RUREOsKNX0REpCPc+EVERDrCjV9ERKQjRrLZJyq4HiZ1UrcNauqV3MDPY0OPdH/Ys54zvR66vTUY/BtouyCrn+J5yeDfVwt2dfOw9ts9qheI/0ugtk0w7oqsd2qDetgf9gUDekFM65K61GizX9yDfpkFPq3gnhf8D4PUnEbTPLXP20yUL1jD6f99wXcHI6upH8S+0v9CoblJ5yEkXVs0/zQHKzjfKSHIGPFK/aBtaDBfh/Ma/GTr0/80omjfaQ/9KIqXjHnqB0w7WFvh/+YYruu3tbXWVvCdi/9n0HhZj42uZua5b+5E4/qLX0REpCPc+EVERDrCjV9ERKQj3PhFREQ6YkH+Zi61kYSwwjr02bjUbU7tOEUEfFLSeaB+A0guq9tag5oEveH6g9r26P3SdnzwXm17eL+0Tdd1DJRhCKpzveGo2oFEMhJs0hrbcL7hokozVHd7dQdEPpCHjhf12Gmobbg4SZIj0QdESpaqMv2HojqnTZ2X1jj+80Bx2dCWx13DsfCejOF8DccF0t4CGZLuluaKQOHvhE9ULByH141D0zqkY0nkA0EP43lBJGZpL4ziTaHzwTWfsqJRSoTv1IriggmK4kUxOZOBKWrYX/wiIiId4cYvIiLSEW78IiIiHeHGLyIi0hGx3Edlg0nQy0U3qBH85IGBJwkyi3Q/rL1MaVVhXeodiHy3VbJb3VSR7/j+W6Vt//b36rDQdvtelftu3ntQ2nYP6/VNYUrWMJOItd6G9enDc27uVmFt+3xNsBpf/FS9lhderm0vf7a0rV78TGk70lpYvVCaKP1tP9S2cZslGqJ4RNcCUs9h5m/9W7DTyNlLkzAXvWMk/KHcFKYkpimO0cWxyHcIrbuBPqQnsOQaUfij9L0Tr+n/e0L67lFKH7SdW+Qj4NtFAjOm4s1998LkvyMcP4z1WzhsQXwMhT9c1/Dc/cUvIiLSEW78IiIiHeHGLyIi0hFu/CIiIh0xkq4ABQURqlSainyb8E+OgWQRbJs5QVgSFcehUqAkw6AFBSIfSHsk97UH79RLef/t0rb/4XdK2/V3v1va7r/xZml7+L06xqO36rXsHlbxZfcYyveCTTTMlGNeb9MVBsdu6rHbe1WQuXypCn/3Xvs0tL1S2q4+94PSNr72er2WV79Q2g4k11xBydahyjqP01q2CMwpnG4/IyiRi0oiXwqJvygI0xAwDyR1otAblsdlcRHOB1BSYVpUegXHHpbpdDFL5GmW9rJSyfR9xLQ7StA7ZCV4UzFwoHK5AJfvPeG7Bdczra7r9UBJX0o/XF1BSihAaZ2UPukvfhERkY5w4xcREekIN34REZGOcOMXERHpCEzuYxkvK7dLx2I5Who4TcXDfqleMwNJeySMUL89SBtUWve2JuMd36vpeweQ9vZvVUHv/X9Y+93/Zk3pe/e33i1t732rJve99UEVWt66rXPwYJ/N9XYmTnHG+XtiXgLh71MgEL70+R/Wfj9Z5+tTP1Pn68UHNTnxAiSc9WtZmtbmbk0MvN1VCYqmOk3PI0jia62140mFSD8yNqXEYYJneCxVaIZx6VuTindp0t65IflqOGHu019qWB6dvl2UJpp+96AfleAlUY7kvrRfXKoXZDyUAOPEQLiWuePDkuJpKeIjzTWUGacSvPT98Re/iIhIR7jxi4iIdIQbv4iISEe48YuIiHTESIIMhf+kZXnJ50LHK0zkW5Ko9+EJMtkhTfgj2bBBiclhV1P6ju98v7TtvvtGaXv8O98ubZS+99Y3oO0f1IS/b75TRcM3HlZR5X4o7f34MSPdfITLt+oz+ek33ittX/31Ooev/UKVMF/5oJ7vHqyF9VegHOrmqvZb17ZHu/pMdiCmHUj4OyGdblog9xED6LuU1jmCBbg+hsdC7F8YBBiXHF4CpxfWMeZKitO3mTQ0FCnpnCTyHeDdgTK6A6zr9BueinwoxC0R55ZAyXskGs70zcfJ5gvvjkr6wrOjkr7+4hcREekIN34REZGOcOMXERHpCDd+ERGRjhgpkS9NViPhjyC5Zp0KdksT+VLoeo5VsqBkqmF/U9qmD2r62+HtmhJ3873a9s43vlXavvd3akrfb/9mLa37a/frtbwLgliPXMNC/Pr7db6+/vdqwt+fevNhafvq21Xu+xKM+9y2lgheXdTUre3zd0obJeo9BgnzBtpI+NtB+eQ5lshuG5CtNvBhuRihH3yTtnDsOGfFfQQU+UKZkY5F0RmzSOvBWMp85kN6BBGQvs0jzDVWLCZBD79nIPeRBEjHkhQXptNNeH2pdH3mb9wp5yNBD8oJD+ssSXA4QmlvkCGpfC/OP+yr/uIXERHpCDd+ERGRjnDjFxER6Qg3fhERkY4YUTYJhT/6q4FEPnJwSK05c7XW5ZBsCALKaleT8fYfvFfaDu/+oLRRad3vf/27pe3XIZHvV96r5YDl6fDLkPr33f/jm6XtT0AZ45+6rMlZ916oZXnHq5dK23q4KG0k6L3zuIo+JPxR6t8pkDBIkLBGIt8dKKl8B2L6rsbaj+S+tPRvCorJMMYKRT4qjZtJgK21tqYvYvqRpIRRLMsL0hjKeJT6V4893tRvISb3YbldkOTCVLwBSvCmgt6yUr0s8uHxIPfxODWRD8clkY+uRblPRESkb9z4RUREOsKNX0REpCPc+EVERDpiJEGGS+s+uXoXH0npeVRu8QDSBh17yjn3IMOEKX3Hh/dLG4l8H/x2Lcv7zm/U5L7f+oYi38eB33hQ5aYf/q1aZvmfBRnva8/dK20Xz79a2i5f+HJpo0S992/qWr1/XdtSOa+1POWPZDeC0vzubavwlEuAte0Sjl3y7SJBj6aF0/dqR74Uvj4UqsNS6CS2obSHZc8pJa5+f6brKrxi2+OaetlI+LuFb1xYbhcFPRL+foRgmh/dH5YnPm8yob/4RUREOsKNX0REpCPc+EVERDrCjV9ERKQjxlQgIUg32OD5ahuOQKIJMSfyEaE8MYD0hOUpQXI5QErf/p1a2vX+N98sbT/8+2+Vtq+/r8j3cYVKIP8PIPz95ef/dmn76Zc/W9qe/4XadjGOpY1S+t5+VNfvYSa57xEkDhJ0PCZ9QhtJex+A3JeKfCQGktx3Aal/6XePSgmTpDiRQwznWz+FyFIswXsAWZmAflR6vN1C6fFQ5Dte17bpJvzGheVt+Tufp++dm2FT0zrxGklAxH5QehmOxdK/cH3+4hcREekIN34REZGOcOMXERHpCDd+ERGRjhhJwlkCyT9DmA44gLQ3rarIdNKfK1SKcgJ5BaS94QDpUiC0HN6vSXsPv/dOaXvvt2rbb/6gii8Pw8Q0+XhwDe/E3/yff7O0/aXP/e+l7Stf/Gppe+nVnyttJM6RsPfOgypptdbaLciBcyLgR9nC2PRdoX5bEO+eu6zv/O6ylirdQYInSYAXY+1HEiBJe0cqowufpDWIVjR9C6siY/IfiYr43Qu/cdR2AEGPEkunUOTDsrzAMEKJWpL7UrB87zIJcNhkZXRpbLw/FP5A2kuvG/ZVf/GLiIh0hBu/iIhIR7jxi4iIdIQbv4iISEeA4sKkvhnpBkcwWjYg/wzwd8gqLMs4B6ZQofCXyTDHRx/UtvtV7nvwnZrc9/ZvVrnv1+6zbCWfbN4C8e6X/9tfLW2f/kf/19r256rw9+k7NSmMhL23oZRwayzynVvuozYS+dJxWwulqpAVxI6uQO6jCql0zSQw03d07tu6gUw+/BrSt4vEL0rpgxK8R0jfo0Q+KqNLx2IJXrg+SqKbjpBYV0dYVoI3Ff4WlvnFpL0xS/jDtMIUWB/+4hcREekIN34REZGOcOMXERHpCDd+ERGRjhgHiIKaqEQtiSogtKCnAo0wBCdQhdB9tNbalpL/qKwvii9VSjlCCd7rt98vbfd/u4p833nXcrsyz6+8V9fH6//Z3yptv/RHfqm0fe7zf7y03YGyte8/4sS0VKijflcwTprcN4bJoZz6B+l78BHZwTVfwBhH+igBB+hHx04gBoZDtNb4m4uQwAxtKPxBvwnKkWPSHrWB+YgJc9Sv9mpDKHCSOJeWZCfwWubkvlBAR5GP+lFJ31OuJ8Bf/CIiIh3hxi8iItIRbvwiIiId4cYvIiLSEWC+MamUApUyuR/oEySzpFWD58TAFZwUdRFINzrePK5tUIry0Q/eLW0Pv18TrH7ncVaKUuT3+Bu/+v3S9uX/7r8vba/9tT9V2j73/GVpe3gDIlhrbQrlPiqx3SAMME3zu4F0QTo2TRZMBb1zQ8Lf07gSmsNhlyXyofAXzhem6lHCHJWZBUggXCKrcRIg/K5NRTxqnDuWEvlS2TAswYvHwlxPtIlalldERKRv3PhFREQ6wo1fRESkI9z4RUREOgKDs3bge5A0wyUmScLJLiaV+0i8gOqNrbWZGwTZgSQXLDsJZXmv367C3wdvPiht37+hosUip/Ff/6f/V2n7a3/x/yxtrz3/c6XtCDJda60dwpcUEzIhaIwkNCoTvETk47Z6LQS5jPQ9o5LiR5iCIzWGrFglw28fSsxp6XHqB8Qi37bKozGpZBeKbkvEwDTNb64sL44N4h0m8qX3QufDucmSav3FLyIi0hFu/CIiIh3hxi8iItIRbvwiIiIdMcbSDIgve+hHJTBJuOHSv9VcQTcP2ubyokg2jAHp43hdhb+b92pK3/2HpvTJ0+HdXV2Xf+/f+fdL21f+y79Z2kYoodtaazfv1/VKKX1rkPGItMxvCsmC3C87XyrOrcJxQ1ctL7XbWGKOD0/Lzx5AOKYkuourbAxqo/NRSd90Epek4lGJ4HTc2esBQe+iio/LpD06top8E8h9ExzrL34REZGOcOMXERHpCDd+ERGRjnDjFxER6YiRZDwK9+J+mdxH/dj9qY1rsGFSgWdu7GmsCUpYzhBEkAOUwDyC+fg4jRATOQP/1f/066Xtr/+Hb5S2F65Yg73/zqPStppAtgXZDdMAw5eUpD1K8yOo3wZEqw2MsYHro2NJ+ON+mZhM/eZuF4VGSuQLBeaJEktBEBuOsEZIigOBDUU3EP6oLG+eoBeKfHhs1i8V8VrjRL4B9hhKOhzWlJIIY8OzQ5FvvIC2ei3+4hcREekIN34REZGOcOMXERHpCDd+ERGRjhjJy7kFWY2kPepHMh3LfbVtBeILldulFMG5v2AO5HJsoHThGtqACaQ9aiOJR+RZ8nf/6r9a2n7+X/svsO+3vvVeaVtt6xo+wAdj3NSXjMtzZ21UvpdEN2rbgI1HIt+SlD6Cvl2pmEzX3BpLie0IiXdhuV0EBLFhA0I0yH141STAUUof9KMy6Gm5Xby+BaV6MXlvrgwx3MsKkg6nde13DMvoEnS+aVOvcdrUa/EXv4iISEe48YuIiHSEG7+IiEhHuPGLiIh0BCb33YKsdgv9bvbUVo/dQSITCXppStYFRF3NyXQoGZEcSJILyCHjZU1BWkOp0xlfR+SZ8d/8b/+wtP35//gl7Ps/Hmrf4w0kaYKdNqwyuewW3tHHt1XKokQ+Ev5SyJEjGY/AbwV8U0hWxmsBJW7uSrAsLyT3UZoftqXSGMwNJdFN8F2na57QXwvFO0oMBHAOw4Q/TN6jlL1ZuQ8S9NYwXyOId+k8gHyOyX0g8pncJyIi0jlu/CIiIh3hxi8iItIRbvwiIiIdMVKqHol8j3dV5Hi0q+LFNUg4JL6QNINJVSCGrMBb2UAJ0dY4cRDHppKVIHOstjUtaXO3lkK8OqV2sMgz4p/48/8mtn/hF/+p0ra9qC/f5hJS+g4gGcF7N8D7fbtA5KPUv1TaI45cK7wAOXRtDR+VCRLwjlB6fJrR+zBIMCxdi6V6SfgLj81mprE8RwJbKO1NOyjfC5Cgh0DKXlpCt82MwSJf3RMaCZJpch+V5aXkPhoDrs/dSUREpCPc+EVERDrCjV9ERKQj3PhFREQ6wo1fRESkI0YyY0mqJVs/tfrJrCfQ6g+haN/WWtuDbUv/k4EszNXV3dp278XStn3uTmm7ugt1qUV+xPxH//m/je3/7n/wv5S2/Z3nS9t2dy8ah6J9D/BtIIOfvkm3+8wCp/9BNBfnnbAJs7ep3wC2/imRvUgazwtg3O8xi1vG84EhnzIdKfoZ/kfAgjHwfxjQ+eh/HYDBT3Z8a7x3TBv4XwEU2Utrk6x+iuyF6znAb/lb2AP9xS8iItIRbvwiIiId4cYvIiLSEW78IiIiHTFSfO3uUCWQG5BwSOSjaN9DWKu6QXwnjUtsKMe3tXYJ5yTZkGSM4xbkvrtVeLp46bnSdu8z9diXvn2/tL0L8yVyDv6Vv/KHS9u/8X+/GR+/v31c2kjAGje1bXNR1/WE0d3QRjHbYdsSSNCjCOC0H7nKCzzDWVDaWyABTodMpIxJY3yBYZ31iyU5HITicMMY3jYj8tHxFLEL0l4LY3z3tHeTGKvcJyIi0jdu/CIiIh3hxi8iItIRbvwiIiIdARZBazuQAXZQB5pEvmtI2Dqzg4NyDV1fa5zSdwNWxAGSmtbbq9K2eumV0nb1youl7S7IfZ+9rNP9blhvWuRU/sC/99dL25v/yd/HvmuoPz5BzXRqO4AMfAQpd39bjyUx8NmIfPU3Dwl6lPpHbSOYfOSbpZ5za/zdxF9qC+S+AS4ovkSS9kDGi8U7kuyobUENewKvL6xr39pMch8cT8IfQcI9rRsS+TCVNl1HIiIi8snEjV9ERKQj3PhFREQ6wo1fRESkI8Y0SYqEP0rdIuGASmUSKwiMIpGGEgPnoHK9W5ADH+1B2Ll6qba98OnSdvHqq6Xt3udqwt8Xr2py0zc+UO6T5fzL/+LXStuvPqrlom+ud3j8mmQmEPmIid55lIyeXNBbLyjZjeeD05E0TN8fkgDT7+gpyX3xLZPYHMp9mNIXPneS+1CUAxkvFfQo7Q5L1NL5iFQqpHFJ2GszKX9wTpL2CJI6MfUSJdh6LO3T/uIXERHpCDd+ERGRjnDjFxER6Qg3fhERkY4IjQgmlfZIOIDgLJQaSExIS/W21toGjME72yqlPIQUwqurKket7oDw95kvlrbnvviZ0vapL3y7tL30bi19aqle+f/jpU19ef7gv/Wvl7a/8faj0kYiXmutjZc1aXKaScP8KCsoff0sIOEPy+OG/UgEpjHIuSMRL50VupbWuNzukIp3S0gT+Ujuo3Q6lPug3G4q7dEYmPqXiYYNnjvdx37miZJkd4T8wwVuK+61qSxI+ItfRESkI9z4RUREOsKNX0REpCPc+EVERDoilvtIkCEZ5rCqxgGlX2GaELgYJDWg+zYr/O1LCyV0jaua1PRgXc+5oTQ/kPuef/0Lpe2Vr32rtL3+W++Vtl9577q0ifwef+Vf+qOl7dGX/1hp++6vfKe0bS74lb+kEp+hZDqCbLgG4W8FRu8ALz0JdUuS+zZ0Piq3ixJgPR+1peejxMDZND9K3zvW7xmX24VjQYAjaQ8vhUS+EUo5L0naIwkQSt5y0l52PjqWJLlbTMXj9yEto5uypJwz7ZeYPnnqRYmIiMjHFzd+ERGRjnDjFxER6Qg3fhERkY7AzC2S30iQGaHfZasSyA6kiA3kX80lWH0UEhiOEx9LZYIf7SDNb1ev+/FYr/veHUjzI+Hvc18ubS++/kZpe/3LPyxt3/x/aunUt26fQWKX/NjxT3+hlnf+0r/w50rbGw/qmnnzvZoKeXHFch8l+q0g9ZLK7ZLIN27q+0T9NiD8baFfKvyRyESAl4yJfCzt1X74fVx4zUMs8j25SYbpdijPQenZsHRtfCzJfSTt0fXBseSm0jpHuS8sQ98aJ9NSct8KVhitJTgU4QRJWofQLxtCREREPgm48YuIiHSEG7+IiEhHuPGLiIh0xEiyCQk3JKBcQr/rVk2HFcgYKTNVRAtz4kUDJ+4aUv5I+LuCRDIq37u5+3JpGz/zE6XthddfK22v/KGarvaz3/6gtP3yW7XEqnyyeP1uFZ5+/q/+idrxp2tK35v3b0vbLazz7SVIVa21w76+P5SqhxIgyn2Z8HcFJbJJ7tuOIAtSIlkY8JdLe3AsDLIF0ZnGoH7buc8jpZFSIh+1pdC3mdqwPC7JeAtEPhADudxubSORj/aEPSby1WNJCj9F7pugL3mU6ZNLxUBuM7lPRESka9z4RUREOsKNX0REpCPc+EVERDpixOAm6EhpfqsDiIGQoHcMy/KmqVs7sClIxpgbh/qS8HcDwtNj6Pc8pPkd71Xhb/MTXy1tL3/tB6XtS999UNp+7u9+r7R9/f2b0iYfDy5BuPkz/0xdH5/+0/9kaXt7U9fWDx68F417dcVyH8lI+1sQq8KUuJGkPZD77l1WyetOKPzhNylMxqOEswEFqkzQo5Q+FvngG3eoYmZrrQ2HmsaI5XYBEuAGEvToWBLvqCxvWFqXZcHsN+e5Rb4dJvLV89Gxc6I5jU2vyRoi+Q7H0Ealcve4U8OhYZuIiIh8QnHjFxER6Qg3fhERkY5w4xcREemIkcQXElU2IGNcrknQq4OQPJFCZUDp75UVyA+ttbaHwemcNyj31bbbQ5bm99wdKNX72h8obS/8TJX2Pvv2+6XtZ+5Xke/xb7xT2n7jAYtC8uPFX/jTdS28/s//mdI2feWPlLYfPqrlWt+9riIY8cKdmeQ+km0hBozeHRLqSO6jsUnkuwfpgs+BBEjfpFQQXgLKz6FUSN/HWWEP2kl2ayDe0TVONA6W4IU1QuVxSQJMy/yGYiDtHanIh6V1QzHwQHJfPfQk6PhVXFKZZNSkl8l9IiIi3ePGLyIi0hFu/CIiIh3hxi8iItIRI0op8OcASTjEDpKIzi33kYxBIl5rrR1A+iNfkAQllj7qsSSRTJfP13GvqvCHaX4/W6W93aPrei1QSnj9zSoGfuMDhb9nxV2wt/7sH/9CafuD/9wvlbbNz/3J0vb2+rna9vhxaaN1SZIcSUtzPN7U9UWlfgkqt7ukbQsfJQrBwzZoPMK7TceSq4apf9CPRD5M6dvPvJ/HKnGiCIjyHJxvoPK4WVneOKWPhL9QDISgVExZpe8tpvSFJXjT7/wcaSlo8vigajyuGzoWtXdMpIR+0CYiIiKfUNz4RUREOsKNX0REpCPc+EVERDpiJJGPykmS7EDC3+EIaV8o0mRGBB2LpXZnDEISPDgNsEJlPwka+gYaL69eKG3rT1fx6/Kn/pHS9mpom6w33y5tz7/xXmmjkr7XJ4hf0tqXIYnuT/7i50vbV//sL5a2q5//x0rb4aW6Fh5cU6JkVYJorb44k9KX8sF1lctSuY/K6FL6HgmI9F25gPNdjrXfBj5o9BpTP2JFiWkk/NGxYUrfcCTFq2FyH0LyHKX+hWV5Y2mPSvXStay3pSkV+UjaS1P6UrlvQk2uQmWbW5sv1/tRUgkQx6a1hNcCojn09Be/iIhIR7jxi4iIdIQbv4iISEe48YuIiHTESCV4t9A2kbNBKUiQ3EdSA6bnhfIDHUvC32xfEv7geBKA4muEtml7p/aD8r3r114vbVcgAH0Wrm/7XB3j7q99px77D94ubb/zbk0HfONhTRV7F8oQf5Kg9L0/9qmr0vblP/q50vYT//jPlrbn/vAvlLbplS+VtkfDRWm7OWTldi9BfnsexLmlzCVkfhSS8SiRj0S+qw1Ie/Di0Rgk8qUi8bmJR6VSu62xUEfCH7WlSXuU0kfzNVZBL03zWyLypdJemvCXVsHlxMZcfp4TAZNxBiznTPtq1mZyn4iISOe48YuIiHSEG7+IiEhHuPGLiIh0xEjSQJpYR8e2rHpvO0JaEqVkpcdOU56qNIHhQcoS/VW0pjLGaRlFSLWaNlUaI+Fv/MJPlrZhe1naXn2+pgNevVrP9+JX3ixtn36jCn+vf/t+aXvnew9L21u3VT58MCOCUTulH96GkVgko17BQ/kUiGSfhzS5l3+yztcrf+jV2u9rXylt975W5b71F36qtO2hRPNjkCYpaewCEuvubcNUthnScr23kBpIbOEaSe67B/N/B+Q+amPhr/bD7xSQSsP0raGVTlLbiEJcTUhsraH5NeCHhVL64EOMY4cleFECrG30HnOCXlgyF9r2YVneVOymbzqF+c1prSze1X5p4iOFSqbnS/EXv4iISEe48YuIiHSEG7+IiEhHuPGLiIh0xLiBrZ/kFRIYSNogUEwIRT4agY6du5K0ZCI5M5Tml8p9oR/ZJkjEOk53o2PXn60Szuru86XtxZc/W9rufamm+b301R+Utg9++/ul7TPfe7e03dyvZX5vH3Dq3GFXBbEDyIErsFyOYPtsruo8jJBat7lb2+59rsqQ9157Bdo+Xdq2X6rS3vjF2na4+3Jp221qwuLhus4BCTwktd2BF/kwUdnsmRfiTl2HVFr3ETwnIk7uC0U+Oh+10dyAv4ZQedYjfAtJ+CMJjYYdQJxbb6qk21prw7FKf2l2XJqql56PpL0jyXg4NyTj1WNRAsSy7HAtCxJaydqjRNs5uKzvk5t3abpgfD5o8xe/iIhIR7jxi4iIdIQbv4iISEe48YuIiHTEOEDq0xakKhIqSIBgkS8jLd/7rEiHTu8P+5GEQ8IfJWeta7/hqspq6xdq6tz4mZ8obZvXqtx39yd/WNoO79Z+N+89KG27h7XMb2utTWBCTWAKTQeQ3dZV/BrA3lpBkt3Fi/dK2+a52ra692JpW4MguX7l86XtCCLfdPlcaUtLhpJUS/IbSUv0zs6l2K0hPY4SxKhkLglYG3gmVDo4lfbonul8lDpK15K+s5TySVWp6Xz0/aD0tw19A1pr6zFLY8R0UupHFX1DkwzLjIdCNIl8LO1lYiCnscIFLmCprkfXmArfaSLfkjL2/uIXERHpCDd+ERGRjnDjFxER6Qg3fhERkY4Yh8NtbQXZBMtJkvIBaVMESYVkn8R/mdD5lgJCHZKWtgzvhqQ9TN3a1vQ35G59JsNzVfgbXgbh7/H7pW37qLZdXNdSvdPj2tZaw+c8HbNEuJb2g7Kkq6uaiEiljamtXVVB7wjS3vGitk0jnA9qtpJMh8maI5SFhZS+FVhCD4a597OuL5LiSMAioYvG5jK6Ty7ycXJfbSMJORWoUqntBkvF1n4QXtgOKzbTaA6XgKl1IemRJJLRuJTSR+V2SaSkNcjX8iM0wwGUIVPh77yX4i9+ERGRnnDjFxER6Qg3fhERkY5w4xcREemIkUSroYEARNIeRUFBvwGthkwCRGkP2lAWPAU6ntLywnKXbV1LwFIJ3kYiH3CAv9EomY3Tr+j6IMVuU8W0i+c+U9qGm5rSNxygBO/cM4a5XoXPGdcrjU3Q8wSBalqDSIkJi1Xam6DEKj0nglL1KEXzCMoZiW4ESYBzkIy3pBR3mkKI0h7Enl2OkOII10KOXJp6RuV207S79UDpdFnJ89ZaW89Ifx8lT0Z9cskxhaaG1n9YHTcfF9qWyJGYxDj3OBYk8i355U3DpumA/uIXERHpCDd+ERGRjnDjFxER6Qg3fhERkY4YUcCaKC4slKqoH41xeHK5b6D0tjm5b4EISELXQAl6YxX52gRpbSiXZQIhCTK3YB5RuddbELLSUCtKPduua2IguIwnyTUkpaxhbAitY6F0yZoLExtJAiRZM51rmi5qI+mOxpiwvHaeZrYDuYyOn5PTElKRjxL5lpCX+87KHROknK7h07MCCbA1ficGmOtUpCRZcA2KGCVIYmlXGDedmyXl1tMlTN8PKvNL/YhTlnn6TKgfvd/0LU2/rzSGv/hFREQ6wo1fRESkI9z4RUREOsKNX0REpCPGOPVsgUB1kowXjVFLCWM6YGtt2tW+VAJ2oDKuGxC1yGI7QvoeCWIkBpIgBlBaGIk0VB6UhD8ur1rPl0oqS1OpSLDZgt1EsuEGnt0W5pWmGvWYNAWSxEzoRvNK84WCI7RR2mAY3Nda4+Q+kud2kJJIYZ0p5Oex8ETC2ZMLhKlIRuLXEqgs7IbMuRn43cv68XqA9xaEvwHSBdPpTwU4Oh+m/sGxqXyI48IE0rinpD0OJEiGx+O3FMage2YZmEp2w7XAGCIiIvIJxY1fRESkI9z4RUREOsKNX0REpCPc+EVERDpiHMCQx5jbfVZvHc9HpOY0Wfm313ApM+PSddPlgBk+QBTvcHm3tm0oh5MM/mr/U3wwCapk8JOFTG0Y4wtxvzvol5rYxCkG8wB3TQb/JWT2kv1Pdc/pfHSFa7hpuuMlfzXTsWTrQ7n6xitkWWF1elSbqQ6exqWmfnx61bTkyFbeh3o3/Y8FIv1fDGmU8e5QPfW5NGL6nxZH+s9C4dwQGAEcLq/02WGN+PC/CRxhJU3wbtMY8X/SWPbq4K3QvKaR3M8Cf/GLiIh0hBu/iIhIR7jxi4iIdIQbv4iISEeMDaQ4ithFaY/a9hCxS5G9AEXpkpx3fPww6tdaa9Oc9PcRhhFidy8us2OpcQ3zCvM1HS7gWurpKP6ThD9ykUh4ut5DHCuZW6HcRDGrNMYcl5Axuj9SdGj2t2ouHmVWEEXGxjGhdDEk/1B0KD0SaJtAgqLZn5PzSEZKRT4ijX9Oj6X7S6+PRD4SWXfhAz2G/TZotVVWIKt9OE69bjonSbQrWDg0XyTKkaiYxvjGIh/MIcmtA8it4CUjFHO+hLlh6Yu0IGEav6Xp6ejZ4fWddkkiIiLyccaNX0REpCPc+EVERDrCjV9ERKQjxuFQpbgBEvlQ5Lu9KU3HaxDvKP4KRL4JUq2wH4h8lOY3dzz3W1JoHFL/NlUWJNFwGOFeIM2P65GfV15BWTCOv6LUvzlpCUQ0kFIuQPjbgfBHQtEeI7HgXkAeItGNAvSWCDwzM1NaDqHMiGejR4dJgCx+LZIXQyhpkh7dAZ47PU9aR/Rq34B4ShJg+k7QWqf0SBLxSMj68KTQhp8zSFqlg6mOPczhGlYnXmL43Gl9kMi3pshAEnzDV4K+6Cu4aJoD4hRXkNYwjc2pf/k4CTwPIiIi0g1u/CIiIh3hxi8iItIRbvwiIiIdMaLIR22hyDfdgGRHMh5Jd9gGZWvDhL/WWBgc1lBuFM8JQiOZJVS+l0obg0g5haWNV0NN+COpjcvMkhAHkgukfZEYQjLSktS/D8nSx3YgANG9kChE6WNrSpiDq8PwPWjDd4fWQliWeg3lnbfQRqCMNDcsCViUJEhrboncR+sQZKt9WIp4gqd3TWmidC0wBEmAWIKX5EOQU+kBUGplazPvFIBldAG6P1r/lIw3hOJdWokbS9TCEDNTU6C0O1ofPKe0jippYuBSMGERhVeQTMNywP7iFxER6Qg3fhERkY5w4xcREekIN34REZGOGFE8AtHtSPJc2EapeijTpZxwLIl8KONB+h6PTSmE0EZCUR0WUxInON96QyJN1kaSHJX35KSx0tQO+8wmIpmotbk0QChBOlOuNCEtC5uKaRycSO8OybK0ZjLhbFjRWqh/r29AOp0wlZDHSUW+lLASKwqq+OxAwBqo9CxoWSTPYQneBZ8kAhMq4X6pRHBreVlfgkpx0/PkMrrQhiJfJvyl62jJ/eZHZiIfLY9hJuEvFQHDCuA4DorJS97PJz9UREREPm648YuIiHSEG7+IiEhHuPGLiIh0BEaAxeVxdzVhjkrPUhsKT2m9RWLuWCqZSyJfKvxRP2qjdMAwrY3ErxFEjg0YVCO0bUODh1KfKLmMVg0JSoeZqKu5cr3J9aTQEJjwh6l/ICjRs8Py1ZDEiImUmdyH1h2s9XG8rEPQfZwwpWkZ0vScXPqXBL0l5Uvr3JBARes1LUFN/WZL6wbMHbuBeaD1SmB5YhDEbuFeKM1vDSLlSEodfIapzC8l/OFX6hkk0dFXCl+7mamntUT3lwp/RJrmR9Dc+ItfRESkI9z4RUREOsKNX0REpCPc+EVERDpiRMmIRL4wLW+iND8qrUvlcumEJO2RsAeC3WzfVNoLU/+obaIxhuzvrIGEJyjVO662pY1EvmkCkQ+UFhKHSBa8PdS266GeL5X4Phy7tlGSF7WRSMPSXu1H90ciJUp70EZpfvyOhXIfrRkSY2HcNa43fiYTRvf9Ptf2e91CQ4lS9WJZjZ4x+cFYXhgaL+r7SZ+azR7WOgivaQldCumbe02wL4xDqYYo2071m0uJj1QKl96duEotiXxhEh2nDWbyZwpltobhorMnSIW/c4PzRWmuT/9SRERE5McFN34REZGOcOMXERHpCDd+ERGRjsDkviWQODetnr7IN4xVdJs757CBvuE5cWw437SCqaU2AsQvEsm22zruAeW+OsQA4tcajJYdpk1BWVgwVw4zSWg7KjsMVsoWzklphZxgWMclkQ8q3Mbzj/1IgqXyvWGKI6Y9hrLgag3rcmacI5UrhYVDIl9cHnRBEiNdd6ouDtCTSsrSGrwca7+LfX3Gj+BF2UFU2ykJf5QQCOp0LBaSnEbS5I4kR/iOHkFq43TM5OI4pQ9T59LywkAYznjSGFhuGk4w9z1MSF+d9Je8v/hFREQ6wo1fRESkI9z4RUREOsKNX0REpCNGTIlLj04T8OBQSgLERD2S80i6u6hlST88PpQDt/V4lvZIXqzSHsp9RChvDfubeui6jnEJQhdBqWe34KUtKRu5mzl2A4mILMhk15OmVZF4RJLdcPsI+lFdTJhESFhEkW9BiWaSKylZkFL/1um6bCz8keCEJXPjUZ6cAcsOU6obpN1B2wDpkxt4J1ZDXb+0tj6AauQn5N0hKPwtKAm8o7lBCbb2uwORddQvLVHLpZfpna39iHOvwWVPjllSehy/Z9RG4z7xqCIiIvKxw41fRESkI9z4RUREOsKNX0REpCNGKo+bgmVrSX4Dn2hoINilcl+YvNfajAgIIl8L0/diaS8swYvlXqHbBOdb3T6u/TZVQbkc6/1eZ1cXQ37RXNIVpQGibAUzQbNKkgsn/NVjh9s6E8Oh5qMNIO3lgt6Ty33pWhgOlHpJN8zrcqT21DtKSwynhO8Olx0GYC1Q2t0lrK5bVJ2hzDiUvr6zqcdWbZQT/lrLU/6WlAS+gbVJpa93oYRG6ZhLkvtINacqy1zSNyvfS2IxlqmegXrS4anIx6WIn7wf3bO/+EVERDrCjV9ERKQj3PhFREQ6wo1fRESkI0YS9I57SB8DSW4iaQmT+1i8K/1I2kuT++bkPpL21rXvRIl3JPdhklSY6kYpcfC310TCH8w1lWzFsqQgQV3B/dZswLkypxUSh+ZcliPoMIcjSEHwZykl8pHIhzIMltsNRT56J+JyqKH8Bs+JRsgUqBk3j97Z1vA9Q4kQkyZDyZHGIFk2lSZJeIWbprmhNZPOIiUajnDJVMqWku2OsPZbO62E70fZwQu5A4uNxtjB9fB8VUgMHCDpkPJF6Xu2hfNRyW2aQk4ChIFDTimrS+NwefTaRt+uJd89ep/8xS8iItIRbvwiIiId4cYvIiLSEW78IiIiHTGSrLa6uCptx8cPSxsm4JGMh4l8YUofldUNy+V+2J6l75Hw16DsLY6B6XtkoIDkFQp6JBqScEb6Cf11Rwl/F5DwR6DiAjLRRBFbrbUVnYFEPlibmAwGx1K/YQfSXiryQRnpWOAMZTWU6Uj4I5luFZZ3nhsb7Cgs/4v3R+lqZFuB0rVA5MNroTnMRkCBaoK1uoF1fYDPzwH6bWCejzPvSYMlRzIeibUo7UFCIPlqR0jRpHuh8r03+zoGvceUdDjBHNL1baEfC3G1jUiluzlC7/GE82WJpfGwyn0iIiJ948YvIiLSEW78IiIiHeHGLyIi0hEjSmOUZgbJeBMITyT8pXIfpQiSJMRyHmVBNU5DI5EvTRWjIWgMEsRIUEpT3UBCG6jeMd0HjbEn+aqeb4Q2SgBLS2q2xhIV+ERxMlVcCpRkN2wDq4r6hXIftoWpeCT8kXlE93FK7huuTXoo8QmzJECU9tJyu9CPRDeC1iCZZLS2CJLQSIibyGCbPyucFHrBc7qB66H3Ni3pewG/EVnki06H8uHUIEU2LJk7wsDku547Ua+1GZEVOOWcCQveTn/xi4iI9IQbv4iISEe48YuIiHSEG7+IiEhHoL2GpWchLW9JYFEq7aEkFPb7sG+WEIjnDOU+kudQliIzB4glr7REapi2hqIhpBeSyHfEFLV6utZaW8PKYWmvtlHZTywZSjIkSXuQurgkfS9OoguFPwKT8jDNL7uUOVBaWiDeYRuJunA6rIhK4tfve2G/eynQlkqnNK8bej0hOo5KzzaQ2lrjxLsdlPV9VF1sLP9L78lNaEOyvFgbr0H4I2hYWsIX8BE40DcAzrcO5dQB5pnmai5gkc9Z29KEPxYuMxl1wGRT+IZnlyIiIiKfBNz4RUREOsKNX0REpCPc+EVERDqC7TVM3VowSigEpUl5LPzNJGItkYwg4Q+lOBJ2QCBsxzP/nZWKViHp/JN8QsIflTRtrcVWKIl82zClL07VOzcLnkm8/glab6ewJFVvgSzLJWVrG6W1ESRqkVQV6lMzQhaVi87K5VISIIqLH44O56yCKgqvUP53A9+fVNqjttBVbsddfe92MDk3cB8XUO/4OajLSyJlKtjR9wP7zXy4liTysSgN0l54vtCB9Re/iIhIT7jxi4iIdIQbv4iISEe48YuIiHTEGJeeXSBGxeU46VooxY5EvjmpisSjBaVAMdWQrjstt0uiYtgvFa1iGRLmmk5HCWco8oFgNAe4OShCURuVpMUYsJQwTY6lzicXVFmqJXMIro/GhVLVJ0mwNE4qxoYlc6lULIZKhnIfrSOS8dIUtRSStEjwWoMESOVjW5uTxrIL38CLS2l+Owq9DOef2sDjm5kbeLdhwkgCPMKaubOp65q+XTgvtJ2cMPeUMJrKo6kovQQSOP3FLyIi0hFu/CIiIh3hxi8iItIRbvwiIiIdMZIARGJaWu4SScvtYhnQUOQ7JbnszIl3fC90jfVe4oS5eL6eXFykfphmBm0ovoBMNAcdT6UxMRFryeIk+ZPK8qYlmlMxB8S5RSWoUbCjWsfwvrcThNdwrZPkdXuojWFV2JgpNplAUMXEtLRfcnU/WlbwPlHbOnwmJKYdYP4P8IJCJeG2mSBZkM6HUmFdWyzy1X5U+pdKJa8aW5hrGIe+Z2nCH35KcVwYgy4Q8Be/iIhIR7jxi4iIdIQbv4iISEe48YuIiHTESEleS1L6liTgLZb20usJhbqBus0ln52Tc8uHZx6DpBKuLXpCcl9a2jJdm2mCIcitPGxYevncgl6aUpkmVM5JimmCJEAiH5d2hX7zNWl/32tBoZRK8GJFWUhMo3EpsQ77QeNC6JyUZMeljbMLIoEWCUvw0iTSM6bExt2xDkLPmI+tbRuIRKTzUeofsSLRvLU27OvYUDmYy/9CI61DSiylR5e6z/7iFxER6Qg3fhERkY5w4xcREekIN34REZGOGFFQSkWOkFhQojSzZwWVdgURaoD0sUUskA8pXers10KjYpxfKvzNDL0k+iwU/lBkpeeOa3NBeedU2oNUPZIP4zVzgrBHj4r6Uj8SyfaUuEYleMMxzl1Gl6BVxMJfbaM5SEsJz70m6dtD6XYEvbeUoIfSJCxXKid8nOqxB5D2CBIXdzALmNwH3+UNvLMkM9L5KNGQkgBba2091OOpPDTNK7ZRmiKtTnrsJKnDd8Bf/CIiIh3hxi8iItIRbvwiIiId4cYvIiLSEWODRDKWoM48Moh8KEuFzKYNkuyQpr9Bv/QaURqjcaEfHUvpbwNIKVRSNiYUHNPyvZjw156CvEXyHM3rgjKzSCryrTe1H61/EPnoWriULTyTUNhrLZf2yFfj8qzZ2Cf4n08deupLPnt0a0vd4DSRL4UEOBLlViChHSlVD46l7wAl7eE6wvvN3s80CZDW4Hqo34+5lMMNWJNbkBxpDtNSvbRP4z4Rir/+4hcREekIN34REZGOcOMXERHpCDd+ERGRjuDkPhJQyBRKSYW4UKZDOW9OaqNyqgsEOBTEUCAkCwqEs8NtNi70iyW0tAwxzX82wlOBJcBwPaCUCDIMiHexZ5gm951Z5CMxijjlr3p6IyhpLy2tu6RU7IqewJmT+9K5oX6UQ4dyJEwqJhrOzMv1vo6UCnBpaiBBwh+nA0IpXJIF4ViS7Eh+S7nZh0Liikr6UpofzMFCsZJFPhD+aJ/Ywz6xQFz3F7+IiEhHuPGLiIh0hBu/iIhIR7jxi4iIdIQbv4iISEdgZO8S6z0mHGM4UIws/L1C/dqMXb+EI1SwJruSbH2yNSkW9QDe8AiWOkXsHiEeNv1fELQWoOg2ubdk28/J50viefmcUG+axoB698Mxq1mPz4k0XYoAphhf6LcLLXCyi5/G/74gK52t8tqPrptYIHLjsWeW//F/O3BEcWbbcy15nit6Halrapvjsen/EKEXCj/h9XwXY2bI0/pvYNzTsUv+R0DK3Bg0NWTrU+Tvhv5j0J7+9xfsO2ksPOAvfhERkY5w4xcREekIN34REZGOcOMXERHpCDDGngIkHIA5FIt4JDrMxdeSAEGksmEqPtK4tze1G9SMxnGpbQ0Ru2k8L4yL8chU8xlktVT4a22u9jsdnx1L0PnWQ73uNUSM4lqakUc/ygTxvBQfnEbaUtwpiWQoJOIV5tA5af5ZQMzGoBVyhHjwAeqb0+eC3yY4H0XG0pF4v1kbPTvux98Uaqd690sgaY/qwWP8LS0weADUj863IWkbDMJ1uLJ5jNp2Ad+ASxASqa211kY4J3WlfvR9bRTPu7/Ojg1lfX/xi4iIdIQbv4iISEe48YuIiHSEG7+IiEhHjJiCR34ANKKMRyIZ/X0RS2hhOlFam37u+AX9UJTbVUFj2lcpcQKRY1it6yDURkmAJAuGgh5LmDQGSIUgtQ00Rmst/XuTJLa0bjyJPeCHtQnW/7iuCX8kPiKpyIfiV5oIl10KsTTIEtPowufEhJIdtFGCG8lbBM3DLkwlJGnvFqS7WziY5mouuY/al9SET6U9Sp1Loe1kFT6nI1zgnCCcsA5Fvjub+m2lti2JwG0mkQ/uBVP6buH7D/L6QPsEfevDfdVf/CIiIh3hxi8iItIRbvwiIiId4cYvIiLSESNLcWcuy7tE5FtQenCONCEQy+OCUHEEaY/6kdyH/ciJg36o4KTldmn+sdzrkycaYopga20FBhCJbZhaRz4pPs7aSG4OTjUmfmUhl2myHSfy1WPp1kiwI1YnZPcdYSQahu6PhUu4HpIr6Q4pJY6uD+6Pro+kNpLkKFWP5pqfZz2W5LwbGGRO2EufM5FKe2lyH/qH9KmB1EV8n2ZEuXLsgp+mIwp2tY1Evnvb+r5vaWJm2reU0off5mzPQ5EPSr/jHgr4i19ERKQj3PhFREQ6wo1fRESkI9z4RUREOmJZWd4zJ+ClxOV7Gwt6eDRJdpiCR4LGApEPrg8VkrGmyaXS5JI2Sl1Mhb+5NMVUEEOxbUGSXVoqdqZWbO0Wlg1OVz9JXmkVVhTxQLSag8ZJ5TKWErPnROVxaRIphY3mGsNE0+cUzj9LpyT8QVldaDsliZGkPYLkORLb0pS+DbTtBlqcmSxOUiFd3xLBMZ2DexdV7rsYIfUP2lrjcru0XodDLcuOKX2h0B6n2prcJyIi0jdu/CIiIh3hxi8iItIRbvwiIiIdwXJfmOoWQ5IXJb1BvwHaJpRKTmCBjEegBEj9wiTAtoYSvGcmTtqjZ7egVGZrLO2lKXFY4jZNYgTLiwS9ga4QbpmS3lKWVMdN54oGmWZT4rJzorQXzgOFtbGUWNvIU+R5CE8IpCV46X5RFkRhkvrxM1mStEcSIJeKzd5lkhJX9D5hWd5QjKX7gGPz+60XcwltVyPIfaEYONeOIX9hgmrcL9xXCX/xi4iIdIQbv4iISEe48YuIiHSEG7+IiEhHjKlQ1yYQ4lZVisDSriBeDFP2N8dE5VCxbOFMOULSF28zGQ+vJxT5FgHzitYMsVC8e1JoHc2RpqalPmnsncblWcnMCVPsllh7Z4akxzkRj6S9OBkvvZ7QT5qpfhqRljFmcTRL5MOUPrg5EuIIEvZOIS3Bm6b0EXQsvSaYFgmiHAmNJONRv1RwvBhB7gORj8rqYgnvmedEYy97ogBK7rB3035pcp+IiEjfuPGLiIh0hBu/iIhIR7jxi4iIdMTYSAZYVVEOU93W9VgUfUhMCC6utdbaAUS+UHRojSWLYQMiGZbgffoi37Cp5XaHsRbBHKgsLz27MGkP54v6kWgYinyzwt8CAY78miXSEl1KLvydF7yWULpLRb65lENq3sNAmIwXQhIaPjqOcIN+NEo2Bs3DknBSgkvont/+pGdC78SSErdEmtJH97wGIw4lRbLsAEol3MKxJOiR3LdN0/jaXGnpsGQuQRN7DL/XcDq6bH/xi4iIdIQbv4iISEe48YuIiHSEG7+IiEhHjCgIrEORLOXcx5I4sV8mXw0jJBNSP3Q2QAIEQWO4uMyuZQv9oI2eE8p4IGE2OnZdpcKJpEKS9pY84zYj9oDQNYA8hGV0z8y5pTYeo7ZhUt4CkW+mAiwnz505hnBFgh789qBQT7wSlMugH7SlPij9MiLBNC2DewRx8dzS3SnQ2OdO+Ev7peGkVEqYpD3yAqktXgszHTHQD9dhKPelKaiW5RUREZEEN34REZGOcOMXERHpCDd+ERGRjvh/ARXdNnNvcrd/AAAAAElFTkSuQmCC" id="imagecb272a2421" transform="scale(1 -1) translate(0 -367.2)" x="538.716169" y="-26.020103" width="367.2" height="367.2"/> - + - + - + - + - + - + @@ -807,17 +807,17 @@ z - + - + - + @@ -825,7 +825,7 @@ z - + - + - + - + @@ -874,17 +874,17 @@ z - + - + - + @@ -892,17 +892,17 @@ z - + - + - + @@ -910,35 +910,35 @@ z - + - - - - - + - - + +iVBORw0KGgoAAAANSUhEUgAAAf4AAAH+CAYAAAB9b2wlAAB19ElEQVR4nO29W8w1256X9a/znPOd7/E7ruNe+9BNNw1NAwY0gDQY8EiMiWIUTcQbDxFEMJqY6IUxEk9RRBMNCcFwYRNMJN4J4SgIrd1NQ8Peu/fe3Xv1On/H9zTfOWfNOavKi8UN3+8pMvZeNvRe9Xsux1dVo2rUqDG+mTzv759VP/K7hzDGGGPMJMj/Qd+AMcYYY/7+4Y3fGGOMmRDe+I0xxpgJ4Y3fGGOMmRAlNX7tT/8haavyTNo+udtJ28UMLynsenUKD70ep71GPF5qH8cV/x+mA3WxGA7QEZwPbeuDXvBurzd+BPfTFPo05X4tbfndC2nrzt6QtrbX69G47mEQTptC2qq7Z9JG9MsH0kaGKNxKRETAMCD55lqv2RwlndsO+nyzbiNt22IubU0OcxP+j1zCc9zCXCDmZdr/uWmsskH7yPZbbWtvpW2/fIT9tPShAMv9jbT1s2Np62C8DjAhZoc7vV6zlLa8XUnbUNZ6g/DNPmt1EM9nOj9ovtI9p7KDMZ3DpKH5NsazrR4LSzOumxVMppNe158Bxj9gztFYZzu9HtLDGgxkh1ZvpWySjuuP7knbBtbMGgaQ3kg3MhdoXbkcZtKW+MlHniUukMAe7vGtH/092sd33YMxxhhjvufwxm+MMcZMCG/8xhhjzITwxm+MMcZMiDQTLyI2YN4d13r6k7u9HtfocSQLkp9HbeRYZAeVmyIiyh5EqB0IRSCsRafyYkQlLSTyEShQVQtpKtP8NZQKT0DaO871ObrQ4/ZHOgYoH4J0t21Opa0eaPwidplKWSRR1TO9ZgX305Y6hjt4712uIl8JIs0B1SgFPE8UhVbwnkoQuubQ1nYghOYgGoJ8NTQq3dH7jIg4gORI0/Wm1GuCCobQfC1BJFvt9Liq0I9iBy+AhLoGhDo6jqB17wLEwOebTtqWtb6nAubHZsQHpXt8MNe+YbhiDWPdwXFPe33vp3BcA/PmNtfvriJZFqTCTeL455XON5IhSUgkIRdeSVy3+u5oHR3TdtfwzMdkXAL0Pe5hPUt1TJPF6bTDjDHGGPN5wBu/McYYMyG88RtjjDETwhu/McYYMyGS5T6SBjh9TOU3ShN6Aql/33ehaUfEKRgawwApXhFRrJ/osYUeS2l5lC5FIlN/zGloKZCzQbLaBmQdOpfGusz1NRe9jn++0wQqEhxJAlQVJiJyfic1jOuQ6RVK0GlQ5ANrqQBpr6SErkHHi7wjSkTEtEjog/pdQNrXAJ9jA++O3jyJViSdFutLuF7EHFL+AvqmNLRsq2l+JaS6nZDIB/OavChefyCFLdFuondCQhytcanSHUFSG8llEZyuSWtSTXME3j19J4lBk8iy0JM3kJiZ+swHOK4uQGRN/Ll6VIH8mZgYS1InibsRvOYWICBiIitI5R2Mw2zQZELiyU73X8K/+I0xxpgJ4Y3fGGOMmRDe+I0xxpgJ4Y3fGGOMmRAo95HwtABZhGSYVN4509KKJLNQ6VOSibKeBZke0t8IKvE5gDSTJZaTfAZJXiRbXW71uEdH2i8l29E7WYAEkq01qTDfqsyVWvI2tXzvUPP1aKypPCuXB9UmEoBoDteh764FLXELcg15PZTcR9B77zOV8XIoadpCyiE92wADQ3N1KFj+yTClUqk++pt6zVKl3AHmEvV8VKfl/pFQRx7fUej8vwtda+h7IqFrUem3SPNotdd3PAMLjdbM+3N2rLdwP2uQYAuYD0RqmWAS74YB0ung+VJ/SdI3sYE5TO+EhEsS/kgcJT2PzqWxGpP7iIHKvINUTlsoiXy0F3UZzE0QLgn/4jfGGGMmhDd+Y4wxZkJ44zfGGGMmhDd+Y4wxZkKgVUKyFEkpJCZQmNnjpWo9VJa3uf1Y2khqoESxoVb5ZJQDiEyZCkoZlDoNkDauWkqO01NRUILxwtQouCAJSiTOZQHiXKXCUwZyGUmTh3vv6HEgh92MpCkuYAwHkLyo1GwN49r2adINzaUt1DQl8ahLrItJx2EZUfo/N5Tbpe/pbg8pgiD1rDo9+YiEyYjIYN4UK5A4QVCiktiU8EfQN9+DFFrB/a1B2iORj747KhF8H9L3qIxr2+lx9J5oLjwYVnp/wQIyzThKHKREPprDGYiBtIbQs5xnUPYcfOotlKiltDz6YueVtj5Y6N5B0l4q1O8t1TUG7kYK85KUTvNrCcIr+YLbTOfwbK9rOKVjntVp6bf+xW+MMcZMCG/8xhhjzITwxm+MMcZMCG/8xhhjzIRILsu7gZiyBlKfTmckvkD5zLWWKMwgTS5mx9LUlyo/jEHXHOB8SrKjkrSURjcvVWi52VG5V0of07GhNqIB4e8apJLTucpDOZRnzUAQO5y/lXQvh0Klkt1IudEiA9mHSrGC+YipetAHCUXUdkL2FkBPUrWaIFmBQHjT69gclzrWJPVk4BNhUiGIgUtImBv7v34LuXozSL2kktb0PQXIeDRHygJEXUo9AyiwjpIwKemwgDXpJZx7D1L1qAzrElbSDsa6h/WMrhcRsYe53vVpIhoJjQRJyKeN3vdh0KTJYtD5Rf2m3gsl8tGpxzDWqYIvly1PE6fzkXX5CtY5TP6DuXSbeO7FTPcdWv+zVuVRwr/4jTHGmAnhjd8YY4yZEN74jTHGmAnhjd8YY4yZECj3UVlGEiBmIBlhycTEaoaU9pXfqQSYQ6LbcOCUuAFkmmwPpWs3V3oyiEdd/UDPxQTDtIemlD4SbjIQS1ITrA5QvjGO9DlKSKb6ZKNtOeRfdSD60JyJ4HKjJI8SM5hM1Asll3GCnkLlbBt6J91eGw86t05gag6hohvdXwygFZL81lEJ3rQyoBERTeizDJXe4wESFknAIpF1IFkt1z4oOY7ecUYSFKTvvYQS2ZSqdwHyFYmBtMa1KOiB6AZPMia/USLcs42+Zwjui7qA8r2J6zDdD5WKXYOM2sN4UbcV3AzNmWq/GbnLV/qFxMDPUiKYGBu/AsRakghJGCRegxDagdZSks9Hkjlfxb/4jTHGmAnhjd8YY4yZEN74jTHGmAnhjd8YY4yZECj3LUB2IMmFEp7If1iDuHVMYkJiKljWaonC/iKtDGhEoBSRwfN1jYqBJL6QxDYHCY1K656VKutgmVOQNtrPIOssMpC5YPyPNNANZSJ+8+nU6iJhql6TcRqgAolYA8hbINzMN5BqCMIflXfOQO7D4aKSz9QGSYDUx1Doi8rg/pqRVDwqp3q9pfLQ331JVJyHUIqVfo+g+AXfHUlV9C12g7Yt95rESFBJ64BUQnL2cniOMQ/46ZqSFxUah9Syw+SblR2U4AUWe0pF1TVzBuverANpD74xWpdJxD6an+m95Pq820wTCEnC5JLI/O3QWJ/C2kX+8oKEXoBKxOewDw4FlJwH/IvfGGOMmRDe+I0xxpgJ4Y3fGGOMmRDe+I0xxpgJkVyWdwn2FUlt5X4tbUWtQgWKfCAoDYtzact3KjV8J1CaHylLw+xEG8HYoQQ9Em6uWz3uDN7AHtLRqETnWDLeqzwDSeidAgTJhb6TY0q1Ajky4H2OJQuu9/QsehxJM0WjA0aJg1QStYEyugSVaCZRKG/huErnerbTbyKjMQToOyHhj+6FEirpOSIiaii/TGW3KfEOghgREu9ykA1J5JuDBJXBM3eVftsk1RI3oeceZ/qe+lJFPvoFhWFrIBVy5ihL1rSupJa9pe9pmShr7kFeJKFxAQmelBw6QGJjvrnWPkD4G2A/yXZajnYAOfss9Fukb2yXQVnpkeS900LvcX3QvewoIDGWBL2KovsgrRa+Zdo7CP/iN8YYYyaEN35jjDFmQnjjN8YYYyaEN35jjDFmQqDcRzIMVOBF2lLFiwNEFi1AsCOpikr1diDdjfktBYhfxdWHeiCkMlGCHiguMaOxgTKpi1KFkeL6Y+0XnhkC9CLrNZ0u26rANgdxK25VWspvn0hbf/xI+9hDshfIJ8cjTlU901FsIQ6QxMKWSrtCauBsSEsfo9K6mMwGdEso0UxpflBaNANBtQcZKXKQr0CIG6itOdI2SMKMiMhblaPWB31PqSIZla6lkspUovkEytGCFxsNSF6zvY5rCcLTy61+O3R/A4h8WCIY1goS4qgMd+qYRnBpWDofxUzo5vpAKa26Ti3BCS17mOuw7mVVmkM+1CC1AfntM2nr56faL0iifQPJffDtNPA+ByhDHMEJesdwPu0JBH232R7WKSjVXoHkSPgXvzHGGDMhvPEbY4wxE8IbvzHGGDMhvPEbY4wxE8IbvzHGGDMhULdswTxd1nooWaKztRqXq9n97+LWPoUsdapHHmDCj0FRvMXV+9KGf2UAcYpo10MkK51LkPEdZBfD2EQB9dvB2B5qML4r6APiZm8KiIWEudCM/CkIRV/SsTsyuTMda/orDYr1JOgvFGgcaLz4ejr/Kc44tvpOML4WngMN5gMYx/AXBgF/WRIRsQZjeQ4v9XanZvJtq21vnej1yIYnn53Md4qnbgdVzZtG5+YGomqPKIoauIVz6a9NKPaVoqQpersAOzsiYgk13Ym202+Con0pCpmgdR3+SADnNY4DRlanWeoEfZ9k5u9gLtA7wThceI4GZ+tI1Dz89Qyt67T+lB99Vdq6e1/QjqHf/O4F3qMcl3SUMcYYYz4XeOM3xhhjJoQ3fmOMMWZCeOM3xhhjJgTKfY+XFBCr1Os0kWBBZoj6KNEvzrURpI38UkW87wSSMfoZCFOXKo1lB5W3shlELBaQcXn5iTTl54/1/kh8KVQCySEKlsh2etzh/E09kCQXkMsgWBbPbUfqV1PsKNUux/rtUIOdZE0UH2kugXBD49+BrNPW2m91oRIOxeHmJQhBOYiZIImSrLktdQ42jQpKbc8CFXlfkLob9+c6r88gYpcEPXrvxL0ZrD9Ql51Y7dNq2FMsOXh8sYe48WuwTul69KuKa7rzd3Ld6iIJydbJbPbaz7xKFOqgLYNvHucrSW0g/PUQLZ6vQJaF7/gAscw03wZ4K/RKyr3e3zAixpJQR2tSvrnWk+FZCJIF861ej2KKCf/iN8YYYyaEN35jjDFmQnjjN8YYYyaEN35jjDFmQqDchylNlEQHMt4B/i9RgWiVry+TrkdgchnViI9A6YzaSPLqd3rN/vYKztXjsoUqcFkNiVOtSiRxdKFtACYBQnLfUEGKHSRTUU3xgWQdGOueBLtEmSuC67K3lHI20zkyvwbZE0QckhwpBRJrsMNx8/UvJPVL0DvpZ6BN0lyFRMmG0szA89n3/H/9AgS4iup9w3EZHFfvtW21U1nt3kLnK733CBUIqd9lSZKpXo1q2FM64AwMsQ0IfyTtLcCOPG60bT5iPeL8h3tcgWxI3xPJsqEeKwp/9MyUtllCzXkS+UhCK1++pzcD6093+rqe26bJvD0lO2JSrX6fJNVGjCQJwn3T/Qy5zuv+wZelrXj/b2oXb/+IHnf9Ed7jq/gXvzHGGDMhvPEbY4wxE8IbvzHGGDMhvPEbY4wxEwLlPuKQp0lLmJYEosQAqXMliAn7h9+f1O9YIlmTgyBz87EeCMlgOSTy5WcP9dSXkMjXqHhHIkfsQZ4jyS6xHHAH5YlT5ZNsD+WOydADSYVSvOoRuW8FIWwriE2bgTzU7FTiIdmT5NGh0vSrnp7lFtIZ6d2BSEmlcLGMNLwSykRsA1LsZip/UrlXEth2PUe/kbRHzEFY22EZXT33GBL+SIpLFe86eBaS0OjRqBTu2QzeMTAH+xlTJhPlVio/HcHyInrXIMqRx0eliOlcmktzkBKrO/hOEhMWB0iuzA5qGpLwjd8TdgJiLBy2hPXxMOiRdWq/EVyKe1ApN6f1f3MlbX0OqaMbXeMoOZHwL35jjDFmQnjjN8YYYyaEN35jjDFmQnjjN8YYYyYEyn1rEGRIrkmVVzIQngooZUhQycPN/L60kcQXwSln1DZsNJUpW2gaHaW65fc0SWqARL7hDtKlSHIp9bVgic9772gfIJV0cPYOpJ75PE3gpAQrLLMJKVkREQW8q4uZPjMlal1les2TGgQ9EnGg7G30+izDBZQshkQymgtR6D33icJlO6hcdgfSY54YibiGc0l+i2Bh7RRkN5J3T0H8IuhZSCok8a6H+UqJfCSwgSM6IkOmjTWNAT3HNdwgvzp+J3TNFsbhuE6TEkmkpPQ9lCFhHSaRDNdW+k4gRRO/T2gj4a+41hLqJCHvoHwvpRx2IAbuGk5UXbYvtRHGBkvrrjUxtruGsZ6pIJ9fP9HjqBw84F/8xhhjzITwxm+MMcZMCG/8xhhjzITwxm+MMcZMCJT7SPTBSpkAJUblIEpQ2lpAElfeqvywvFWpgQSqiJE0Okqtm6v00TdQWhcSB2OjQgsxQNLecKvPVxydSRsl8tGzXXYq6K12moh1MddXfwUy0hkFUIG0R9NjLEVqAaIcJSeqChPR1ipcFitIEEssBUopiVhSE6DAtYHKAXc6/iT3NZnOj6hU1qGUuFuIf6NvlgS2T9u1jeQ+knzpmycxk8TCo3nabw+6v+OG0vy0D5Lk6sTywpRsR5JiDcYfpReSLEhyWQQnGKIMCat4udf532Y65wbMAgRgDaekPYREt8Qk0gLW+tSSt6ll3umdLEtIYoTy8p92BOsZ3E8q+fJMLwfS3tDpePUt7E/Ux3d8V8YYY4z5nsUbvzHGGDMhvPEbY4wxE8IbvzHGGDMhUO4jKWt10EOXkJhWgPK0LbW87bwCMYTKKJLcAaUMKVktImJILG3Zz6C0a5uWQpVVKnRhShPdIJT+DUj9y++u9LilJkmdn0JyE5RFvm5BpIGxWh0osRFKHVPa10gp55ISuuDdD3BcC2JVB0mO87nOrxzSworLX9B7Oehc6o8f6P2ByIdJY42+42yvUiF9J1zuVQebyuVu4DnGWIBESFD6G0H3SPPm5Vbn4f1M31MDc5gEKlKbSHJEGQ/WrgP0MeBY67n0ThaZzsusgtLLEQFeISYYrqHvulB5jixMWgtzEmMxiU7vO99e6wULSCeF4/rLp3ocpKKmfmNUIruCtn2lEjelnY79SqZ1BUuwg4VJ+w6XTE+T9ijhj/AvfmOMMWZCeOM3xhhjJoQ3fmOMMWZCeOM3xhhjJgTKfdcdNguUktVjYhGUwJxrqlK91nKEVGY2CxWj8ltNb4uI6JdQErXR9Dc6v7t4Sy8IYgmKL3Tfc5VIMPWJUrL0KEzzO0DZyQ5EPmK11+P2vb7P+3Mo1wqJYiRLRYwk+oF0k0OS1ymMF6ZAwnvq4Lih+n5pK1+8K22UvkcMUBYWS5WS8EclYOFzaiEBjxLmSC4bg0qxXoN4d2+RtjZQ6txpA0mAA8x/GGpKYqQEyTlIey/gObbQ7QncH0l7l3A9kgULGAMaPrrnCE7SpPmQmkJ40mtKaAbPsoF0zNkRzOv1pbQdLt7RPiBFMN+o3JcvYH0kaI+B9YOSOvtapccZjD85rCSK/73aX4WemdZ/SowdtlA+fKbzH5NI6V6SjjLGGGPM5wJv/MYYY8yE8MZvjDHGTAhv/MYYY8yEQFOHXJM5SEvlToWDPclliSV98zuV+1BWAOmre/EJXxTSoIr7r+n5kMxGUlZ3/FBvh6QxkMuKm4/1/igZDMZwmEO6F0iAO7BSzkBa+uROpZIHYB6RtkJlSSuYNEuYMxERGYk4By0xjKU7Kd0xUZ4LEC4HGP/D2ZvaB6U4UoIYzIUMUiWpXxqu1PA9ek8knNVQ3jMiYgVlfUkQe7nRb49KxTZQ2puEv6KEOQcJZ1heu01bf5oRee5VSNqj9Dwa1xzeAB23yyDtkR3YkfcHEi0JkjA3aWxIwF3cfCRtlFhKAjMC33s/U4GNVgsu3w7PC9LeQOsMJGbiegSpnAOlR0ZEgOSY71SkJDC5j2i0bypFT2sh4V/8xhhjzITwxm+MMcZMCG/8xhhjzITwxm+MMcZMCJT7jntNWro9qFywBNmh7FWU6ELFtKoDaQ9kkf6liib5iZajLR+/rdeLiH6jkkXfaonDvITjQECh8ogkamGZ2QrkEBLEFppqSIlTJHJQCtjTtUpLc5CvCCqvSulhmCw4InV2kJy4ryB5jiLcEjkUKiNRCtuSXh3M6w5knw7KDpcwr+9yfXek2PUwYFSGlSQ5Su6jZM1lzXJfCYIepflR32uQPe9BWVKSAGmOZPBNDHN9nwQ93RFYk9eQikfPS2WDSbDLoOTwMvF31YgDGzBdOVGO0kRh/SlpnSLxFEQ+Eq8JWrso9bKH1MXDGYmxUMZ4e6Md094Ba2YLexEJ0SWsaNVIQl8+0/VsAAEdRe4KxjpR0MtAbqU9i/AvfmOMMWZCeOM3xhhjJoQ3fmOMMWZCeOM3xhhjJgTX2AQJYVmAaZKllehsSNKCtCQqb5jdB2kPEgMHkIkiIrISEu/gWBT0QHwJEvSozCxdj0rFLu9L27bU1LnZkJZsBwFsXDI08b98FHrWQxt5fJTwNwaJaKtB31Oe6TNTMtsR3COVDn651z4uGrhBkIdoxtE8KmFe7zqQP+F6cFgsKr3eAV4KyYwkC0ZEnDZpAhz5TQuw0yjJ8eVGvydKBC1o/YGQOJqbGaS6tTCPljX1q9cjmY7GlaD5T1Jtlf8i/P4CuQ+BNYmglDhK0MtbkKQp2bTUj4xEN2rLCl3TKfkTnw2GZbOH8smwbYxRwbMczjX9s1hx6fgUKCWx2FxJW0f7DuBf/MYYY8yE8MZvjDHGTAhv/MYYY8yE8MZvjDHGTAg0OwZIKaPShVso8VmDhJCB/EaJTJhsBBYa5iftQbCLQJEvKkh5onKqWMJR20joynaafkjCBz1zB6FP60wFkgokr1WrJ1NaW9OnPQexh2lD7+RAZlREFGCIUUIgJamVif9V3UIkHJ1KqW4dPM0BrreH55vBt1PDc3SDNrYHvR6JmYtCj2tB7itAGpuPDCC9PyqrvAJhjdpYmNLr0fNRmh+VDabSv11P95xWSpiel47T7E6GJMAK1qMxCZZkVPqm6B5RJE4sj47yHK3XiWIgQvIhrf+0JsE3dpOrdD2HL37Xg3AJ62jiUEVERAYleHMqHUyyOJU2pnMBEiSL9cukc/2L3xhjjJkQ3viNMcaYCeGN3xhjjJkQ3viNMcaYCYF2BqUvbWotPcjnQqoelGBEMYQSrEDGiAPIDyWLJlRiksh3quxgiUMSUCgJEGRBShCjMqfkX1GyHYk+J432QYlkw6CdrAeVeujcI5BhNiCmLeG4sWMJSomjM2uQm5pMhS4SLrljSHUDoQjC7mLIQNYBkWmeQRukyWWtluhcZzovaS6QyEdCYkQEBfqRnEYiGgmS1A/JhgRdj26bytlmMGFJHKXvjtIxM0iOW+10bpGeNwMxmRID6V4iWII9wIuisSngjkqY/1SCmtbrDMry0vfUHWnJ9NRUPbpeVuhxba7vpM6ptC4lJ6bNQZr7C5gfYxxOXtP7ufk47WQS5Pc6Nn2tCa/Z3VVSF/7Fb4wxxkwIb/zGGGPMhPDGb4wxxkwIb/zGGGPMhODkPkhuooQtKoFJYhS5XGWt5VXL2yd6LyDYdfe+IG355lo7CU4NJOGvX5zrcZT6B7IJcTuooDGDMQQVDMWoFgQgfCdwvRykmR6kHig4jCWHs1bbFiRwjpCBtNSBtETSE5Wpxf++JiaD5VudN9lBU8qGSlOyOihVijojlS+F+UpznUSrOVmPIDdR/td6JCWOpD0aVppzqWDqHMhW1EXZ65zr4BsjTW4BCX+LDN5xTmKmNlES5hYmJpVevtvrvZyC8BcR+O3VIJkWII2lSs09iazrS2kj4ZtKiher50n9dlBSnBJj863KrfWMrE4QYyHNtSu033l7JW2UsDiWVEgJeuXLX9DjaI2EdYpEPirLm69UuByWKlcS/sVvjDHGTAhv/MYYY8yE8MZvjDHGTAhv/MYYY8yEQFthCwIE1XTcQwnMCs5tQMzJSL4CMpA7shsVSLLl2cgF0pL2SLIYapWt1p3KOVtIeQL/B9P3UmnAeCL5bU0ZYpmKPnMSLgeQ0EDqybY3ejIIQcOM0x7rRhOnNqEDRtVGUWhMjPjL9prOiCIfzI+MxqEBGY8EQji3JzEQykB3kP5GKXv0f/ixlL60szlhEVYGBEvFAvTtUMliWqpqeMkUgleA3JfT946yMum30AfMQeoX5y+U+o4ILuMK5dExwQ0mCc1rTFoFWa07fihttE/MKKQV1gb6FgkW595LOq4/fqD3d9BvEaHveKPPERGR7TXRD9eQX/gbes2Lx3rBHZRMP1P5PIdywLFmyV3OTTrKGGOMMZ8LvPEbY4wxE8IbvzHGGDMhvPEbY4wxEwLlPhIgtqUKJEs6u1dZiuSOAYSU7kRFB0zku/eWNFH50oiInhKioNQmCi3w/yKoehsZiCBzkngSy2KSoESiFiWIUanSy62WEV1QVWQovUlkPZS8Xeu5/UjKYbl6pvcD8tC+SSsFjWmFG5BCQd7KdlRGmhL0dL7mMOeGTuc/porRXMBkL21KdfYoKbLIYAKPXDPL0tIiqS1V7iNplZL7duCsDiCw0bn4bJBsR8N6AMGRvsU5iHzHPbxjEG2HbCQNFOZNG5qq2gTMOUqEg9LjtO6RtFfS+4RxoLWBoEQ+kitJlqVy6VRWHcVw6qPCzFI9F0TgT28IJEwSKe+9rn3fvtRzT3UtpHeHkLhOh6VdzRhjjDGfB7zxG2OMMRPCG78xxhgzIbzxG2OMMRMCrZIMEoHmJC0BPUpQer0BUsqo5C2JeJhwdvwI72cAue8WBJvjTBOxqIwoSS6LQZObDoP2UcEYDlB6M0DgOQJrj0qVBqQpXjTpKVSvkkFSGDFA2tTosVD2mUiV2KiqKUlLJJn2L7SkaTaDZMIzSNhCaQ8EKihBPcxO4VyVwQLEozpTcesA/4cnSZTmdARLccQViKIX87TURUq3w6Q9mNeUn3eAMrqUZrmjdECQBSEkEY+jb7GnpDySiKG0K5VE/rQfPVZndUS+TkzXhLK3lDBX12kpoU0Gki/1m1h6lhIMsVx6anlt6IPLdeu6QCW3x6AUWpTNKUX24RfhXEj6hH2VxoukecK/+I0xxpgJ4Y3fGGOMmRDe+I0xxpgJ4Y3fGGOMmRAo9xWXH0pbdwFpeSDZ5SQ8gcA25Co89ZCYhqUHQaYYkzGuWz0WQraizVXEuWlVXuGUMkj9A6Fo1at40ez1ekfgvqF8BWNdvnhX2ijpiqS9geQfkitJ9CT5jcqKjlzzACl9baKUVYG8mJEoSoLMI5BrUhPE4HoB8hYJVDTW9D1Vd5pyiAJPavpYosQXwcl4xzDWJLyyQwiJd2QBQvgbCVQkt2aFjiuVF04dh9Skwh3c822nY7WEn1okC0aMzEOYXzQPC5Ds6FwUVOFeMLkP3jF92yjVwlpPYHIrjcse1jMqV0wlkGFuFXTPI+LcgOurrpEkG9I7oSRYWq+7k9f0OCizTPgXvzHGGDMhvPEbY4wxE8IbvzHGGDMhvPEbY4wxEwLlPhL5MH2PpCVK54L0pYCymCSaEO35F6Tt5ZrLQZKIk8M9rsjOob5BFNqEyiE5KDIdGE8VxM7t4DgqvUnvBOWVTFPiSC5D0QeEM0reI+Gvn2u/EVx+lhLcahCKriHlDL1HSNBDoQiEHRSKSBaEc1GQBIEnp9QtOJfEKJQ64dx20O/zFmTXCC41W1OUHUDiKb3PRQmJa5RWiKVTQQiF5D6aC1QieAfzaAaSXQZrBT3vAoxhcIM/MzRvsOz5DEpaJ66vlCCZQ/nwttf5NYOk1Hz/kbQdYE/AUtUkv7V6XL+GpLwtrI8LGJcK1kLog0o5f3qPkJq5vK/n72FNAimd1lxaS6ks+NiaK+cmHWWMMcaYzwXe+I0xxpgJ4Y3fGGOMmRDe+I0xxpgJgXIflbKl8rEDpGQVq+fSRgJDkNwExz0b9F7uUblFLFgZ0UH6GHl8EBKH6V7kO2332scpJJx1g16QSnKS1JZBKVaUdUgkozKPJIGAVEXHpZZKHgX6qWAurWBc5xVJVHrcDATEVKGxp+N6Hf8ehCdKiesgbrApoGwzlYU90XLTJHNRstezVscgVdiLiNjCfdPZNK+pBO8JDCvNJXonJAuSyEdlh0mWnSeKfPUA6YAtlKoG+XMGcwYXmjHo+4aUuR5KPGMpXBBwM3jHVNKakhibHBIRD1Ci/PR1aStutBw2lq3daBLdQOMKZCCf96srbbvTlMPy0dt6QSyhHhHQD5f/1eejccBvAtakPkBWpnRGwL/4jTHGmAnhjd8YY4yZEN74jTHGmAnhjd8YY4yZEN74jTHGmAnBCiCZoxR3SrWh6Xr0FwEU7Qi28vnygbRlK7XUT+d6vQg2dddg0j+c63GbXtvmkNdJNeKpfDX9lQBF+1J97h4s8GKvBm13rBY4xfhi7C7Y9mTpUhuxmmlsZUTEAsZwBe+ExjVVSr/N1bg/Sjx5B59FTaXM6TsB+5meYwPntjA/TqDmfA/fBM3VRaV90NyPYNv/AH+hQCo9Gfw7eOgna73eSa1GNCT7YqQ23F0s4duZwwUpPpvuuYY4V/prJvrLkqaGtQJumtaKCI7nPRQ6r8sO/qKGJh2Z5tgx2Oe0nkGsLe0J2Vat+WSWF3A9Nf27y6d6bq9zJj/WqOB8rtHbRA6RuxER3Uz3RvoLCgIjeyFuvHzxrrQdzvUvD/AvAgD/4jfGGGMmhDd+Y4wxZkJ44zfGGGMmhDd+Y4wxZkJwZC/US89A0FtnGu1YHal8Ut890+uRKEGRhlQbHZgNLJztc5UdziBON797IW1zEC9I4llAjCzJUlhfHuqjN5lKKW0Hta8hKrKtNL6TYkeJASJoCapXT7JgTUZQRKxBGttAPC+dT87SHjSvHIQzEu+KQYVG+iw2ZGWB6UaxuzOo1b6D61HbDUiKzaCdtBAFS3c8BkVHD3AFirvOMohuhfGnd7faQbTsiOz2KjS9KJ43gzZKzsWIYriZObxPmqu3iXHcxYjdh0IvHLqn+OcAoZdifEne3UJt+wq+E4wUTpPahi2IgQc49/w1bWv0m6B43uzoRM8F4Y/ob3Q/yC9UnB6/AMSfL1Qs7HIVRatex3/36Af0et+BKCrHpR1mjDHGmM8D3viNMcaYCeGN3xhjjJkQ3viNMcaYCYFyXwf/HyhA5Fh0KugNI2GAr0KpZwPJImM1kF+huPoI2/f3vqT90HELFfkOJGCBUUHS0rKE54NErIs51HKGtLYZSGj7WiVMejhKGiNZE2t4g6RC9bop7WuMBchRPdR0J9mNUg33JHQlSi4ECVQkde5R+FMquGDq7aGQCCc3MKa3rZ48JpLtoMb5stK5SRIbjX83gFAH47WFNppJc3jvNK70TkjQIyiB8LpVGWzX6b2QMEyJgXQnB3rJEdEEyG6QjFfSWlpCghusr5gwB988rg0gaBcrFbljB8mCMxCJD7DWUDompL4Wr31BrwdjNVDb01/QUx+8pdcb24sO0A4JehkcV0Ak6HahyZwDzOv55rm0URIg4V/8xhhjzITwxm+MMcZMCG/8xhhjzITwxm+MMcZMCDTxNhBrNS9VECs7lTEoiQj/d0ElIkFCI3IQSLrjh3hsCaJcG5oyR9ITilAg4pDYQ6VwSezJ4JlzSs4CMadrVLIj34ykpQpKP/a1SjNUIpJS+qgec9Vp+cyIiHyryX+HmSZ0UboaiWT0nmjOkURVFPoJkKxJ746ULDqXRDcS9Og5qsQorhkafzoKV1tOLruY6ThQQl2iz4glfUnko+eb12lSHLXNQKijVEJKU6QUQUrgpOrOlOxI72QD47LI+Z3sQteGGtYzWjezVr+9A8jAOchuJMVhSh9AsiBOGbjnoYGkvcRSwlSOvIAy7/hsb/8KaaJeMdEwuFzv/lzlwOLyfWnrIC2V1qkSvpMOynMXkEBL+Be/McYYMyG88RtjjDETwhu/McYYMyG88RtjjDETAuU+SpyqVk+kjcoMFqhFKJQsNUBpRRLB+rmWnh2DEgLJCqraG2nbg2yygLHJb3VsUIYhsaSAlCxIzqLnaOaQLAglW7H0LMiHxQ5kvPe/qsdBecr+ClKkvvzr9HoRkYN0cwZyTnn7nrSRxJlt76RtaI6l7VCBSAPmEck1lNxHIt8OGqlELUltJNWS29eANIZyKgmEIyl2lFDXw1wiOa2FZ26oLDXdN9wPCZwzuB4lO1IpYXArUfijVM49JBrOIdGQRD76ZnH8aV2IiI7mHMjTmDAK5ZyX0DWJugMIrxmI3Jj+SVRp0jYl45EkHSApokBICYQkU0OZcdxjxuTzW5XNi5uP9TjYE6jvJaWl1kd6ve8gLVVO/a7PNMYYY8z3HN74jTHGmAnhjd8YY4yZEN74jTHGmAmBVkliOBdKKSSXNTMVrbAEL8kTIPdRWdgByiCO3WMDgk221vSlEq6ZtyqSYbdw3FCCSFNrGcVsD0ILJCdSOlcD41pefaDX22gKVXetqU+7b/1Nadu+UBFy8aYm78V739C2iIhzTZzKP9HSmPtLkGZOdby6y6d6veMzaZu980PSdjh/W9ruQt87iXx94pdC8tsaqqGSVEhy2b25zqOjCmRBkL5ebEB4Ck68I6GR7pESFuscyohCHyTepZZUJqGxBfmQ3tNNqzedmpJI4JnwLTahAtthYGmMxmYFUiKNK6UuYoltSI6jtDya6VTitgcJDQU9INty0qew1e+9mKvw14Pgmx3atHuhxFJINo0YSZWE87P9Wg+E/Y32rI4EUHifxfN34W6gi6SjjDHGGPO5wBu/McYYMyG88RtjjDETwhu/McYYMyGSy/I2JJwBdQamzwESnkCcW4OYczTXdMA9JLCNUUKSICpZlKpEZR0pcRAkkoEEGTg3IBGrh3KL+UbvJW9V0Ou/+n9rG4huu5//29JWPtJSkpff0FKS7ZVKOB/91a9J2/EbF9IWEVGf6PtrznQM81qn57f+1J+UtrMvaT/LN3QMh7/4l6Rt/lDn1/nv/Hel7bLUJC+S2kgCpAS9FqS91U7nwvUW5gclBkJZXUrKe+9apaMIrDYdry1VoiXZkKgWKqz1MGCUZEdlb5cgsFHaYA2CHlTbRSj1j8qhYmIgVKqmEsZ7KAm+GimVnCobUtnnHMb1kIGMR8t1D6WSQS7mtVAv2IPcTfJzVoF4uoc0P7oXkN9I+M7ImAT5cEzkI4alCseUiIhyH913anl6GMPu4VfSzk06yhhjjDGfC7zxG2OMMRPCG78xxhgzIbzxG2OMMROC60EC7fkX9GQo90oCCXgvfDMgswxwPYLK6kYEyhNYqpeECkq6AmmD6KDMLJaxBLuGRD5Kguo/+FntF9L3Vl/9GWm7+baWjWyvflzaPv4pPW52ptLM9koFme1lmhAaEVEd6bjmVOoU2j76fyCZMLTtwQ/dl7bb9zQF7Ppb/4G0Pf6tv0Hv5Tf/y9rrXu+PxLn1XoWu25220XHXrcb+UYXOpyudbyvoIyJiWWup2Y9XmnJGvhk93x7MtlMQEOeV3vgSynOvIbGOSvX2IG+twO4DV3AkgVDbqGwwCX+0nnHyYXJWKgqb9OuNpGZez3TdQykRLpdXKn+SKEeJgVT2Nqdy5NpD9EeQdgrrYwFydneiCaNUQjfbqjg9gKQYERFXn0hTfqzCMd13Dv1QciKJgQMl0EKaK+Ff/MYYY8yE8MZvjDHGTAhv/MYYY8yE8MZvjDHGTAg05yj9ikQ+gmSModGSiSQwUOrfIVP5JPVeIiIOiSl/FZX/TRT5KCGKyhPnhR5XwBsoblU42//MX9Z+dyrSPP2rf13aDluVvNZPVYa8+UDbttcqeFFbNdcHef6zKhpGRBw91Hdy91RTqFL72d2p7LaF8rN/45svpe0HX1dh5/g1na+f/NSPSdubP/6T0vbWH/gvtN9r/Soope8GUvpKkLku4dlIDPxOIOmPRLktGHCLSmU84vla5yGd+4UzTU07bfS4ea1j8+QOZEgY13OYRyT8bSBNlDLd6LgCShNv9to2VoaYEh8pzY/KE5P4lVOCKsjPJE3mII2Vl+9JW5cosA23WoY7zh5rG4puui7gWp0oyfWVvtF8B+XXR0qy929oue9sc6VtB12nsO+VrpuYJEhps5DmSvgXvzHGGDMhvPEbY4wxE8IbvzHGGDMhvPEbY4wxEwLlvtlBJYYBSiFSAt5AthpICKlUHaS/kaQy0kdBCVaU3AdQCcc+UeRLLZVZ3D7Rfu9UQuvXKt6tP9DEqOtvqxh49NqZtD39GT2OSJXpOkhHI8EuIuKv/61n0vbOQuWc/+uFpnHNQGTafgfJZ6/yNRAQvwySI5WP/TU3Khkt3/ivpe37ftd/LG3/57f02W5B+CNmYKFRshpBoltExONjTWHbQGrg01t95odwbmpJWUom/NZLFbDuw/yoIK6wgbE5bqAcLUwZese7jqRJSAwMKBEMdh71UY/ZfQBds8R4O33PbaXSagOyG63rGcluJJdBgl600EcNJcpTy9ZCsmPW6ZpE5+LeQdAeMbLHZNuR1NhXb4cEcngWWuuzI0gCBOGvH47S7iXpKGOMMcZ8LvDGb4wxxkwIb/zGGGPMhPDGb4wxxkwIlPt6SNqj5CZK5KMML1Kvig2IDiWUeSSBkJIAvwOodHA20zKR5Q5KHJLQAn1QacvmVss/5lA6sv36T0jb/lqFj8NGRZV6qRLm86+qBDg7V7lmj9KeSksZiFs31yphfjQikr0P0h+1EZ9F5Evl52AciPd+WsXMv/b7/zdp+x1/Rcsi/+h//yek7c9+W+fCRzc6rkd1Wqnqm60+xzlIchERP/6uCqV1qV9zB+NfU+RdIlcbvcezud7j0zuVCn/ZfV0HKoq7A0+rgnsmIZfkQ5J0A6YvJeCR9NignRfRQhogHUqlWEl2m4OERqmjuMYllo+Ny4/0MD0qhq3KgsX5Qz2wh/GnfqGtO31D2kjEy6APLKF7pet3RERWQWljKMvePf22ngtyX7440U6o3DGcO8zP8B6lj6SjjDHGGPO5wBu/McYYMyG88RtjjDETwhu/McYYMyHQEsJEvlpLqaZKezellj5dzrQtJ+EPyi22vRouY8FlcyiNSX4YBY2R5EgaDgk31aAyUnRqAHUf/pzey1zTl27eZbHkVd77yx9IW9/p6MxOVaSk43qwFA8g7f21l5rYdUeG4+cIEg3fXatU9Yf/+N+Stn9v9q9K2z/2X/5xafszP6/S3defqMx1DSVvH5youPXT711JW0TEU0gh/MJ9/eav4Pm6XufNB5C+R1BJWZIXtwcVsN6/1jn3eAkpgiDZrfdppZJTSw5DF3Hd6j0vaz2wgATCCC4TTGBqXafzgUq2DgdYp7APvd5wB4l1IMoNUI6W6Ol656+l3Uupc52kR4QS+WAP7Jcq/EVE5Hudh/kn39RuZmmpegGy4FBoG5UO7mCfJvyL3xhjjJkQ3viNMcaYCeGN3xhjjJkQ3viNMcaYCYFyX5f4/4ECSj8SR5Ve7wqcksVc5Ymm18QiEoKakcqWG6iqOc9V3CBhsIy0Uo80Xs21puX1H3wdrqfnXv7EX5e2+T1NFnzvz2kiXAdJY82JiiFEe6PSzA2k2P0tEME+7yLf/9/8t3/kp6Tt93W/S9qa3/s/StsKEvnmtUpon1xB6d+RNMXdQb8JajueQZlmOG4DiY8kBr55oaVFKXGQno9S9a5bfb4DzM23TlUGoylMbbT+ULndp5Cseeh1/KjU7lg7puBB4ikJcH2jQnWxudLrUdlbkvbgXkhg61+omExpd8NO1/qcnqPWPkhcTCWj0sQ7XZeHisW54e5Kzy9VSu/XIFfu9fmKh2/q9WAciPxOy4zjcUlHGWOMMeZzgTd+Y4wxZkJ44zfGGGMmhDd+Y4wxZkKg3HeARLIShJYOytt2UN6WykuSuLLeqyS0GlSSOIEwrTG1bIaCDMiBIPzFoP8vynYqgpRYxlJTCONIyy12IL4cv63lKW/feypteyhle/KmCjzr5yp5HTqVdbZwvW+sVCp5DuKW+ez8d3/0p6XtD/+bPylt//uNppmllsYlMS0i4sEJlMQGSNojWhD+7kHJaBTloI36vb/Q65HIt4dkQeLRkV5vDmIyrYU76LeHdbSH0r+rHd/fvbkudFvoZ0GSNUjI+UrFL1w3QVSkVD2S8Si5j6Q2KsGbY1leeDZYbzG5jxL+QNCjEroFlEvP1ld6LxERM5D+Dnrf+b3X9bgWxEIaQ7hvTjBM+479i98YY4yZEN74jTHGmAnhjd8YY4yZEN74jTHGmAnBZXlB7iDhj9jDcTlcjwQZKmPZwfUoCbAcSb8ib+ZqmyYonTYq1+xylSxOW5BmQJ4jke/ua5q+l1f6Wt7/i1+TtuUjSMlKTNC7+UCFmw2U5e1ARjJ///g9v+73Stt/9lTnzH/6p78hbQtIu/v4CoSsYDnwbKFiLSX/raCNEvmoj4dQOpi4B+Idlczdwxw+n+lzUNIele+ldYp+LVVw3BLWD+qjobreEbHe67d3MQeRmMrtQhnXYa5y8fDsPb3e8kzasGRuojRJwh8llvbXz/WwMxX+sAwxyIyHk8fSVtxoomq212+ir3T+UopgRMThfS3BW37hB6VtIAm80DkywNzEJEZIMCzWWsab8C9+Y4wxZkJ44zfGGGMmhDd+Y4wxZkJ44zfGGGMmBMp9FO5Fkhz5dBDYFZQPRdIMpfltwS375E5lIkq5imDpZl6lJW9dt/owpw2l9KlcQyJfVqpws3mqCVFnv/zL0ra4r7JJB2lmJPflMK4FiFGUyPcEhEvzD5Yf+8KvlraHf+JPSRtJd0soqxvBaXkvILWRZFtK5JvX2s9YauCrnM1VxttTIh+IfCTPkQRYwTdBz3a3S1u7SNA7hjH4ToBHwTW3Wz7Q41bPpK2faapn/uBtaRsude3Kj8+ljUrPEiQ6kxiYL/T+SOQjqY3S7lACTASTV0GYjIgoHrwhbSRXUvnf7lrFcEz4A7kvv9Z9p19qaXvCv/iNMcaYCeGN3xhjjJkQ3viNMcaYCeGN3xhjjJkQaJ+Q6EYJbpR+NQfJZQXldl9ACVi4HJbqJemFpcL0xEHwhJAdXG9RqOSSn6pk0T37UNrqE0jfW6sEQpDIt78DGQaO292pLPIJyGDmlx7vw7fzn3/wx6XtX4l/VtpIYItg6Y+kPUruI67XOr++cF/nOol8tK7sQRDOQbIjmfc+pP6RZ0gCIUFyH91znkNZXrjeY0jji4i4BjdtAyXO5yANU/lZEsRI+IvXQLIb4M5Bah5IIFxoqXa6HpXWHUbS8lIobp9oI5TBjcWZNB0u3pE2SkiMiAiQDYnsTkVuEvkoNXAAgbOf67jmdyoLEv7Fb4wxxkwIb/zGGGPMhPDGb4wxxkwIb/zGGGPMhEC5bwOm3BxKapK0R1BeF/VB0gzJgtQtXe/T8/W+t2Dy5XCXlCSYSrbQEphZqWla5UKFlmKpgkwJpUVJ2lt9vJK2W2gjNolyk/mlx3/0b/8Jaft3vvb7pe1/+PM/h+efQgneFr6pY5AAKZGP2q7WaqstG70eJe0Rm72mtf3Kh0tpu25VSKQ+jmpI5YR+qQR4Dc/bDdp2PqMyrNBJRFQgB9KaRCVbBxCOh0YltHwDCXVQPpZWhh7K3hLFbqPX60ESpecoG73e5krvhQQ7EAgp2a47fU3aqFQvyYdjZAc9//Dmr5S2fK3CH6X+kYSZHUDWPH6UdH/+xW+MMcZMCG/8xhhjzITwxm+MMcZMCG/8xhhjzIRAuY9SqK6hPOsdWHaUiJWBOLeo9P8cn9yS/KMyDCVsnYP8FhEBbl/M4P87JPyRlriAC1L5x2F1pcfNVUApZ5C6ddDrlUcqlrQ3KpBkn0FIJEFpm5h8aH7p0fzOf0bafvgP/i947M8/VQGUyvqStHcBCX8NfCcvV620kSy4Ahmvhus9hH73MF/PRkoRv0oLqXgXUO6b+qBEz3NYu+hzAn85IiIWhR58gDUJBT0qC9vecUevAlJcttPEu6zQccVytInpe9lB5wdJgCT8seAIktyRyn1cwlhT8cagBL1daD/N7kbPTUz9IwZIbEzFv/iNMcaYCeGN3xhjjJkQ3viNMcaYCeGN3xhjjJkQaL08h7KfJNRdblRCI0nuzRMot7hPK/1LnIA0MwYF+lEaYJlDahdIjvXV+3rBm6fSRCV4u+u0kokf/Nn/V9pY5IN7plSxIxUf/wKk+aWOv/ne4E/+jEpLf+g3aHnPiIh/4o89l7YMRL7NrQpYxArWhotjlbLmtX7LSxB13zjTUqUkIX+mtM3v/lQsZU7JpheQ3EeJdRERkevyXN/pO0XZDUQ5uh7KblTOlkQyKtX7GSChboCXkvpslJ6HAiEk8tFxWMJ4pG/S7u5KPZ/W3JNM5wOl9AXIlakCp3/xG2OMMRPCG78xxhgzIbzxG2OMMRPCG78xxhgzIbzxG2OMMRMCrX6Su/e9Gpznc7VvVzv9i4AOciobMNKJGVnq0DZ2OYqhxX4gEpTuu1+ca9+XavDn52pPZwu1Oofd16XtrX/6N0vb3/6f/w89F0zi6kh90iP4i4V//ERN4D//02rz3nVQN9t8T/Bv/fM/IG1/4M9+hMcWMP+ff6gRo8szNaDpO3lwqsdR7C7eC3yzFPH9Dpj+ZNfTEjBPvBeKJT/A89L9UR9we1GRsR0RxUrf1ZDDXwVk8Nc929u04+70L40ogpbq02e9xrgH7BMEWfNs3Os6RTG3dC/dEv6CBSKA6dmIfOSvGGisDxdvS1sNFn4Jf7Vwd9BnjkLbjg7a71DBuYB/8RtjjDETwhu/McYYMyG88RtjjDETwhu/McYYMyFQ7rvaatwm1dcm4Y9ibinatz2opHLcQAQhXO+zJstuoO72HEaiyaEjEGSyxYkelyq51BBnvNXa1xTFu3gEkguIfDcfqKTV3qhIs0wUnsz3Bt/8T/6otO2+CnGsEdFBtjVF9u5alaN2ENO9nOkHtYM+SAx8DBHfFdi7tP4c1bikwblpiwg8WjyGCOw+cVGCtHBcUyIiuuOH0lbcajx4QDQtSmxbjekeFmd63FiE8Ktd1CpX5k9+TvugkxdLPa7RdRQjezvdT4ZC30lAFO9oPPKrgIhH8cYRgZG9+fpS2mqQA1dzfccLmCRr2LO2lcriFBNNeKU3xhhjJoQ3fmOMMWZCeOM3xhhjJoQ3fmOMMWZCoAlzf6Hpb5RW9T7UiG9B4KGEv5eJAiH1O6BIw/+HWYFQUYK0tAQprgVPoqlAxgOJJJ+reHd4qsLHMJLa9SqnX7yv93elsg7ZSBklHUId9NSUQ/NLj//mx/4NafsX/vK7yee3IOASm5XO1xzmzTV88yT8ncJaQ9LeHub19VYFtnvQL6X5UdLnFgSq4zrtt1EFY0AJhCjdUX35GBHWiI+/qdc81fWiX6qclm+v9dwdSIAgHBeNyn3D8kzbVld6Lzcv9V7OdS6QUDcUUO0eBEcav6HRdTkgjZXS/NYdr48LSDoM2HcyePefhZud9rG23GeMMcaYV/HGb4wxxkwIb/zGGGPMhPDGb4wxxkwIlPtIqLuBxK5ZYmnd9V5LJr62TCsfSAlbO3D7wOn59Ni9HrwEYWcDUiKV1SThrwCJpG80Vak415SmHsSX7vKZtB3uVDaZ39Okq9XHer0aksZWH6vA86VzlRQ/BOnrMlEgMb84/OCxyk3/YflPSVuRq5D17BkIoRHRU+lsiLMsK5VCqY0S+Si5jwQ4Om5fpSXjtSABwuWw3xnG6impsmAGY3BUQaLhXOWyiIiyV5FyKGGhe/hFPe6llgrPKMmORLmNlnvtr7V8b5xCkt2Jrntx9liackjQ6yuVBfH+gAHW2wBhm0rodiD3taVKgHcg0/2dq0pLCWl+mx7uJ4PvpAdRFKYmtaWWm/YvfmOMMWZCeOM3xhhjJoQ3fmOMMWZCeOM3xhhjJgTKfTVYA/cXKpW8d63C2aMjlTE6SNprQKS53KhA+LjR69H9vdioQBgR0ZABAZCwkwUlI+lx3fGb0rbcaPnM/OoT7ThXMYrIodxoDyJTDeO/udxI271fpmLO5c9rsuAXrzVVbHerbXcwfuYXh3/u2z8lbX/wz31L2kiSW56BQBUR2zuVrUjao4S/Gszai6XOQ0rmpLbU0rrXIBw/7lUapjWAfvHQvZAITFBi2jGkY9I6Q+tZRES+gVS9vX572fpK2oZe18Ph2XvaBv0Oe0gThTTF7OgM+oV0OhD0BihFPNQL7RZK/2aQiheYgKrziNL87uDdURLjychcoNLxqVBaZA3l4GkO9zCLV6MC4t+Nf/EbY4wxE8IbvzHGGDMhvPEbY4wxE8IbvzHGGDMh0KIhGa/FkpV6OqX05SA/ZKFtx41ej8QXStkb0ytakGlSBZtP7lRUoYrAO5DsliSvXLwhbRWUsexvr6TtjR/9tdL24V/4Sb0ZIIdna2+4FOirnIDwtINEMvOLwx/8n/4lafszH6j09QOva4rjBaRjYqnYiHi50vnw8ZXKu5vEcrskFn7/Y01Xm4MAlxgIGqeJ6wWV1l2B0EXJfVSqep2Y8klDTe4VymoREbCGZHtNYxx2+p5YGobSyyAB5sdn2i+IfJS0N0DZcpIUu9PX9V4KkvFUDMxaTZ/MYGHu4V5W4B6SsF2AYFeMSnxp6yGF6tF+QnOT0vyIMQHxVfyL3xhjjJkQ3viNMcaYCeGN3xhjjJkQ3viNMcaYCYFyH4kqN1sQQ4APQRpbgsBDIh+lJVES0bzS4ygB6dN2lVf2UB4R/LyYgShUg3lEMtKQa1lHKgnZz0+lLaPSmyDhPPiR75O2pz/5s3o9uMHtpQpBlPr39i/XhL/ia3p7f+m5SkfgzJi/B7/vX/8Rafvqb//3pa2ClL0LkO5IRvoY0jYjIk4X+u7XO07DfJUa1otjEP5akOJ+8OFS2jYgN5XwLT4GeZESQUloXFZ6z+SsUolyWh+rDsYVnqOAdLrswKItpcxFqymcA6TWZSD35SASE1mh5x6OH+lxIBpmcC89nHuo9b0XkJSaH2BcSQIEQbIFIY5EbNpPNrB47eH+IiIOKIvrHKG2XQf7U9pWi/fdJZqx/sVvjDHGTAhv/MYYY8yE8MZvjDHGTAhv/MYYY8yESKt/OcJ71yqaEJcgBjYr/T/HF880aYlKZVKyIImBERGkMt20Kmncm6vQQpJFlpGxpn0/gfKgj04e65l7HcPqh3+TtB2+qaVY56cq3s3e/Vja+r3GVR09UvmwA5nrAKWSX/v+C2n7LSCS/ZUXKv9EuIRvBIt8b/7h/1XaPvpQU8oWIKY1JZTDBjHt4YnOy4iI1Vbf88MT/R7PoDz3cqZtdNwZHPcUREVKBL0P8uGDhR63BXmLSubem0PaIJyLJX1Xz6QtclhKQTgrdnfSlu1ZuMxvtR9K6SORD8vyrq70fmAN6eZnejOQItjPVExG4NxqoyXAd/NzPS6thwiY/8Qcvh369dtB8OFmRCA/nenBlPhIkPh+uU2Tao/gWUhaJfyL3xhjjJkQ3viNMcaYCeGN3xhjjJkQ3viNMcaYCYFy35OVWm1UbpeSrki8O4GUPkoao1wkKpW5wWQjFi/mJYgvcNweHoZCkKikL7WhYwGj3c+0VGl+90LbIHWLRJ+Hv/HXS1v78QfS9vUf+yvSVi9VkBng2TqYCw+/T8Wc3yAtn/KkVZHsZ29V8tp+D5b//RUgz/22f/GHpO2d/+qPSNvP3egY5CAJVfD/dZKg3jnXlLhvvlC5LILL6N6D+fD0RuccpfRRMucJHEfS3h4kOxIa6ZudYTqaHkfCH6X+ZTsQVEnkozLclJ63VqktX+n3HhGY1knldjG5r1Yxk9aLAaTcAdIFo9dvNuu03wFK9aIMCeNFet5QQ+lfKNVLKX0lfDupa/8c5kI3pAl7ERF3WFpX+8lBDCdp77RJK49Oc53wL35jjDFmQnjjN8YYYyaEN35jjDFmQnjjN8YYYyYEyn0k8j1fq8hxD9K5XqzVvDuFxK7jBiQV8BKoPCIlbI0FJZHgQdxCmh9pEpQQuKz1/09UgvT9Vsfh4ZG25csH0lY8Urmm/em/pDcIQlDz6DVpW9xXgYeS+yq4vwKet4KSvjmknkVEnDzXtMIfgASrH//GS2m7hrk5B6HrAq73Ep7vI0is+ych1XAD0syXfo0mMf7Qv/Zbpa34Hb8H+tV7LvO0RMo1zH8qwduD/HMOUm0Ep+Vdt/otn81VRj0FkY+kxEWl74SmyAIkwHtw3yQSwxDGAsqXUqneeQYyHaTvESTyDZAml1GiHsh5ERHZXEvX0vc93Gm57wz6HlpICATJDkXFBsqMg4RcQNtAfYAgOYBAiOfCcXd7Hf8ZpL7SfKOUvRcbWGdgHo1Bgt4Awl+qoJrB9w2PF/XImvsq/sVvjDHGTAhv/MYYY8yE8MZvjDHGTAhv/MYYY8yEQLnvKxealnQf5C0qZfsTH6loQrLgk5UKLQ+hDxYq0v+/QglKBxAqNge9RxKmKIWQ0gWHQe+RSoauQDjrmjNpOy5Umml+5B/Vc5+8J22Hj9+Vtrd+y6+Sts2zK2m7/rkPpa06VjGwqHRcSAKMiLj/yx9J2+rjG2n70Xs6DyldsAYBcXenYtq7f1Wf5Tf9gJYlvfiKphDO76todfKOSpOzX/fbpI2CJs+glCcJphXIOjOYWyTOUUlraotgebcpNYXwEmIzKWBxCfdD0lIO3xhB3+wJCMKUXEaiFZFvNNWwJ6mt1TWOhDMSAzHtbvSG9JtCaQ8T/kAQazTNj8gOUPoX7jv6NPERkw4pCZDaQHxsK/0W60LvpQf5k9b06zatDO6YKE5zk5jDt3dzp8+cw4wAjz7mYLJmOxWnCf/iN8YYYyaEN35jjDFmQnjjN8YYYyaEN35jjDFmQqDcR4lYxyOi1qt8EUqB/sSH19J28UAFjeeQ+keyDiXlkTgREVGA5PISUpkeg1hI3hH5HdR3D2LPHIQnEkZWOz23PfmStJ2VKoYU81Npq4/PpK27+QvSdvEP/Wppy0Ham907kba7D7X05tn3vyVtERHrT1RUPIdjDxsVe6ojFZRW0Hd9olLW6//IL5O23a0KXSTtHf3a3yht8bpeb3+ksiAloVUwuWi+VTB/5yAGpiZ2UTnsCJYDr6F8MkHrBSUOEiQvnkFyH31jlOpJ5UvJvaLh6qEEbLaHtLsOxqXUeVmsnkvbgKLbiCTXQklgEPnyuc51umZ+cqH3c6dSbQbPQlDJXITERyiti+MK0FZEfh641FguneRPWpfLVscqImLf6HpIs7+BwvPcN3YjHKg8d2LSpH/xG2OMMRPCG78xxhgzIbzxG2OMMRPCG78xxhgzIVDuo1QxSie63qpRcQJyzT/8lgpnp5C69e5VK22JwV6jQsQOYtOo7wbS9zZQWpdkKxQQQdqgMaRyiyRG0b30gz7H/Urlytu3f720HZ+pwNadq2D34Ae+IW2H974ubfMvwUCXIyLZD2obCUpDp/Nr+7WfkraHb/6wXu9UJbuM7gfKqcav+u1wL/p8Q8HPl0JH5ThhDi5gHpGYtoQyxPTtzEYkwBsQSqmsKZX63YNIdn+h8haVqqY2Slejb3agZDaSsvYgyVGq3kHXHxLTsNwu9EFt1G8/Upb3ACmc5aO3tZ8ZyH2wTpFQR9/EkCiIZXsdrwHEwAykuB5SIYcKzgWZke6uoVRI2N3wu+s07W7I0wTHCJZHyW1te218VKo8SuNA2YK0n6SuSP7Fb4wxxkwIb/zGGGPMhPDGb4wxxkwIb/zGGGPMhEC5j8oUHkBgg4q3sQPRh8QL4hQSu0h0oxSvF5DGN3bsZ0nkI8kug2S2BZXqhU72IGhQCtvNTo97sNDxerlTkbIECYpEvg7+H5jde0faCpCEDhcgHY1ISxmIch2kgJWXH0hb/cMq3uUrTe7bLbX0L4k9O2g7BqFugLKkmOpW6DtpQcKk907aHSVm0j1Tel4N843OjWBhkObh42N995SQhsD39Po8rRQ3pbVlWy2PS3MrNTmOZM0S5la3fJB0L0Ot6aTDs3fh/ngAy9fe0cZDokR78lDbditpyioYB1jPhhf6Lean9/U4eOYM5iYJbMQA8m0OZYNruucc0gFpoYetA8snN/psERENjOtQq2TdwRdOx9F6dlWprDyHPSYV/+I3xhhjJoQ3fmOMMWZCeOM3xhhjJoQ3fmOMMWZCoNxHpQI3QVKQSilU9pOS7VY7NSpIJgIvBM8dg0RFkiJmZVpa4Vj531dp4ZkpVYyS1DJIznpjqeMKXaC4SON/C6JJB5JRlqkgk5++I23lAOWFO03niog4qlTkW7XQ99EXpO3qSkWtModyozcq55DsRoLkgaY6iELlDOQhEMmo3y28E5pv9E1Q2xpK1BaUBJiPfDswrz8gexdgXZC6oHHQPo4bKl2r45rtNXEtJ8kOUuICxMwcFpu+hlQ8APugdMB7b+pxt1q+NyIig4TAmKkMRvQgKmYHSCFs9Hr0LFTSl1L1AsQ7EvQQiNrLt1rSfYB00khM0aSytTSPeiivnbUq8X0n0Pynb2eAOXc+aArkUIA8GjBnAP/iN8YYYyaEN35jjDFmQnjjN8YYYyaEN35jjDFmQqDcRzIYO23f/f8bTqH07xasKhKeqGwnJepFRNybaz9rkJbomYlUAYsut4N7XMDAFiCgUDAh9bGC8qotCFTLSseF0t/oekuIUaN3MhbYSNe8SxTJUqE0uY7ER3ifC0r3AkgC3Hb60KTbkEBLczB1XGgOUhrfQLVKg+fSEm785RZS8AAaQZJqqZwwTZsC0swo4QxJLTMLxw2zY20DOXVoVMjK2jttW19q29FZ0v1FcKpeQBsmGNaalkdldLFfEOpS76Wfa5ooiXKYGAj318M7oRTNjoTcTo8jkY+gcsyfdp62DxYgw+drlRexi62WNm4hJbEaSUuVfpOOMsYYY8znAm/8xhhjzITwxm+MMcZMCG/8xhhjzIRA06fBtDD9PwJJciQUpUJyGUl7p40KQc1IiUJKyzuG80naS4XS/GgcNuBFYbIgiHe3kFZIKX0k8l1CxyTj0ftcgIRG0Hui9MIILrVM7369T0toJEGMZLdkKRHHFcro0gsAKGnyHOTWHsaA7qWCRpJEaU5nVKI2IjYgJdL9UPoYSXs0/gSd2+RUxhXS2kgG20Dp2RIS62ZQPvbQah+dinwoC1IqHkiA/REJbJxwme1ADqTy0CARdqevSxum4JGYRgJooiCJkDRJJW7puJGxSQG/41xlwQ6+7XlGtXpH1kJob3vtnL4duiKVhx5AQKxaFf5Syx37F78xxhgzIbzxG2OMMRPCG78xxhgzIbzxG2OMMRMC5b4ZiEKUtkZQEhqRnEiWmKJGktYYJD2ReEHQYfTIJaQ0ceKgnnzdqihE/aJcCQeSDEbntiDokTRJr24Pg7Cn+LyIIGeP5L4q13lI74lSCHfQN51LZWqzVtO9SJmhJK8dfFIkulFK3HGm4tah0Z7LHZQHhcCuolYhruNPHksyUxgmibUka9J8oDncgESV7dPSx4ZCxx9L2VZwHEiOVII3o7rgBEpyIExS6txOS65GRAQ8X0+yW6PXPIAMSW+eStJiCWRIAkQJbXaSdD1MOtyDXFnoXWeUTkfldmFccxgXcpAp4XJMjL2FZvCImcT0Q0wNhHvEkuKAf/EbY4wxE8IbvzHGGDMhvPEbY4wxE8IbvzHGGDMh0PQhze0M3IIrcCyWkPT2HGrKkjNDQhCJeJDhNQqdfwaC0lhZ31chd4KkpQ7+T0V9pKbYkRh4Bulv375UMa0BWfN6qy/vuNbp8MmtHnc+V6mHpEJ6jrF+nq9hMsHsXFQsp71KapofS0GahIaiFaSPHeAdU0nr1AS2w0xlrhz6zaFsZ7691Y5BLouIOGsg+Q9e3w0kTdL8p3WgGEAaAwErVajrF+fQB3zHiSIfpZ4Vdy+kjRLw+pmWno1O++0KkDX1zL9zUbDGQKi7ynU+nCWmumVQvZfkORLbSO5DMY3KGMNx21rFQJLFT0LXOEysgz5oDabUS5KuI3RNiYjYwjWP53rNHEoyU8liXJOg7DCtU82IgCj3knSUMcYYYz4XeOM3xhhjJoQ3fmOMMWZCeOM3xhhjJgR6JSTEdSBKLEH4oxQ7Etio7Q7Kx1Ka3MVMb3sseI/KfhJ0PwSVYuVn1jaSvOjcGfx/DKoiY0lfEu8+Xmki1grSAWmst5CAR+Vyqe0U3lNExMe3ej8LSN8jaQYC5iLm2s8SBMJ5qMlE0sxA4hckZ5HwdNbAM5Nws08r49rQPbckQoJ8SOVVR8hADiwhhe0ExFj6cvBzgrme9RTjSM+n8lYPpUqpjCtJVdQvKoWJyWpU0pdS+sq9yoyHBtLuIqK+/AW95vlb0jaDErCRw3ylxDuYI8X6pbSRyJeDXNbBnBkq/Z5oDEuYSZiqB6LtZtB5CdWdg97yGtYZkql330GZcWJVn0nbIjFxNm9V1N0sX5O2ptf1DK+XdJQxxhhjPhd44zfGGGMmhDd+Y4wxZkJ44zfGGGMmhDd+Y4wxZkIka79U3zzVZqSoVEpPRfsfolcpdnFOynxwDXY0aws1qok2sc57PmjbDO5xCNLUKbpYj6Jy92TX07jicfCnAxs4joxX4nrL8ZHX8BcFD4/U1KUIZ7L/6S8jnsNfiJyA6X9G9cMp9hXaDpler6S4TbKpwWpuSw2jxshqeA6sPQ6RvWTCR0QMNQRhw7NU8FcQWL+drPkaoluhLQ4QjUp2PdZ51/ha+uuGAeq8H8CE7xYPtV9gdoCYZ7jn20z/OmE58jl1YPATtP7sQ/up9xo1TH/NgewSbfHVM2kbcn2f9JcMtC6XuY7hHsYQM+ABWrvor4cK+GuwkS0G433X0EZ7Hn1jFPeeQSQ0rQ01/PUL4V/8xhhjzITwxm+MMcZMCG/8xhhjzITwxm+MMcZMCJT7SKpqIa6QdIoaRJMGrAaqs7ys9f8hq11anOKYeEFkncagzkCyIFGIID2PhDNyIWm89jDWFM+7OWgbvbtUGa8DQeaEImiBPDGWOSJi1qW9rB6e5d2rjbTRPdYgKtLzrfZp0moDMhiNzGGAKFIQ5/KNilZNqNxUk3QH4hzV5h6g1jeJQxERB5BRaW4GjEO+13dCZC3cI0Ts7kH8Sv2eOoobz1UgpG+shW+MorIpurUBOXjWQ8x5RTcN8mdE7DKVDUmyPh5AVq503pBkl5OECcfFHu6x0WfO4FkozrioQfwlSRTGugCB7Rq+41OIl25gtSYHuYe1Ymw928BOeLnVcX18BN/O5kovCN9tgORI85Dum/AvfmOMMWZCeOM3xhhjJoQ3fmOMMWZCeOM3xhhjJkRych9JY5TIR6IbiXzEEorYk05RkSw4Uiv5SMtII0MFiUcgm8xIxAHx4qZXMYcStih9aQ2iCklGFfR72mjb87Xe8/2F3h/RgDVJqX8zuMHLrUqUERFzSN9b7fSa1PcS2q6gnyLXFz8rtV9KfCwGsH1Aqsogxa4ByS7bq9yE6YBXn0hTf6fJavkRyG+Pvqz9QnLfbq4y3Rg5pLphIh8IenhcBcfB2FQtpMmVOl/bXL/ZLUnIsDTQerGFd3y7BoEWzr2/0KWU5LKrVvs4a/hb3IDYfAIC9GWr43AGc5jfHSyQvV4vg/RDmsN9c6znwppJciulStKqTu/uXqNrawtrK0ngR7Dv0Fr9YqPjF8F745Ao2W2aM+0bdr2i0DnSgLR9C/OL8C9+Y4wxZkJ44zfGGGMmhDd+Y4wxZkJ44zfGGGMmBMp9JE/kIBzcgEhwMYfUJ4BSkCh1K09MnSORJiIio0Q+SKbqqMTqbgUXTPu/EqWejfiHwhxkkwDhj94eleqlcsDURmNNIt+bJyr/fBsS9ca43KiMR4lTp01aiUkq/0sC1hwSvyiMK1+9kLaMSsAmlsDERDIoQdpD6dP8+EzPnWuiZLG+1OvNVLSaZywobQb9JraVnt8EC5uvMsB3QjIkjU0UIJx1elzT6xgGlDZ+ASWaKRGUUvFIMM0zmFvwzVIqJAnRz0akMZqbz0A2XEAa4ECliCmRD47L4N0NIJfR9QYoc42lf+m9gwRI/SJwvRLKLB9gH6NET3jFo8yghG8G/ayh/O9mD6Ii7KEH+I1OJdNpDhP+xW+MMcZMCG/8xhhjzITwxm+MMcZMCG/8xhhjzIRAuY9K8FJpV0o8oiQ6SkcjmlzP3WNiXZrwFxHR9nrs3aDlJC8o6QrK9w4gHu0LFYpquEWSfUjuoCQocvvAFUFIUJpDih2lVZ3PdYps4GaO6zSpMyLiFsqfEk/vVPZZQOof3SMdR3OYpLihPtI2uL9i9VzaSKgbICUxv4OX9xjS96DkbV/p/CWpihL1xuTUGsaGnnnd6fxfZPqdHEiWhfQ9uh8qMUz0UL60zkA4nulcoG+sBFmNEjNpPaNw0tR1Cny/T8+HfyhB5KPvkQTEBZR4PtQqitb9h9I2wHFYTpgEPXrvQHGnUi0lATbwHMXVE22DPjanb0nbUWh6ZBsq7o5tY7QPvoSyvLReb6DxAOWcn611f1pAv6cw1wn/4jfGGGMmhDd+Y4wxZkJ44zfGGGMmhDd+Y4wxZkIkJ/eR6kMCFZ2JZTaph0YFkmUB4gqWGz1P6iOCJYtVBwIcXLPsNH2MEgdJX6M0ORJG7kD4I65Hyt5+t1zMdDp0g8pENRhPlPr36IilnhZewB4SpyrohxLSqMTwEmRDEmn6IxX5sgNISwWMzfI+nKuiULbThDlMlNReUWCjcqgknZJU1Y38X5/6LqHIdnP3sbS1J2/ouZSICN9tdtDviVLnKPUvp7KwC1oHdGweQRld4hrSSW+ghPQA38mYtPcqlKIZwbItVOWNPPH3G6Up0osfKpXnSNqjNMt+pvM136hAS0mMVHqZviec/yQQUinbPaSxwrdNXuZY8mpqIiuVfSYp9I4k8IMeuASDnOYM4V/8xhhjzITwxm+MMcZMCG/8xhhjzITwxm+MMcZMCDRcSBCgdCJKpqL0vaGE1CcsVaoCD6XnUdrXmEizA3mCylgW8Cx0zUMBpVjB0CBBgwS4S0h4GsC4ISHx3kKlJSoHebvTsZ5Bch9xDDYRJRCSYLfvOVrwPtw3QfLoNjWuEHgAQtcK3l1dgRTUp83NrFV5KOv1HVP6Hs1rLG8L8iGl3Q2UcAbCXkRERvIWyHgEybsZlDrNISWRyhPHToWuYXlPjwPJi9aQpoEStTSu2kMcN3ocldYlcesKEiqXMKdprYgYKV0O1mRqOXOStklefASiKIl8JOgV1x9JG4mnuK6TyNeAfAuybORp384A16PvjuRU2gMjeJ9YkoUJkPBN74RS+qicMEmmhH/xG2OMMRPCG78xxhgzIbzxG2OMMRPCG78xxhgzIVDuo1KUJIacQVgSJYORUEQSzlCpOJdaGpeEiDHOQ+WQoVQRCiohxiJXYWcNZRTZQdMxJF+kB82Iyh1THyXIlZTIRwl4JHXOEuPHwG2K/Y7fCUl7VDqY3MDrg76UlxudIyQB0qMcN5A+SdIMpMmRKFRAEl20UGa20JK51AdCYhrIVzmUOR1IKozA9DJKwcvhWUhexHQ1GK+hhhLDx5DchzIwpCRS6hwIlzm8402tpY3plxGJVhS+10LaGol8I85YDLAQU98trA19YjIkrfWUoNpDW3n5vp58q6Wq4+w1aUJZkO6ZBL2aBGu93v7ogbQVUH59B9vgAd5dD3MmYqTcN7bpuQuYOLSXkVhIch+VGCb8i98YY4yZEN74jTHGmAnhjd8YY4yZEN74jTHGmAmBNlENklcFZsIB/t9QgjyBiWQg8nU52IKQnEXJZSOVLbGEbFAYICSXLaiMJdxjBmbbKdw3yXPX4GKcgHB2DSlgdD0qPbsEMYSSvUgWIT2P7m8HglExIqtR8tkM3tPzjc6lblCxk6SbL5+DKApyDd0Ll7aEMYRku3xzrfdXg9QGJUMRGENK/aN+owJpqYYUzYgod5Q4CFLuVlP6ckgNPJy+rp3Q9wQMOaRKQqrbAM/SUzIbJfyBpDjfqJh202hiIE0PStmbw6KEyxHVZo2IHnS8NciBdH5idVac62sQ2+i4YqYyZHaq6xQJ2lhuOpGhBDG20uuVkAqJiYGNnjuH6L6xcumU+vr8Tteuk8Q94fFSv9vlShMRqRw2isSAf/EbY4wxE8IbvzHGGDMhvPEbY4wxE8IbvzHGGDMh0L4i8YtElZIS+SiRCRhKla8oGOn6oP2eghg4G/k/DN8jlUmFNCiQgojjjEqaQsIZJIjdg3S0fag0Q4ldlOZ3UqsYRQIbyYIEJTaegtxHbXR/Y9cksZBSA/M5CGvwmqhMKkmOdC8kamGqGEhGKC1B+dLPQrbf6L3Q/AVhtdqCBDjWz0aT//A4EO+Ku5d6IIwhyXhZBmsDCI1DCYIk9JHvdLwo6Y36QDkYoLLN5VyfgyTY1UjCJc1DEvno+6ZvbwvS3gDjRame9H0Plc7/w5lKnSTB9rNjaYtE4ZXWUVyr4R3TfKMKurRy0R4YEbFOLBVOJXjXsD+ddPp8JLJSOWz87gD/4jfGGGMmhDd+Y4wxZkJ44zfGGGMmhDd+Y4wxZkKg3EepRYlBUMi+UMmlgvKluwBZBCSVFsrgNqEiU0S6WNIOJMXp8BRQ6hTLpIJYRZCoVYPoVoFIswdBkiDB8WKmz5vvoFwxjMEhYKwouQxKBEdErGG8KHGQErEKuOSiSZudJK0uc03yKm6e6clUIxjGJgORDOdCq/Pys5TlJdGQpLt+zv/XpzLZeByV4KXjIAkQk/tI8kKpVudcBtIkzVf63vGdQCJonem97AYYf3h3VI68gDFAmTRY2iPJ92qr74TK/1KpamILEhpRZCrjLcGU2zUX2kbpgPCNkTiNSYxU5r2GEs30jdF8o/e0udTjImIJgjaN/4ySHOHVZyRhwtqF3zclVwL+xW+MMcZMCG/8xhhjzITwxm+MMcZMCG/8xhhjzIRAmygDkaDoIZ2OEskgLakiMSpPEx3uVSquDAWVheXUp/pIy2ricdAGfkbklDQGQtdAItP8TM+FMqdBokqmAokWqOVyr1Q+GQqfoixC77NsdNp00Ae1RUT0INNA0B5Cc+QIhKcFiDSUmkaQEEryVgaCHrKD90nJjsf6jlMhWY3mwqjER8IUiHzUT3+nc3iAc/Pzx9pG8i3IUnQvA4h3LFxCeVZK7yTREOZ/A+teDyIZSXJz+vBg/kaMJ1/K/YCMvQMHM4d+WrhHEvQIStukUtr3IW2TBPKXICkuZ1BeG+7lDsTwBUiTNKJQQTdOWhB8R5IFSYo+bzQFkpzJBhY0SkTM4Dsh0TxVEPYvfmOMMWZCeOM3xhhjJoQ3fmOMMWZCeOM3xhhjJgSaAM0eUrdAmkFIguo0HW1fQflSkFlIUMqhLOOh4MQiCqs6CpDYIAWPHJc29LgmJ/ERbobSwkByjEzHkMquoqgF41VRihpBCYQk/MFxBchNL1uWkyiRj6DksjpRPKLUtEWn40VzM7W0braHpMMtiGQzHZv8SEsvd5dPk84lsrmW7cQS2T1/xxkkaaaWpcbr5VDGlUpxl6CoUsncGr5vuj+Y/7SGBEi1JBrmt0/0XFjjtudflDZMrgSpsCYROCIKKAlMXxR9J0soz/10DaIudE2lqnNQ6uhcKt9LqZy0ApDgu4YUuwCRj9jgcyjLAspFgxQ+lsaK84v2nU6F3qFI+745rVO/Jyf3GWOMMUbwxm+MMcZMCG/8xhhjzITwxm+MMcZMCDZ9SJqh9D04Ll9r6UISJcjvmh1UfmgzlZZI7aBEt4iIBiy7bKP90POR2DYbEXHkXBLvShAVN9d6KyCXFTcgGYFwOZCMR2lOlPTWQHIZpDgOjb4TUnCG4BKuVEZ0Tkl7IOeQAHSP4tAGkPFgbGj8qQRmsbmStsPTD7RfIIPkvuzBO3ovIMT118+T+higD/xmSSaNiIC+SUAcCpXxshNIxySxsFWhrp+/pW2UoEfAvCYXrITUURRZoezqUGkCGwmh842+p9RSyXRcBAuz9MwbkKJJqDtp9JkP8I1RYun1Qb9ZEvmoPDclEK73qaV/tY1kRkrF6xKTD2lM8cyxVDzYB2cg/uL6s9X1pzt5Tc8dVDwlITcjWRbwL35jjDFmQnjjN8YYYyaEN35jjDFmQnjjN8YYYyYE2go3hcpbpzsQX0BKoZKah0ollYLSuUgaA2vjUIPwRwJPBFoaJCgNIN61pd53TaVAASptTEJRD0JdDuUW872W/sWEORIzoW2Ac7M9iIHAAGJgBs+2Bb8rgkU+KvFJEg+xAhvpfK/SDCZvkaAKZTa7W53/CAh1+QzStEB0ix3IP1DK9vDu35a24aDCGZEvWJwbSG6tNRmsO31djxtJNHuVfqZzjuSmILkvsdwo+VwtFLCe9/o94Vyg+4N7KVZQehmS1Yh+wc/WwvJM6yFBpXVXOyiHTesjLJo7rJutct9VqxLgHl5KCxYmvTs6twKBkFIEc1iD72CtGGDtuYBSwotyJPUSUiD3jYqxVUD5athDaf3HvQPEUzqO8C9+Y4wxZkJ44zfGGGMmhDd+Y4wxZkJ44zfGGGMmBNoKx7laWbuFpnOllnstEpOzqARjot8Vq5Fyo0t4lrZW8YL6aeD5SCwkQaYBWbAH2aeApEMqwUsCykDCE6VQocxIJVLTZCTSiz6503Eeq75Lgk0F/wUtofGIDgT6QgWx6uk3pG2A9xktiF9AVuk77q5BzHnxiZ7b6FjnyzNp6y/1XLwXSOxC4Y/S/IKT/6iNRD5M6wRplRLvaM5RmmJqieCGxMADyKjwbQ+QlNfBt5gMlWsFVvUZ/wOIbT2sAyTFJafWAQVIcQ+PdH6t4TtuYTHcQuofXe9yQ0mf+r2/2Og8evtEJTkSAylFkGRjcrOxrPoIFZQAp3W9AJEvg/LQlH7bnWrCX75LW7v8i98YY4yZEN74jTHGmAnhjd8YY4yZEN74jTHGmAmBRhwlXTVQ5nRbaiIZldYdQHIhd2JBqXhU3hNue0bRTSPH1vAsqf8HKkLvsYQSjCRy5FBGkZ8PDmsg/Q3GtaNEPrgeiZRUBpckF5JhqEQnXS8iosi0vSm1o1NIHyNIKKpbnYfd8aOk6xV3L6WNUuyolG311vfrcb1KS/0WvhM4DlP/QNDrIVmQZEEqtfvpP4DgNFPZLQMZaYBkTipB2lNJX0ikJLnv8OAr0kbCH8mH1Ec/14RRgp4DkzDp2UBmpJLD+8Q0voiIW0jGmycKryT8kQCH/e603xLsXRJ6j2tdgym5rwLDmq63rPW7u4H7o4Q/WrsWVZpBjqXWR6A9DyXYWr/vDM7F+QX3g/sE4F/8xhhjzITwxm+MMcZMCG/8xhhjzITwxm+MMcZMCJT7NiBeNA0IdW1ach+pE1TKkMryksBGOorqHuMHHzJ9lorKpEK6YJb6zFDalZPLoCzjTsUvSh/rIM1pC6IQhH3FNUhC5PmQINNCEhfJecXIfyvncE1KC4MqotEcdFwpW62D8tDF7RNpI0FmmKsANzx7T9ry84faMSXMgXhEDFuYM9BHRol6IB9SOiBKihExgGzY36jkOLTad/H4HT0XJDaSm+ibP9z/kh4nLVwKGvsguThR2ktNDKTUP1pnSkgMPAtOhHs+aNnVs9noSvd38Wytc+52pyIxiYWLCqRVEO9obaC15r1rnTNvnqQlIj69g6RIWCvontd7HYPTGW15em6Z02LIJa1JYj4FaRvTb2HfoT0mK/S+qcx1qoDoX/zGGGPMhPDGb4wxxkwIb/zGGGPMhPDGb4wxxkwIrmULkFyTQ9LYAGlmOaR9UfnYAKlhC0JFDaLJWPhVP+j/bUgQQ5EPZDxK2kORj8roQulUSikbKhX+KFmNxrVrVCDBZDsYQ5L7SNZJTbqqR+w+KjGcYR1MOBcklxzKWF4PIA/VD6TpbAHlhCH1r0hMWMTELpoLl0+Trnf44FvSlsE3RlDqH4mLERH9i4/1/FOdS/mZyoZ9pRIalTse4B0Ps5EkwVf7BRmYvjGSYPHbTk3MhIQ/EgM3A7wTuL8CEj3XPb/PAr7bA7iGlFpH5WdPQdAmOrjv1LTOLdzgl851flBJ3yUkdc7ge3rvWse/hX5JSCThj8/Ve9Gv4VNQTM6gJDNMVxS5ASwfDvOaEmMJ/+I3xhhjJoQ3fmOMMWZCeOM3xhhjJoQ3fmOMMWZCJMt9lE40I5GvVdGKhKegErVQonA2qMgx9Hrbm47/D1NTXUeAEsTWlGq11+frISWO5KEMRL4oqMQnCGIgnNFxVJ74AGVcSeDBkpog8JA4BB4NSnwREQV0RFIQnd1A6eYBSlGeH1QUpXS1dlDh8mj1TNqofCZBsk53DXIrUD58U9qGDhIWb/R6mMhXgyQKQtBo35AqSeMwlPB9Az2IfPR1ogwMYIomyJ8oQVGaH5X0hfWMOL78trQdLt6Wtg7S/DaQhPmdQJ8ZybsEleWlRD66Hu0JKIHDrZAYuIE1gB7jKxcqC9K5z9cqZ19utO200TXguEmTnyMi5pBaSmvffKtJmATtJ7Q/dZ/hd7t/8RtjjDETwhu/McYYMyG88RtjjDETwhu/McYYMyFQ7qMQtZJKMIJwMECaX2ppSxRzOpDkqC1XcSsigno+VHpsAfc4h/8W7RsVlMohLQUMSwyXKmWR3ERpfigjQbck5lBSHkk9RE+JZInJexF8j+v9iDnzCnWj44DSDCVDQslKyrnqjx9JGyZSQglYSnUrIAHv8PSDpLbi3mvax6MvaltqsiClQkZEf/WJXnOhbyrf6Jwb4HvqYWCz0DKi5Yt38X7k3FsVLmOuqZ59oW2UrIl9wNqVhb7Pfq7P0YNgit8xzK1lxb+/bqAuNYl8iR5flHBg2UPZ7U77JbGN1gGShgkq401llkkgJCGRjjuGpEJq28PzUlJh6voYEdGESoRUqprK6FJibEYprUeaRFrgjqf4F78xxhgzIbzxG2OMMRPCG78xxhgzIbzxG2OMMRPCG78xxhgzIdDqPwLLtOzAPoQ66BSPuVuo1UwW5iJTmzEHS7o/0usdj5i7lwfVi1sIlgSJM5YQp1uv1a7cgV1Jf6FQziGKN9Hgp79u6M7f0m7B6lzQw8FfBATUkL5qyfBNs2ppHkVE7MDKpVvM4S8FZgeKLtbITYJqVZPxjQY/RLeS3Y19gLlbPIJI0Bv964RhcZZ0fwSNS379hA+myN+DzrkB6t1nO/1GA2JH8a8gdhC722603x2sPzQOYE7Tt4jf3RruBaB+6S+caJ26gzr0LXw7EWzwEzXUjt+BqX6Afl5u9R1/5TytpjutA21i+jDFfs/A9Ke/WKDxor9cor9EoCWpK/R93u70QR4f8TpDkb0ZRAjT/KcIbIqiprW+hG+HYskJ/+I3xhhjJoQ3fmOMMWZCeOM3xhhjJoQ3fmOMMWZCoNxXgiA2UE3rJUhtII1RrWQio36hJjhGcI7EAp9VINMMKnPM2yu9ZKZ1n+l+aLyoVjK1FVgDHAQ2iAQtbj6G+1Mxh+6ZoBrl56Fjva30Xmj0x976BgQn8pso/vMjyII9m6XJboseJDSI9u1BkOlB3ipp/CG+lr6Jw8U7ej2KdIZ5nYPoRpJQlHC9mT5HRERcqfSXzUA8mkNMN9w3gkIp/PZo4Ltbg0gMz0LfTgZjSCJlvtA47mj0fR7O3pC2247yvUEOhtjXseVx28O7B9mtA4uNpL3jGiJsoe0GxDaKsG0PaZG9y1rPXUEcMQnCTaK0R/f3YgNyKol4ECJObTQuERGLLG2/pG803+l8pe+WhD+KBydplfAvfmOMMWZCeOM3xhhjJoQ3fmOMMWZCeOM3xhhjJgTKfan1q/e5Sgh0wZMManiDhNZDdfS8S0vTKm60nngES3FzEoqofjullEGt5ADxot5caxckcgAkbQwHFboCEtP6ize1DdPM9N1RItYuB1mN7BqgHKlfXUD7EuScFcg0A6T5kShEtbPb0GemuuBzqG2f0/u8UrmPZLD9/S9JWwZzq69Uassovm1zI00FzMvDmc4FTLaLiOwMGrdp3x4l1CHwjaWKgfnyTM+9eZ50bjYH8fHRl6WJHDtKYjxk+hwN+KWU/kZz9WrL0lgFYlsB858gae92p/N6WUNKJfwepE+Z0gG3lA4Ikh3RwBrQD2m/TSm5j8bvxVq/k7OZJvLRCvfWnJP76On2sEZWDcz1RoXS+dOv63EgqA41pEWe8Pf9Kv7Fb4wxxkwIb/zGGGPMhPDGb4wxxkwIb/zGGGPMhGC5L7EULp4MkMhHskIO5UuzXsWXbKvlDceS+7B0MEhUESpb5dA3lswlMZCg5DIS9OiZE0uxkpBIZCALdqHPRkljVFaXfD8qvTkGyUOJgY9xDbVAZyD2bCBp7BSsrEWuciuN1+HhV6StWKlwllMSYw3pdPMzaYvNlbbNIWEO7q948Qt6HMiHEREBQmNUKiN1lNZJ59I3D8dhqiR8yxnc97C60uNKFbD6mZZPJtGWJNgnxYW0VSDoEakJc1fBct8eRLmq0nn99E6/+VMQ1h5CWdk1pAtClV9M1Ztj2W0SbfUbo4S/BjomSZdEvtSy4CdQfppKghNjCbQkr0cB/SQmvB5OX5c2kotxL4K0R8K/+I0xxpgJ4Y3fGGOMmRDe+I0xxpgJ4Y3fGGOMmRBopXUg8pGoQqVUa0jiAqcqWQxEIY7KbC7O8XQSq0gYRKGI+qY+QLxADmkJVtlMRSZKcOuOH0pb36igRGVJ9yCfLIa0+9slJnuNQceSONNDftaLtd4jSVAtCEBb6INEoRsoPbuHBMh7AYJYYoodll4uVL7KqLQuXI/EtOJWS+3i9xQRAySIUUoizaXu+BFe81Uw/TAxzZIS/jIQtUjuy7YgRnWwBsxVAnxQ63Ev9iqrUaIeJfdRKdsxnq/T1p8KpLiXG02oO2lUBrs3T1uJSdSlZ67JDARSS7VTOmBiECAmh1LCIkHiIpU/Hu0bRD7aT2j0BygB3sM6kK9Vcsey4IB/8RtjjDETwhu/McYYMyG88RtjjDETwhu/McYYMyFY7iMZD8SvEpL2SJIrZpA0BglDWaspexmkfZHIV9y91D6CE9ewFCiV6k29HqSU5SAU9YmpejmJfLcqcuQggw1U+jQ0Ja6CcsdDrWJI26sgswfhJk8sFzoGlbH85ouNtJFQtN5z8tmrvHaschP5Os/Xej0KKTtaqFDXBJRtJjEN5hHKOnQupV5SshcJe2MJkHna/Ke5ntE6APQgSMagSYAZlLlGCRDkvgG+saHVeZQtYGzg2dqgUqwgOCYm0dG5n9zyunDd6tr3xTNKHVVeW+p9c9KeQpWgSe7r4cDTJq2Ps5nOwxdg7fUB6wrdIECphJQiSBJxC6WSXzsaESHhPdE3T9wMUNoe1twFlfEGkXsswfZV/IvfGGOMmRDe+I0xxpgJ4Y3fGGOMmRDe+I0xxpgJgbbCkzuVFR6D2FBAwhCV3sx3WuZ0W6ikMgNZgTQOFOcguSwiYoCymuXle3BRfT66JslWxcv39TgqI0qC3one30AJfw+/KE0dSJM9pI+RoEeJdQSJL1SWl7whEvEiWAoiX+ftU5WtPrzRMsZbkA2pb0ruIynrYpaWZkbj0JRp52Y7Fc5oblGaHwo8M30BVI4260A+jJHkv0ud11HDiwYxcABZ9pCDyERJhyDv9pB6lt+9kDYsGwzf9i18Yps9TMJWx5rS5MAji68/VyHxHZDz3jiB8qoj7Vget9S5niryUdnb1FS9CtaQaxivOZQSplK4FyD83SSWQKZ7pjWOJGIq37uEeb4eSV1cQKoeldst4Puew3GUELgHUbde6/wfS7B9Ff/iN8YYYyaEN35jjDFmQnjjN8YYYyaEN35jjDFmQqCJRLLIi40mGT2c63HtAMlgIPIRJPzNN8+lra81AWysvCdJS1g6FZKR8suP9Lg5CH9zFS+yzY22gQTSX+nzZY++pH2ASJlttY8cxK9ZpeO6hjS/929U/CL5h2QY8J2iQzUz4g5MqA9uNP2tTZSMLmYqwJ3PtY2kQpL7NiDx0DdBz0H/lz4uEssxQ2JdkEBLch+0URJjUB8RkYGAuzv/grQVkDy37iBpDBIMSfV8AQlpS5hfBZSR3ixe0z5gaPKByrNq2w5K9W7gHVOyKSXW/cqHuk59ACl97YF/fzVgwFGp2VsQ4DYHHf8FjSslUsJxdC6l+dE4rPA7UWgNofWHqAvddyi5L1X4ew4pgic1p17e9rqNLsiBhXTNTaUCLonJ1POY0J6Cf/EbY4wxE8IbvzHGGDMhvPEbY4wxE8IbvzHGGDMhsupHfndajUNjjDHGfM/jX/zGGGPMhPDGb4wxxkwIb/zGGGPMhPDGb4wxxkyI/w/0Q535hob70QAAAABJRU5ErkJggg==" id="imagef2e607772a" transform="scale(1 -1) translate(0 -367.2)" x="1021.351063" y="-26.020103" width="367.2" height="367.2"/> - + - + - + @@ -1084,17 +1084,17 @@ iVBORw0KGgoAAAANSUhEUgAAAX4AAAF+CAYAAACF2nH8AABuf0lEQVR4nO29a6wt2XqeNapq1rzPNdda - + - + - + @@ -1102,17 +1102,17 @@ iVBORw0KGgoAAAANSUhEUgAAAX4AAAF+CAYAAACF2nH8AABuf0lEQVR4nO29a6wt2XqeNapq1rzPNdda - + - + - + @@ -1120,7 +1120,7 @@ iVBORw0KGgoAAAANSUhEUgAAAX4AAAF+CAYAAACF2nH8AABuf0lEQVR4nO29a6wt2XqeNapq1rzPNdda - + @@ -1130,17 +1130,17 @@ iVBORw0KGgoAAAANSUhEUgAAAX4AAAF+CAYAAACF2nH8AABuf0lEQVR4nO29a6wt2XqeNapq1rzPNdda - + - + - + @@ -1150,17 +1150,17 @@ iVBORw0KGgoAAAANSUhEUgAAAX4AAAF+CAYAAACF2nH8AABuf0lEQVR4nO29a6wt2XqeNapq1rzPNdda - + - + - + @@ -1168,17 +1168,17 @@ iVBORw0KGgoAAAANSUhEUgAAAX4AAAF+CAYAAACF2nH8AABuf0lEQVR4nO29a6wt2XqeNapq1rzPNdda - + - + - + @@ -1186,35 +1186,35 @@ iVBORw0KGgoAAAANSUhEUgAAAX4AAAF+CAYAAACF2nH8AABuf0lEQVR4nO29a6wt2XqeNapq1rzPNdda - + - - - - - + - - - + + - + - + @@ -1342,12 +1342,12 @@ L 443.687395 218.16 - + - + - - +iVBORw0KGgoAAAANSUhEUgAAABoAAAH9CAYAAAAEfGxAAAACV0lEQVR4nO2d223kQBDEtJKcz6Xk/GNYyTnwgPogyAQGdHWNeh+2Pz//ft9jwLk45DiO4/6c1+SgjDAZYYZGl83o9GWUEWRptDmrjDAZYXoeYYwZ6YzaGSgZYTLCZITpCYvJCCM0Os/P5KBlRjqjj82oqaNkhLnPUY+EPzqfkfEK2hzUgw+jnLqMGL4HXxlhhEbCu07Yo81BTR1GeDP4etTUUXZGV0aQjDAZYXZGt87Il5HRyPZlS2NGGTGGRrpXE8KMdEbtDJSMMBlhMsJkhMkIkxGm3Rsj/Kz82gj1aQunHmHqEUbYo6aOUkYY4V4nzKgeQeoRZvUmcZsqR9mjzUFlhKlHmHqEEWY0ElpmdJQRo70OY8yoHkHqEeYeCbUzcIw9Gh3U74hhjHedzqgeUeoRRrkzjA5qvCmNN6aVGDM0eif/LGhodLzP5KBlRjYjX0ZHPYLUI4wwo4woQ6PHZtTNQOkJixFmVI8oGWGERsIe6XaGnkeUeoQRZiQ0er6Tg3ZGr+/21mXkM3q/NiPhFuSbOp2Rb+qMGfmMdFMnfB5lxGj3xggz8hk1dZSMMMonbD1i9GoCI7y9329GjKYOY8xIZ/TodoZ6RMkII5y6x5dRRpB6hDFmpDN6mjpI725huuswGWGMe109giyNbN/3NvbIl5HNqJuB4ps64TA8uivION62qfNl5DMSTp3urmvdonQzYIxTp3tDQ5iR0KipYzR1mPvR/SGIr9Boc1AZYcoIU0aYMsJkhGnqMGWEKSNMGWGEGW3eZSij/6AeYcoIU0aYMsL4MvoDpjBPjGAS1cUAAAAASUVORK5CYII=" id="image8edbb6aa05" transform="scale(1 -1) translate(0 -366.48)" x="912.24" y="-25.92" width="18.72" height="366.48"/> - + - + - + - + @@ -1457,12 +1457,12 @@ z - + - + @@ -1471,40 +1471,40 @@ z - - +iVBORw0KGgoAAAANSUhEUgAAABkAAAH9CAYAAADvS9dDAAACWklEQVR4nO2dy1HFQBDE/CMfUiL/GGyTgnXYOaikBLZET+8sDyj2n9+/d1vMsfqAbdu2az/O5YdkgsgEMWRyWkwOTyaZAKZM1p9TJohMEO0ThCkTjUk7npAJIhNEJog2IyIThMjkOPblh0xlojHZLSZNFyETxHUM9ET05fKYmK6V9Ye0tBCq6crkO56lVSYIkYno7hL1ZP0hTRdC1HhPT5ouwozJmQkgE0QmiBmTS2PiycRkYvnFPlMmmXxnyETzqhdlojFpxxMyQWSCyASRCSITRCaI3sII0c9+z/Ui/dSBUU8Q9QQh6knTRSgThOjdJcqkngDqCWLiw9RekAxVT9YfUiaIeoKoJwhRJgMiU5lsZfKd3l0IUyb1BFBPENeASDueYerJwCH9TRDCdHdpTOoJoZ4gVDt+4JBGmNAII3qmIoZM3uX/NGTIZHuf5YdMZWIx8WSy1RNAPUGIMsmEMGTyWExqPKHNiBBlUk8ImSBEJqKeaHZ8+4RQTxCiTEQmz738kBmT13MLazLxmLy3xUT0WvFMl8bEM12mTDwmmukS7ZNMvtNbGCHKxGPSdBEyQag2Yz35Tq96hOgWfu9MvtN0IUyZaEwezY6vJ4RMEKLpejyZZAKoJwhTJhqTp+kC9CkRorsLkQnC9O6qJ4ApE8vvC5t64snEYlLjCZ7pEgX/aK4V0whbpsuTicdENF2au6snEaHGI0zTpfmwQJSJyKTp+k7ThbgezR/h3yKT9YeUCaJMEGWCKBNEJoimC1EmiDJBlAlClMn67+LLBFJPEGWCKBNEmSA8mfwD80VPjP5HjD8AAAAASUVORK5CYII=" id="image0153ef0b40" transform="scale(1 -1) translate(0 -366.48)" x="1395.36" y="-25.92" width="18" height="366.48"/> - + - + @@ -1513,12 +1513,12 @@ iVBORw0KGgoAAAANSUhEUgAAABMAAAF+CAYAAABgTSH8AAACBklEQVR4nO2bgY3EIAwEgfD9fEvffw0H - + - + @@ -1526,12 +1526,12 @@ iVBORw0KGgoAAAANSUhEUgAAABMAAAF+CAYAAABgTSH8AAACBklEQVR4nO2bgY3EIAwEgfD9fEvffw0H - + - + @@ -1540,30 +1540,30 @@ iVBORw0KGgoAAAANSUhEUgAAABMAAAF+CAYAAABgTSH8AAACBklEQVR4nO2bgY3EIAwEgfD9fEvffw0H - - - + + - - + + - - + + - - + + diff --git a/docs/examples/clusters.cpp b/docs/examples/clusters.cpp index bdcb7dc5..e64b12ce 100644 --- a/docs/examples/clusters.cpp +++ b/docs/examples/clusters.cpp @@ -8,10 +8,10 @@ int main() auto I = GooseEYE::dummy_circles({100, 100}, true); // clusters - auto clusters = GooseEYE::clusters(I, false); + auto labels = GooseEYE::clusters(I, false); // clusters, if the image is periodic - auto clusters_periodic = GooseEYE::clusters(I, true); + auto labels_periodic = GooseEYE::clusters(I, true); return 0; } diff --git a/docs/examples/clusters.py b/docs/examples/clusters.py index ef45f61a..b7b1b28e 100644 --- a/docs/examples/clusters.py +++ b/docs/examples/clusters.py @@ -6,10 +6,10 @@ img = GooseEYE.dummy_circles((500, 500), periodic=True) # clusters -clusters = GooseEYE.clusters(img, periodic=False) +labels = GooseEYE.clusters(img, periodic=False) # clusters, if the image is periodic -clusters_periodic = GooseEYE.clusters(img, periodic=True) +labels_periodic = GooseEYE.clusters(img, periodic=True) # if __name__ == "__main__": @@ -30,57 +30,51 @@ with h5py.File(root / "clusters.h5", "w") as file: file["I"] = img - file["clusters"] = clusters - file["clusters_periodic"] = clusters_periodic + file["clusters"] = labels + file["clusters_periodic"] = labels_periodic if args.check: import h5py with h5py.File(root / "clusters.h5") as file: assert np.all(np.equal(file["I"][...], img)) - assert np.all(np.equal(file["clusters"][...], clusters)) - assert np.all(np.equal(file["clusters_periodic"][...], clusters_periodic)) + assert np.all(np.equal(file["clusters"][...], labels)) + assert np.all(np.equal(file["clusters_periodic"][...], labels_periodic)) if args.plot or args.show: import matplotlib.pyplot as plt import matplotlib as mpl - import matplotlib.cm as cm + import cppcolormap as cm import prrng from mpl_toolkits.axes_grid1 import make_axes_locatable - # color-scheme: modify such that the background is white - # N.B. for a transparent background -> 4th column == 1. - cmap = cm.jet(range(256)) + names = np.unique(labels) + names_periodic = np.unique(labels_periodic) + cmap = cm.jet(names.size) cmap[0, :3] = 1.0 - cmap = mpl.colors.ListedColormap(cmap) - # reshuffle for better visualisation - assert np.all(np.diff(np.unique(clusters)) == 1) - assert np.all(np.diff(np.unique(clusters_periodic)) == 1) - assert np.unique(clusters).size >= np.unique(clusters_periodic).size rng = prrng.pcg32() - lab = np.unique(clusters) - lab = lab[lab != 0] - new = np.copy(lab).astype(np.int64) - rng.shuffle(new) - rename = np.array(([0] + list(lab), [0] + list(new))).T - clusters = GooseEYE.labels_rename(clusters, rename) - lmap = GooseEYE.labels_map(clusters_periodic, clusters) - unq, unq_idx, unq_cnt = np.unique(lmap[:, 1], return_inverse=True, return_counts=True) - assert np.all(np.in1d(np.unique(clusters_periodic), lmap[:, 0])) - assert np.all(np.equal(np.sort(lmap[:, 0]), np.unique(lmap[:, 0]))) - assert np.all(np.equal(np.sort(lmap[:, 1]), np.unique(lmap[:, 1]))) - clusters_periodic = GooseEYE.labels_rename(clusters_periodic, lmap) + names = names.astype(np.int64) + index = 1 + np.arange(names.size - 1) + rng.shuffle(index) + cmap = cmap[[0] + list(index), :] + + lmap = GooseEYE.labels_map(labels_periodic, labels) + assert names_periodic.size == lmap.shape[0] + assert np.unique(lmap[:, 0]).size == lmap.shape[0] + assert np.unique(lmap[:, 1]).size == lmap.shape[0] + labels_periodic = GooseEYE.labels_rename(labels_periodic, lmap) try: plt.style.use(["goose", "goose-latex"]) except OSError: pass - fig, axes = plt.subplots(figsize=(8 * 4, 6), nrows=1, ncols=4) + fig, axes = plt.subplots(figsize=(8 * 3, 6), nrows=1, ncols=4, constrained_layout=True) ax = axes[0] - im = ax.imshow(img, clim=(0, 1), cmap=mpl.colors.ListedColormap(cm.gray([0, 255]))) + bw = mpl.colors.ListedColormap(np.array([[1, 1, 1, 1], [0, 0, 0, 1]])) + im = ax.imshow(img, clim=(0, 1), cmap=bw) ax.xaxis.set_ticks([0, 500]) ax.yaxis.set_ticks([0, 500]) ax.set_xlim([0, 500]) @@ -94,7 +88,7 @@ cbar.set_ticks([0, 1]) ax = axes[1] - im = ax.imshow(clusters, clim=(0, np.max(clusters) + 1), cmap=cmap) + im = ax.imshow(labels, clim=(0, names.size), cmap=mpl.colors.ListedColormap(cmap)) ax.xaxis.set_ticks([0, 500]) ax.yaxis.set_ticks([0, 500]) ax.set_xlim([0, 500]) @@ -104,7 +98,7 @@ ax.set_title(r"clusters") ax = axes[2] - im = ax.imshow(clusters_periodic, clim=(0, np.max(clusters_periodic) + 1), cmap=cmap) + im = ax.imshow(labels_periodic, clim=(0, names.size), cmap=mpl.colors.ListedColormap(cmap)) ax.xaxis.set_ticks([0, 500]) ax.yaxis.set_ticks([0, 500]) ax.set_xlim([0, 500]) @@ -115,9 +109,9 @@ ax = axes[3] im = ax.imshow( - np.where(clusters_periodic != clusters, clusters_periodic, 0), - clim=(0, np.max(clusters_periodic) + 1), - cmap=cmap, + np.where(labels_periodic != labels, labels_periodic, 0), + clim=(0, names.size), + cmap=mpl.colors.ListedColormap(cmap), ) ax.xaxis.set_ticks([0, 500]) ax.yaxis.set_ticks([0, 500]) @@ -130,5 +124,5 @@ if args.show: plt.show() else: - fig.savefig(root / "clusters.svg") + fig.savefig(root / "clusters.svg", bbox_inches="tight") plt.close(fig) diff --git a/docs/examples/clusters.svg b/docs/examples/clusters.svg index c8b7b301..be7e29d9 100644 --- a/docs/examples/clusters.svg +++ b/docs/examples/clusters.svg @@ -1,12 +1,12 @@ - + - 2023-11-25T15:34:51.371528 + 2023-12-06T12:08:04.604153 image/svg+xml @@ -21,53 +21,53 @@ - - - + +iVBORw0KGgoAAAANSUhEUgAAAdwAAAHcCAYAAAB8oxv1AABFF0lEQVR4nO2d63LlqA6Fna55/1fe50eOu4ljYwG6LIn1VU1NJ9nb5iIQCEl8fT6fz3Ecx9fX1yHl/19xZ6SMT1iWvVe+qDabYbWdpXX9+vpK1S4Z0BgjLR794zX3zLZNtIxeyx1dnlVG++Hz+SzJ9Ux7Wc1Nf86HjxbGG613Wpb9qYOyDZCV8o58N1u7aBEhg9HP0njPrvLy+Xz+1j17G8zIvqe++fr6+vu+9t9a/Kf6NEWuK4zVVU77HG3asp7/j969Rb+f/OQqu+fP7KNvru2gLb8rcwfKWEIowwoRG7WRNnsqn2b//5ltBMvGa1cYWUAw+5wrsusKLVM7VqTX/uybe7THj5fVhpAef6ILcCXbBNSWN7LsCGd3nJh+I+mXbDK/G+yfdbLubqV/lwKncLNN2lezdwRIkzonp3+MtIVmu2UbQxmgtQiD9jx75TN331n5u5QlhWslfE8OAquVtpyIKk5yo3WiKZsgozVGpXJdUf5R6nQq1VZXzChab5YUbiYFlqmsSKwKMcoA3Q3kxWkF3s7lM/qh9LD23l1BS1Y9oky+juOYfpr3oMwaR2fJTEybxjtbb2yPd2YDRVZnylG9vyzN90/Pztymq/kFPP1LtDyKrTzTYcOCtMgs6BJGwqWsV4LkHzNhbBbtyoXRb0bahKyjFdJ5PuvKU8jd0+dn36PBf7ONgbq73WXSQGDkLIv9Eot1nGtG2vqf7bEar9v725OyQO4HifdudL6Bt797Zhd8e9eyl7LXKtHCM42swQxBeXnrk912f7PKVrqbuir3LPHyXt67M2R0XvtzHPO5JjMIzA5I+m8HpYcmf5navB3Du45rj9hzr3jP6oy2k0W73j3z7T1/d7jS+KZIquQqtmB20ZSdJyWRkYhyS9srY7uiJFsYPTNGa2eNeVdjjkab53t9/cTXp/OJq/0b6Rw1+uxASlQ5795r5Tiz6sU4y1t9UOQDady0oHhSa6Eh35qObrPz59tzI1mZz1YXErNtefd9LUbPcLsKt/fgN1AFpoeGckT1BvUa7J4LDG2Fa1V2RIWrOflFozn5Wo6TCgp3FY1F3orsRrcrXGpHbzTPrbKajK5kFuhRdj+3zM5sP63Gy1oq25nPZ0HjnBwt1GeEbRWuZFIdmXiRB5Tl4iEK6bmj5d+loDm1adQLXT4kzCpdD+cqBOVgxUhESbV2ECW+mJ2wURtrRjm+ndXMlsO6jVbjClH7UBLGodFnWm3QKy9qG+/MXYwu0WXH2HDRDtdjRbcrFXYK2YiyRpwr+3NsMHZ8Da+dOvvIB0uvZ5Q+LJ/aUYsdVl/ZyLxrjCqf5gJvZkxk7S8NJOFBO7TDG1K5ytieYi/l48D0tpxBOxwC1ePT8wwSAclA3ckh7Iq2NUXbccjaEUnrvZpwIf+Ttk9nQxSR23NI4R5HntjHJ7SVI/qgR10MRIISw+eJxdHFSJtoL9ajFw/EDnSlucKwl3L0anCVlfLPZBaZfS4hVRgZtxFWNI4/LCr3x9QZrqcH33UArpocslJ51UcIyQ3nJxnLTlPRO97euWpmAbhb6Y+mESP3SEKKrp/PTLQ5mcRhOQ8+bYYoG89AJ76YTW7QZg3SAjExgXVIQ+WB4xV4jxD2Fb0o9vgO+abNlHaXPU2rbXvPYf89A6twZ899eiZoRFBzN1dWticWGYW8JrxILOMlR75D/4l/jGbFqyCHGYFVuLNI8m5qB01r5vZE2BFUmYQkPCWjmFW2s5/LMgHuJBtZ0M4nTewop3CP4/gxefY+I1GkVqttLWUr/e6uuUtHWKn7bPaqu52wBav9WjErVoX6rMqL1QKfyvweSIWrIQQjCkZrh4Os1JjCzg7tHQaq0vV4r1fKPlRZz6CoRrJAkZ8MJ77wYlTwQKsx5CVonaQiUwq0LGRWjlfZtE67aJ00J/Oi8q7sllnTRt4z827Udo6GuZSNoeC9kz2EywKPNvFu8144loUDFOWKoHDK4tdxHJ/jwFMMVXa4UrxWqzMraQuqJLHPvMO9wyvWm8rwH7OWp+i0slXGsAWPx0XH/xXuceA1VJXLEqR45j2OmvCq9Wk1hXuiJR9UrDKymZSvsJ//0Y1RPhqFexzxA/3KTmcF1S8aqGa1qKpsNUCxpGRhtL0YCojJW7/88lLO4CV3QiEhkWidO1495LPj7X09AkIZ7hiVA005qSBzCEhk6zYsCEkoNcN2SBwICT2QoTzbY5HyVRvKgRykfpSWBTIO94nqwrhSv+pt04I00MhPUPsmW8pXck8vbWoGlhVulopmwTLhRgUy7FJ2BlUWJSlfLaG8rvPWhtZtrPH8X05TLTPpB1EHXDYyB/HfMSusWeo4Uz/LukV7jdJp6hvrdtBQAhn6ZaSe2vWR9KE4j/rxoHBXcv1m6MBsRE+gq1RXuMcROym8vT8yrjdTH2rjEau6onSz9I3n2GplVjqmSp7h7kyWgbEz2XNpW+BZ1yxmW+02qZZP+srsxSCj3xm5SGS27ZjaUZHdV/M9emn9et/JRlR6QekNLhnb9I227ue/K9azh2RHdv1sFkbnjtH6eS7UxAp3pFBVB3aPdmW0kiptt3arzszgpwzUoVWEHv1qveCrJp/em4DbM9ynh/IMt8+qsj2Jbj/LQUUZ+o2G6WrXdkU8t64GQhtb7HC1HR1FVqZjILXjroPaGq+E8dL33+Hh+WfxHmS0JpEdTPU96BFtB5KJWrssFpEFQ6kdKaQxRHqQit3ZlYPLnzKIVcDiTEhrl1GljYk9I3MDAgiy/aqQj8Hr+RiHa4fn+cgOoQSezChEzZ0prU/1zhejiQ5zu6JpybCe/56e/0f6gJGXkTkyKFuN71djJgMOc0vPgXCeiMYOcvFUR+/4/pHQvzsr3tdnUUq5qszHLtlpPJjdBVhMFJWtTzyn/Yn1wgMtc9px6MtARB2XE18wsD0XbMM92Vk5VUMzp7CW8yLlS0aqTFMVO5UKcD9W+vxtZ3PniJZ93GibE8k/MsmGtpNlxKKCmaackZznZRoEOzOTcu6cKKzPnirJ0FN7VaojkaPZ79KxqPXOVDvc7HBFXgua3Qgqnn4a2eX6rfya9eMO1wmE1JiaCp/OcsQT7xSJ2dFqo7cdYJW+uDo0WtWLO1wHUEJAtE0xZJ6Z9tPMNpUVZLmr2gdVfQOesKwXFa4x2g4yVQd1ViLNbqNXihE72j6oTFUl6wUVbgKeJtbqgzsLHmdA12f0+p5y4U+7+/N61+zfSRzLiS92583e7zH5WSfsXn1nNlbPcEa/P3pGxjSOpIXn2nmgwjXGa7fhrXTvdlyRlzCsvhvFMURSFypcHaioiDdUuMZ4mve8lO5bisLInNCj70ZL0P7G7lfxrYB01RzZE57hbopW8u63ny1ZfXfGs84MdczYroR4QIVbiJndz+jtF09/a//vSeS7I0AJMXt7F5UuQSVSNmlSNgbVpNxjl7OtbObZVVmaKf+MLCDKD8+9sfCWEa1LGpbLsbvC9eh4RMep3fG+R1MDb4WbIcf3yPjlGW4sEY6JHgutIRncWeG2nVFB6W7clVNwhzv+rug2OI75e3+pcOOIaHur8b1y7/TWZ7hIwerXzzIxPiE/kSZ7YVIYYoVU/p7YWuEeR6xXrdbnqWzro6FApM9AzGKl4SzGDE37YOFcOHoBze3vdzYpI7Ca6IDdN+/YM0p0W+9qUraq91VuvBx5EJ3KJMyWOyLWXdtHQytvAa/nC0YiYBGTAjrXATByHp9R2RJ9Pp/fV8+dP1ufJ3r6j6ygUe67dn76HCKrC772+3/QzjrQyoMGqlB6ITmf0zaJ7tjmd3XOuLvtPcPLdK5pqrTirgwZyn3HSrms6/Tf+ZLZwbTisfX0jCyrP7KOdlhH77mRyjajZeLcmWQrtwSp80vFup/05t2RZ6C1kXRH/fRdS/6alK3Owd6ei7pKOg5MYcrO20q6UntrLyQjJpJK/UG+0Z5zJfPkm+zuImc/vJQ1vLBWPxvNabJsU9QxzECHFZd6C69DS6zMcbOKmsSg4RmuSeSYOMMd23DMmRBIT7TbayosKNvkJ0F6NoheD0vaxcfoQiR6gTb7TERZH43pzorVOaqnLCKF9iHNXdb11VqYapdzWOFqHkivBhFrMfoOJMH14E2xSv4+805NvEyqXpP5qHd7RjTL3z5rlwWLJ7vNibOEhgVJzqQo8LFEOCpdn6fxjIpUrRfRB8nq4sXI3OFV/l873N1WKp6mxh2wMLuvDAbEiaAyHBe/YYarON7OiL3PkH/tcNn55KTaznJ0t+yRvQqxnWa4OyNFrpe3dY3Ja2JZaf9VK1vL0BmuRRA6BU8PtN0FWnmOw9aJRes7iO3WQ9Oz/IrG/PD0jLedjxXV5rxs9Yn09P86juPHkyzS4o083xtrxxVLJGW3SmjixXVlOvvdHpo7jpkyWvajNV5lR01k4MVqDLfFeK7StqOstOWPHe6uDRgFilK7A1EWrLxLrUyHnu+Nwut8cvf44zZ2Nboc6LGz1rRtMNoOfxXuzg3ozV1iDSIjg5xmKGNGpBNcVYVQsU4VGOmXP6NfqOYx6p3yTuu8Cy2DjRdZ6iPd+VXox5kz0tX3PWUsQpxjTpD7kKwhlbs/kc4hZB6PDDbRfRb9/lV6iqH9jPRZnsycRV/r6UEWGWktWhFYOp+RbyTtM5XaUfrwmc9GMFo+K0ckroD/gS4zo2SqT2ZHQkRmMuyRnNxZW9qfpxXu+SCNzyAgWZWvrty9HEw0iXB6efpsdD7mHZjNOUyeucpz1DjPbO3KyrXdvj5syUcsAtR7k5i2u79mWIxWONhqsgG0VG1aMqItFytkSFyREZSEF1bhdeQdKtwA7gRea9KWPGcmdtIq/np0EkJQuBaLpvZ7CBMzQhmIPm2/Zo7/zsqPxBdsXF+8J7UZpXlVBDNo1jFS4WqnhXx6XvZxSGWNSS95BvvMjh/HNMdgpimSEy1HGARzVNTKXKvuCLt0bZBM4uSZKMW6q0L/5TB3XBTucXCAoDMjvJomYQSFETHBayhchAWLNjRNkiuUifs2uPVSpnciLtHxfMeB4Z0uiXHVZPYmoOpUSNxBdKFMPNdtKSyI+NMqGClWtzyhZPvJslL2UNqVJ7Gdqdqv0fXyfv+v+3AJPmgKBq08u9JaP9gnfTK00VPCDORyZ7kT+ine3Locjzvc6JUHEmyLvVnp/yjZ8Xhv1t03wrFMj7cLTVAvPMkyTt7a1vL5jwrX2ykHjVOor7f6VKsneUcjQ4/3ZOSxY/BKiarNzLGMF8ymlp+eXC2f4V6VUgZWV4+ZFK9mObPUGRGPtHrIigQNttGeRM9hSwr3rvDRFerxtmPNaiLroTmx7DJJZejXJ3bpo4rQEx4Dyza9VbgVB6213Z7k5u0IYWZMVBxHV0Z336Qm1mefGnjmD3hMenMspHacTU3n6ZXmoUzRJxOtNkCv5wxW8qFx41HvOchk8ABGQzMxjQcW48ajDhEJOX5YUVcuL8iQC5YK95tsA9qLkXaROEBpXR4hfRaxJcPmoIKyPQ7fekTprqU43M/nc5sQYZUMipzsy+rNPm+KW/uyB46bce58O9iOdWjHoHW/tu9YTnyhXfC3s1bvDEuk7kSjIR9aIUOmZiwqDKJEhd2t13vvxqBaakdrZTvymRNOMP+YbYvKbYhSN0tlK/k9+UlU++3qmFehDleeZAUmlzIDvu0ZyXMckROZYLHrOHuSe44HfXZr0/94xrNGxra7lpkyUAdJ0hakUB7K3k/u/GJ6n/VEewFWtd+7x6IrXsqaWIZLWK7UQZqPLFDtmGLVi9oa9PK1RC0I3mQyqp1W5lK0vrUE2qRsnWFF0tEzJtSdBKgySDu+6kh24Eiwz3VgO34DoXA9nAV6n2//JlG8PN+sx9mnbT7i6++ywDPI3Gg7jxJ/HhPf7GBSvnvXqEna832EaIEmexGZfjKCalI+jj2ypWnSjkGIHa43nqbjbDcpkVpknOw4Vkgl2jEIo3BHJoYsk8h14uBEQsg7Wcb3rlScq72AUbjHIXduysK1rMhl52KAEBykPidRvPk2ZPR9OLGcC2HOcFuq5VJGO0c7Dp6lkRgod3MgziFXMpTxCa9QNUiFS2ypFndKcpEpDrciyA5ZEXguAqFMyuSdVXPH6Pe1zStvl1OQ+vRCsIgdX19f4pAjjkUbuMNNwt0A6HUdUho27mgIiSXLXbsRcIdLfjB6e4nF6nT2mdkyCyHDtiIzrMhNdZmT1k+rHahwi1F9gOwK47kJ0cc7rSsV7iRoEx/iuYv36rEyPOckM2iMLeYT0INnuEIiPfskZ6Beg2C0ngwDISQOj3mhwvj18jPhDldAdDJxlGT0FQYWIS3cra1ToQ29POf/U31aQUaESSvw++457U6Wio+QOe7Gc/u7SmPLUxFWmpfe6rFSV5qUO3i70s9m2EI1J58wLIggIB0nlWTSU+lWarcrWnOYiUm5gonB25V+JSEEuqAz0QGJZtRSRciJZmijicLlRDpG9BmxBK0+pWwQb7QXwOQettk7dJoir1BJkqww6YMfnCfeocIlXTiICMkLx+8a2osuKtwbLILFNd6Vyfko++4ge/kJIetoz6tUuDdoNLJFyrC3z1oo3dEFQZvx6vpzBu7KT0hmVuYF79SH1aHCLUaE0pUoJiov4o2npQqdmXmhjSrQfvau/DmOWKGqItBIeCrd6Pt1NfG8fWlHvNvR01KVAWko3t3nrEL7MowtzQXH13Ecvz5tLWQZziJXBUE75zCCYN+VYea5KH18x+i9w7sjybpzbVPP9vQex0RO1gxfs5mmvr6+7k3KlquOLPejepx7SL+DKoxWd+QSbEbO6qW/I/shNVmjMatsj6Nzhht5iTnKgNRWnJLvMhtTLHd9YA2KvEvIsmDOxM5ttsP81vavm9NU1rM+TS9i7+dog9InHnhce+jpER0R6raSrlQLb0vVCPSI3w96KQuQOhpUp63j6uSQYXKRKA5kosO0UI5JvC1VhDzRVbhZJxoLWhMvzb7rE1KGNos4Y9IaczT9/iTCUtWDHvF7cO3PrsLVEryKzjXRCgO5bSrh3c/RcvXE7JHQXX2869gryxWvsj29B7X/yRzX/nS5gP7z+ZQLH4ng2oZZ3eqJHp7m4dl3tefhEXLavvP6/qgykT25jcM9Dv0JnAp3DUn7SdpLux/YrzFYxVVrvzNDX++odHescyTdsCCLjhh9JoXBBu1+YL/uQ5W+a53HsuT91ixXdmfAJ5Dr89fK8/l8Pp6rHa2d2k6MCJK07Sz6IUMGsSpE7HBn34vS96NlRyi3VeazCjvcjLrkh0kZQel6xL6hdYIEa+HSbpes7ZyBKGU7834UGVg9f46CqUZ/k3rR573D/VUATswiMq7mdsVDpqWTjoXDUjaFmzWf8lO5Edo0ipW+RGi3/44jtiAIjUCIFu35GJJsI5WFyFjxDK+IRrIdbSveHb13MNNUErSdl4gNWROyjyCtG0IbeKa0JPswm7b064MwKoSg7RoiYVuQN0UQadZGkU0tZRldn93Hu+aiZ7UdR49zWlwSX6zSVnAka0xldq8/6ZscPeTjmlubMtlnpY3YtjWAV7i9nKMUQrI7KGMApRyooJ7tE194hkvgQDkzQykHmcMiWYTGdylXeRnpu7vPpla4FNx6IGTB4T2lNdDcSa486/pd7nDH0B5/XqFFd59NrXApuDmYidtEi32k0iUrRMt1ZrTbLLIP4M9wK7HT+c3KzUa7tBHZC8o1Wd7hWq/8q9wbiWAq9WL08nOUNkEoB0IZVshefmTYthis3Ks8HYcbkeMz+w4xe/klZE2jdxIVW5o1Z26GlKNZZTI6zhoJpDjck5mQvFQmZUQBG1GiiOVHY4dFyZWMoW8z3pqodUFD2ra7tCuisp191pRJmY4lvz1ZiR6R7VnlCMOS2f6J6ldND2NrZtrIul05v+kxpXA5KZE7qgzMz+fzw6vU25Q88ndvosO1ZpnpwwzKVuO7b1SZ1xHqkTosKIo74UabGCNAEGhNvNMjRpUhAxrWJOniyXqRRfy568+IOTvV5QVIXDuLzfhNlWTx3mRwmmLf2sG2fefNp0Hq8xCZf5w73EmuZkfyjcd9kxWxNmPv1JY7U7mfK1iDuMMlJqB6Fu6EdogTd2F28AzWh+hQKypcYs7V1DMzuWjcYbmLqM+k0tR8puZ7d8BrV8o2/ybSpEyFS0J4E/qRVJAjz797VyUsFzPc4dqxk9KNXvzyDNcRLcGufFbiwXlO+XRuuXI+PpI4gP2YC/bXGtFhXQi3cN3NKV4LAO5wB8ngTbozs4O4Qh9ax6lG7XCj0m1q09vZeSofpFSV0Ttd7/dvt8NdAWl1jVQWFFATB5A5JLsg9H4763Dd2UXvNFHeiZhVzhIq3EQgDl7yj+r9oDFBWZwXZ233VT+FTDA74TdUuEJ6g9pj9ZZ9pW+NRv1Hn9EueO4WQZn6JFNZNbGst+TZu7b7rlDhCumtxK4hL9V2oZnLbsFIf2bpe6SdhmcCf6R6I5WlRfPsXjO5S4ZxdYUKV5Fqu1AUr0IkZtugSttlunknI27esgMLxpHPS9Coo0W5PKDCHQDJu2/lcyvPyibgmqzWvUrbjY6DnS4DmFEE1896tNfoHd5o/YdarjemwoKiA5cRuGsDy2QLFs+eDVNA63uvLEga7zFPHRecxWt1blht4wjZ9Coz2i6TjDOkcNHiqJAYGQyRmZMkijRjliaPGNEMmZYiFK42Wc5jveTBwjKC1ue7IDYp08TYZ9REE4H0jDnLrRyUvd/MmHvJOF6yRxmvxa3CjXaVJ79ZVYIR58AWPHmBk39IzgB3OlfVwErGPCwqI+8ktvx3/UU7kUlNjJJzm/YZ0p0U+ck1/Miq/c5nox0hULGO4SUv2jzJ3tt3tLmWwctXwOJdFckk0yc/znB7E+yqEw3a5G0FqrPRygSGINgeE5DnBBjdnuhEKlxLWfPMWT37flSifUs05sEfO9zrylKr8L3z38wCcIemokJpH4QyRDOz6+o9i/QZae9KytaS6PfPMhNiZaW7VvXjL5OyJOflqCLwNk+uNorWLnUmTEfyu6wDZxaa1/YD1VKUgXO+rdBOq4lmLMMwZ94xlfhiphLaab3e3tX+f4SobFErgfLV8fK83a1dUamWsW0EjbpdHQrpWIiDe6Ypr1WXVazryOdIHLOLOuu+rbDrIHagxWhHPl9z8YECUzv+n9GO8Uij6PX+K1WUwqo5iuzFDmPKQilWC9Oz1AVUuJuQITFHj9Hyrw56i7Nz1LZFItLKtEv/aLVd7zmZle7KEdZbvalwk6OZUhJ9wkEo/+w70NsWhewLwzsQy2qxINV+Rybudvm3TrAjuZSrsiIYGonfV6gQdjRLr/wag10jLjdz+0YRGW+JEm8dHXfewyNGOrofrN7PHe4Ru2tZecbuJs7I8jN1oj5Zd0RnX1+jMCLHdnY06z8bVaPJKdu/4nAJId+8WQCQsnFFv3+WmfSJyPXUVhRZFyEVsGh/7nAJecAyyYkG2T1ER5Srxq5RglfMN8LzvaIjMsnklSfrxQxfX188w23RdECyfLfF+6thfYYbSYXz48ixJgU521WkfHvNVcipVGfLRpNyg9SEED3YyL6MZiTTcFiJXlxGmcuRjgx2RMOki9ZnNClfiAo9QTdfErIzHHPkZGURQIV7g4XX4ch7Z/8eBeIZTUUPbo/zM+kFGmRfPDcHiJ7eS6GYPMPFBd2MleEmoxllgVaHk1nFtxqDqNkekTHv1Yhuy7f3a/UX4hiebXvucIFBnmCeBA5tN4Tmdbo7zNSlR3RbSkPmNN4zkoEMWVa4wyVTIHtw3pHdGa6S8wjijiUzKB7fbxY5bYtdtAVwxlt7SOFGV5Dg4GVOsiKjLHuZlK2hwtVnZUGZcSwgYKpw24ezc0i2HW4Fqijc48DZlSGhqfhGnnX2xS7trMloTLwoDvcu/Ro7hxAyC2Pev+mltvT00K3ezlac7fYky9d25Q6XTJPBS7ka1TKS7Wwp4YKjHq/n2HSaIlJo2cDAO7XjiFK0XJhn9xu4QoUrp8ringqXPFJtgpsFdaEhNWNZvKP3Pov2qpA/uoVn2GNQ4ZKyVDNbHgeu0tTCqn4Iu7CK8ngcGG2LSivPlY4deHkB+cFs+kB0wUcv3ypV61dVHslPZlKKZuzj8pmm0DIf3YFSxpVyoNSB9Bm9bUj7mSNQHuuT7Q7nVX7scKutDNuLudHqZRUOQMiVWVlj6I4tb+1bvV0rxZVL+bHDzVyRO876oNULcUWnUSbEeu3OW5+wz+I4NwJt/t/rz9nwsIp4y6zm+8qblLMKLiGrRJuEs2NpKm+tb9kzPZ11uKtTdto6aVBe4RKyIxr34B7HuxKwUhJRFpcn5aE14Wa5ZUtKr9yWdfVor95RzCwpFG5WYbxDUpdK9c0I2/8nEWZPjWdHxQKTGlzlR0OeoMOCWgGv4lQkcUTxrp/mRILooPaGJCQhW52sYDvMIzlPZ/ticc7XWv0Cu8OdMVVEg1quN7Qvi34DpZ1GTIUoZW5pzZ3X/2afR+yIMs9bsYu1TrNfYBVuFnpnPhWETRMkx4rZ8z2vd0U8M3rCjx4vuygQLUau/9N2PtJ+lhfbKVytHY1UYdx9Lnpi2x2PkARL55uME00PC6/dme9KvrM6dp++v8OcoC23GdsMUuFqrzRn3Na7Vywp7Y4qxd+9Uc07s4dl7Gu19nqTCyvFGcnduCd7AKlwNVea2mfBGpPl9f8IA87aKxRlZZ95h2n5XgQZfGKkbMj1uJKprHdUW/x5AKlwK2MR20XIClETv7YlwLoe2RUkiQc6LAiNio4qLdLcuU/flX6mcvjDyBkvQhtElkGaS9gzjK59FkofIRK9UcjaL6Y73JVOmTFPzrw/QnBQczwfh8+ZGWK9tZDWLaINMvoLRI7hp/aJVjYkL+oX0EtWrDPPXPluj5Hnag20DBPdcfjuLDzw8pKUvGe07SrL3pND4dPf7rCsl0V/Zidy0ZG5rVUVrvbg0DDpaCkNurTXwEtxWS08V8gmc9FnuDPtnaWN27pFLf7a91db3D8B6zTlMTFGeT9WER7yTET+4WpEeicjJTmxYOVYy2IubMdHpjEz2t+QCrethIYAP3UkIR5Q1nKxOudkU7rR9I4U0Bktp5rCHU1E0aOthHbDZ+lIYoN1vLEl3pmXCPFgJ9lUU7ja5p+dOgEVy4xJZI5oE6A3nCtIJb4+n89HK94MwaPQmsqOK1JvzKfPWZyjWbWXZbyxB9FjzTtG1Uvmeu8aAUVOLEGaC7PETEN7KSOCJGRaIHlgW3j3zrzL4/2reHp2IoXGIC7E7kCTF21Q5sIVj2tvXONwjwO/QSRk3x21eCcN0ChHhOKN6juElXtk30TAHa6c6Lkwm8NVisQXiGTfHR0HVjJ8pPZEVXIRZaoci/qEhcJFkCkrosduph2uei7ltsKVhUyaCadq/d/I3PdZy63NSiwq2/CbpxDHSu0TPReefiUZ2lR9h7sz1p2u+XwPD2PrLF5VRRfFSoRyRueN1g7XSgFlUC4ZyhgBZOKLOzKEoFg6crR36GZoCzLPkxxVmcDQ5Xe1nSXK9jjm2iHLPFBFVrWBV7h3ygZZ0LR5qmuGNshQRimV6hLBdey2PyO27azCkCrbk9XPIrZdBazaFfY+XGnSBa6kcJH0zYpge5jw7372kLn2XCy7jEt3e2j1HFWeaOXXBrGPNHka78eh17eQO1yrFSICmnWrkGAdNV1hr4082y8yHEnjGdnHsrT9rfspUh53ONKymmuvQCrcqrRCK8HSq488Y3X+lonMil6b9vKTs13ufncca+eyb2WY+RvB4s9xYAm5lcAi0A5Wzechgly2Htl3ZBVAb1dt5Yc8VjL7kCDyZ2eHpAhGB1d1j9XjqDdJEWLBncxbj4Md5h+pzlvVjV9fX/cm5QpKt0IdTu5MWcigl4+QrGSaB7LgcU7/d2N7HMfjU7w71FpJUkB/ot3eVpcWaL5HqwwtVeUqctGaPWNdtJ+GBRn7QcrqObr02V2Fu/KSWZAyIO0AkpK5DuiIAR6dF9aamTadWQztmqXqylM7VKlfJSwyvF2fCRuHS3wYjTXUphf7RtaRJEt4m0ykMkIl8ptK8dTV8Vjsv+5wrwXxgLvcGDwnVeSdZBVzoKWZ/m1C4g6XPLHL4uN2sXuAmZSPA0Ph7iIUPcxWeUBm7CfeyoguGzNtrFknKlxysrN15JcF7wBUuMcR40BlYcMnP8k0EWc9f1tpYwSli96+REb0og+BaxuEZ5rqTWpejS+JP2aM8n48ZRdCRiNWUAvGV+9LhbSzFriEBbWmyVnzwugzJMw6DHFSmEOz38g9Gm2s3b5VzsSJDEQZjKRtj8cdrkaFZ5Ne3322LY9G2Sp1qAXVV5poVG5vyVjjeCTaoIypVrZvw4KiYyG93r1i9qg+QVSvHwK9kKhs7f82JlDmFJKDFRn5kWjiC+Ma19Oa+ufufOqaV7n92SvvJCE7E3mJx+hz2nlCQvTkR0gEn8/n26R8at8Vk+/dwwkZnYxHnpkZSR2iYpVnL9jgmCfRPI0ZlDlj6Xo+j0pYhGZoZFdC6UBE7iwkmnBix4N9UoPs8xr67UZ/MiueVaUb9e6qMHSKkJzMOrjePUezTNUIj8NdZdb8RXSpODisGGkrtivJhOb8Ovss5Nh5FYUbnYDe4z5DQrQYkUPvBSXHyH6gn3vOgijLossLENBOrt5+zros1fEcmFXa3tqjl3JNRriTlxl5iM5Uhk4Kk/JsirjsKzSix26ywKMWEgHlqE+KHa7GhdlaV4lRoH7jpcye2v7JmoF+GYVHaN3ON7WQcTSSkjC14zO8gP74eUn022dQicreE6Vs37I0SS6jQO9TDe7abYd6V8Pr5irKhh1fX1/1drhaSpMTkxxLpTu6c119dhRMJEOeyCgbK2MUsT5awCtcrYN7Kls7PAdXxSQaPNLQI7OV6kpUpjFtoo81vKwDEkoq3JMRxVlpoEbg5RVbzQuyujex1+LVY9HivRCvonCveLYjmnUA2kvZK6ZQct5H4mE/xDOTb906A9nsZQsjn5+tC2X2NyjKVvoZTSAVrmd2EN5+pINHGEqWFXw1ereHVWc1KYRnHPUO/SEFdVH0J3ISu6bf8k7DZb0y3g1J/3n1saQc0SDkq119193fPTMXZWjDGbggrcnf6/mioJDgMjspXRdPEYsppHI8sZIr1oNZ6w/6jS1SeNREtPlrUkaaiEgs0jMrD+9D6WRuXQ7Sp6LyyWAlIb9BNsd/fV6k5s6jrEIcJOPE7nnz1o7OjlQhSUkLspeyhpestUfq6lz0VrZoObM+K64Kqof3q9PUXUE0ChctIMg7JdTdgofXn9SMF2kujgxNih43oyCXV1K2aPP4ShkJHpBeyjvjFUrRe3fUc7TPDC1o+0cLafmRHQpnv5OBu4Wd9/tn/kbweDUpd7+84FSDwKo5T3viR8iIErV7QzatnqxmMJt5vsV7pKCa5Vp4NESeQDTHL+1ws7uur5jzRsIhdqVae1zlRVuW0b2qEUE+GiKxIJrjl03K0gkBdeJAMef1lJOneRmxj5BolaHHewgh86CZ45dMyo8PTZj8f8ScZ+Wpi5b3U0PJS8uc/XiiIpkuVchUVhJHtG4yUbjZkXSKxXlr9K0ad1iHXay85ykMZeb95B5EmeyBdg5O7IhWnjNQ4U5i5eAUNWFEx1trKFwEp7OKoCuxp4k344RMnsm2+Lvjh8KlgI5htZvyUhyrCSYkeO5wqXDtQZojqvU3UtsikSGCQcpfhdtWCrWwO2IxCD29h61Cg7zO1TOSaeKeLWuV/ka3Hmhi1ddPILYfd7ib4R2qMypPK2ajajueUXapP2J85Si7OXnNbui8LGxe/AgLQisc2Y83GaSM/uYtbCwiaxl5ZrQvrD/vgVc4HTpM7bgR6Lvb9nszCSDu/p4t+9Hos0behTgRE10sUo9qYWHt8niGJv9pPIShGPX5fN5vCmo/q/ley8+j8LZD1XxP1jaqwEqe8ejMSZSddZZ3uExxmAONW3yiB3wWIlbyZA62fZ/zOOJ6qQrbbQ6VHS7BZ2SH+vT99v/HwRWvBpy4YvGUX69FrwaSsp6fsShTVavO0g7XywxGMEERYjJG9rGZ1dKyWiYkZbvyeQmRx1KWmN0WhFRJQhCJUnzZx+bbjiV7/UhdaFLeiFmzMicwEs1VbltzJpLJMDvWTl27o3I9n+R3lcluoiMEFUmMcSZWQuVIflTicK8xk7uQ0XtvlzAbck+m/mSM8d5oyCqavKsmvrh6sFYm86pbmkQCTVgJyQ7ykY6GFzXpo3493w75XCvkcr3CMxh/smT+iqBSwvqT0Tply5JmVV5LWfCe91R3uJl3fVKqmrmQJyryzpvXLvs3HmkfsL/WGWlrT9S8lKWB0hQkQmxo7zDmOMNiZqFetQ9H5XPkbm70NlMxKWcwlWixU12JLZoWkEpy5nUlm9fCBNFM20P7nNlKUWZcWFLhDlDxXInEoqF0K8qX1VjzvvA9Y/9qKVxkB7GT1Ge41ZnpmIqTISEZ0bzqsDKzu83ez7PPsSTiKkOT24IsvkNIRbLk1yVxRMyXK45bWcKLInJHmGSasvgOIZmxMGVWHkecVzA4Fa80xCYb3jJDk/IgM951ZE9G7hId2VFkDhuJmpQzKgM0JMlytKjaX7y8YALJJQBPwpfRs46MIzkvlOQhryAvb+d7T/UbuWxDogyqTuIkD2qZpipmX3pDklWrQuwYGWPHsXCHZvSCRgY777GoreBR5OXJQtP7+wwo9dUkXWrHLCt+S5f4LG2ghXcoxyqVFW5bt54VZwXLdskYFnQceWSl6iJDC3WF+/fBSkoh4w7RItDdY6JAVOTZ+h81Jl2zb9+ehaxwWzzkfTeFexx71lmKmdOUl7I9P4dyPmPhEu8RPxgRk/bGSP+jgOpUp/kuS2Wr9QwJFSd0gg2slzLje32JiEkjhLzDMVkHSIW7ojipdOfhwCbocHyTzEAqXA+yDNyMZlUNRuuDVH8uXHQZiWdGg5nE5qhabziF63EGdB24WlhMAKj3OlozWp/V+nt7V1brr+PQbUOpUq2sdCvKyO7AKdzMcIDkxMph7JoWLzpDlLVyiqpbFqW7Qyax4/Db1Wfo9yvbZZp68gLOLOBkjTMLkZUM3Cl0STyr9vvbf1PeY6iaSexah9nMXqPKNlv7mcXhzuIRwyVNLTeDRvnvypMt+YMW2eJwr0Qnwcia6GEGZDmoxohcWY3hbMr2OMB2uNpnQNk6o8c1dVqluvV4Wykjt8OIPO/UpyQ3q8ldtGQ943hx2+FKG9krS4mHCXGGjELkiXW/rTzbyroxS5R1IGqXy7FjT7TFJjumCndmZ1IlLZjl+QXRQ2v3rKlkvJQu4oJzFY4hW6hw1zDxUpa682f0MpPiHdZCvhk142o8q7Icz7Aiy1HfJcQDdYWbOWGBNrvG0HrzlBjh7TvSZ2s8J4on2bKWudnno7YnYrm8y6S5mN0Vt+v5esx4tY08Dwk6x+jyJiujHt/Wz5l9lwZRspf5MoK7skeP38gy0aS8BkTii51WQxRE8kY2RS55r3UCEE/nr53mK6ILhMK9wnMcsjOVZbhy3SLhIiAHXYWbzduQgxln4HmUQ/KO62dmy4XSrlVA9eo+yXZ275UOUfIezsPP/DrDXQkjsOjM7JmGvJCe63ic40WlLbzD6gzXcsLdRZ6lYzsq8QlqwpWRM1zLLE+az+u9Z/R5yH4yPxSuRufMTkSoDZSBN+GfUUpa5amqcGefM/OeqmRYTCM6Tb2RdQ4edcjKmOsA8gyXjBEV+vFE6xzj9a6Rv6HGSEdPBt5m0rf6RrfHWQZLZy9tVvow0kw+GnKU9Wjor8KNDPJHE+LoTqmAZ5/OeMGixUhHj4E2htmTp76Lbo8raOUh84QuLBBMyijCnNF8dOV6fsG4uT6rZ1Fo+ZNXGD37Qj4r25GsaXEjFGCU3KrfFiQ5M7x+nuhxbc+IM9xMXBcnM+bmzIvMlpkFhud5PSGWeCwgTc5wpSY9pAHKIHdMPNt/Vh5Rz4Q1YX50UhmvI5UfClfr3Ks38NAU7Qma49HOPOVGRp7M0c6ENameHz1beSuB0vZejp7dXMqzMVASrILVV55b4Qz3id4CCIkMoSJSqpxxWpnMI9vHazx41VFbcXn2y05nuKqXF4w23OqrLYO6sw68LOW4g2f/eKxMhiPJGJAmeK2yXN8THZMupddvVhulCCLmkLRxuJZhTBYdgaIgvDxvCbmDvhL3INa/Pcq5O95BLPMIEeVXU7gzhfcKXs4uGJ5ExWMSUom78XPn4Y3oqzBSBo3yRifo8STdDjdrhpEM9EI+vN+t/fnKWLXF6nMR+1TyDqvY6pH4+Gzyna28UUo+lcL1ngCsnoHKXQyvhIjkDygm+iiedkearLYxYp9K3oFy1urtE7OKxXl/NVQU7kpDoyuw1XOMyPqtnF9Lz3otJ/ysWLdD7/nsAxwy5WBG4K2dKrSjisJdaQTkBlxdSEQoI42dz4pjFSd8bJmOZrd4d+96RbejlrXrml87A5K6pzIpezIiOChKJvvOp3LyiKxYZN+6u6zAk7eyWeJxrl1pfLSpU8/Ng/dRhwSps2kahaulMKycJtrv7L77szzLqTSZzODl9ONBZF/e7aJQzpBnPz/r5ZxxTHmlYR197tvzUyW+8HDO0XJxjwju9wrof3uX9nsyTgiWePaz9J3W76+ERVtKnnnuFu+eqblI85hnRjy+tcu0gvptQSQG6c4HRfCkZCtvVXoLyetnIsgo21qMeD1bK1ttWpNy+7vez8iyoKpw7xqn99nKtBOUl6nKc+fz9L7q/WoF8iTRct1ZRCvZ3s+o7SmdJy2ywt312ci8nQHUfj8OZZPy7QuEg1JiOuh9ToK1OVn6HisiTI0knmjF58nsGEVvn9k+1HKqQjUpV8PcaWp1laa1avUKeI92BJn5G8Ekk7UIJUuUxXc98FK2K98j66Q8wx01gSBMSF4gmfzIOD0zKVJf3o2/LCbdKsyagu/6RcuszD7vkyYs6ApjNt/Zue6jRK/6pVnLMpRz5rOSZyE8g5AVwne4K961mbzTCDZIzj+Sz0eUd8WEyXGJz+oul338TvgOV/NsNfoMdheB405hP1b7nDJjg3YiDbSEEtUIV7iIzAhPdYHTyNFMfkPHFzLK7Fn5yOcsPluFJec967AgUSFAw1kyeYlawTawJYMJLzpkRHtxkVlWe8rWOikJjwbWgdjhooaz7C5cGS9wIPXQTthSlXO32eb11dyBVm47L8Kdpk564SyRKys6ZhErNM5FKYv78BSKJXEorUAFeYfY4V65M5OgnBlm73ApqzcmZSKq3KuytIsskm/eFGvW8ffGne9I1rpCKtwTSXA9IatQcT3D8YbNkzNjlX4byUKIQq9c0AqXEBILymIkOuQPhfZ89g1UhSRFmqMBBUkUB6zCzbiyqULlnLVoMO7xH5QdGRX7fhdgFS6q53IWosJN2De+ZFZSrfnzziSqmZsZTS4z99vOPPWb9PcQcbhPSK/s8wTdU+6uzTxjH5HbBpnRyzi0+lmCRRzuyuUjo+V5apeIsRwxPjOOSa0+1kAa3yzpW9gd7nG8e+VFEP1+UhNJvGRUVh/tOM6Z3NHX50hTwt4p6ygno9HdUY/ql7eMlDtK2Ur+fgUmDveJczWfVXBGWDWh9Qb0TM5VpFXmLkjizzObIzUvQBiJ1V+5JIUQCe2C8kmOoHe4JzsMAo0QqKd22qH9KoLUnwgxw7OpCxEypmnvlAguPVlMoXBJDChmHYLBLh7VFiZmi1t6rG7+QSG6/FIZGFrQITtN7YLF5Q3a5jFEBzaCfTeuhTlc65jF8p1P8HKBcaIvT5mV88fnzSrcip0bCRUaPm0fsV/G0do1Dk1wBh7WGuw6f47We3uF6xmOsBuacYdEj3OSYP+s47nD9TYLk3s8zt7fnrWCpmWitMLddRVJ1tBe1WZHcxxlNCmvvH9nNGKFo3e4V1bHwlBYkGbYiTVtnB1a2Qgmo96s1eWqbY/z39XrrAGPh+ZirTO0z2oZh7yUkcIUevxKp0WXe/LCjIzsKFc71nmElRzwbNv6lAwL6gXIk59wkPOyhiy8jePo4y5pco323yO5pLOwktzkijSjWBaGM01JsmkgsFOGqlF6FgC2FzmO953aSkyuZirDN2uWtjxrzSkjMZ4ck89kaxvG4W5GlEMQ6sQREaqSBcuzSG+HGo9+ttyRZpKvlXaQWDEytcUVKtyN0JjkNN+FEOxPhfuMtfPPioxEmVsjy4MuYxxL75Q8wyWxWKRE630/61mXBt5115wMP5/Pj/+efncFsb89lARivY9DNxUmsrLVqCP8bUEkF17hAHdnd8iDVYu79rU6g/f215C8A1Xp7Er1/tD2d+EOdxNmFKH1O1a+J/FE9wzDsJ54pLsIC+/WHRYyEtgO+yAZRzNjjQp3E0Yni+iMPhJaM+S1LHdhFk/f1yyLBYwRzsFuCrnqws5yc/KHA5Nk5k7ZPpFR1hkjjIFUGVgrDfZpXr6+vr7PcFfO0VBWJYSQHGid23uhZR3SKH/V+RalXlYydj73z3HM37fa/p/gg7JKJzI0xhbi+FxJmqHx7p4H9N1nyW80vZJ3aOOzjn+0PETJT1Db5K2/o3YeXs+wyES0w4RRkbewJPLMSvvs2safz2fOaQohV/HIBO2t/NB3/9qTDIrSqpZ3lfhC2dgbD3+JaS/lJw9Ra+48UHufk3irapev9zManGTWV+uESFiVFcqaLR7zwFJYUISyffu9NH7KCoTdPxlnpp/QQoE8nhVN9sWRphUpul/Rxswd0W10JU0uZYuGS1L1Kd7ay+qCglmQL0yI8savkC4P4QIE1HE+kkt6VBZm4uhn2wmpHzRyuGsk4nl8dhaFexxUulIiB4ClsO5GdoXrseiLWFha8aT0ZuVArASUHAmtL7uYff8dvTJZzmFpcimjmQbIPZ/P2FVomSZET7LLu9RjXPNcM3teAG2zsXd7eOfetsJyDjNP7YgSMkL8YLzvGpryvlMb71RXLd4uw5ihQj9IojaePtPNdmdlUtbMXWutcCsIyIn1Wc8sGVa9CGWskp8W6VwvK15HChax6d54zHtv84NE55nscCXexKvP0mLGuQCZkfpEmJuQaEPF7sLH0Pv6Dc82v0YKzHyP5AKp7zxkfebc9/r7NGe4kfRiaxEVyS545OQ9P5utnyM8Qukwl5PzzHLGySrr+IhCfYcbGQNrQbX6VGE2m9dsf3n0s8Y7RjOGIbcH8YMK0452rKgrXMlBMwoW8VgI7JDicCbTGXp/riRFGFG0q1nY0NuxAqiJTzSPC7VBddZs38cL6I2J8tLuCVV2ZXtSpR6eIFls2H/PaLaNx7NQ+hJ9w2dyhvsUxxRd2RbPtHyrZ76a6eC0QPDoHUFr4ZOpzldGdrDW9czcjgQbjdjs0e9JdZ55pqnVwRuVXWrWzVwjtZg12n0SXR8JmbI2WQTda1lJVp6TfcHiDbrMVuvPXnuPHl09fd7cpIzUISPnXDPhNehnYHfndgQP1LOomXe2n0eaC8g6VfpTMheOzJe9duEZLhnCIjMN+Q36WRSxR6OPKSd9vKIcTuDjcEfzWvaeszM978LVswr0ttX20vSqr1aeYC6InnlrG3TZJrngDreDZciJ9ySI7l1oibaXZoQCW6mDdh8jm7yPQ/doJ3qxgtTv1YiIQU9zPd9KJVerKD1Mt3B20UTTczybw4TlxJmhHSyyQGk5mWgwWhbr3LvaViCPXMG7EaFT4BXu6kSpXb2eokFXuCfZlKUG1jsV9Pa0TrsYKVOjkQGzsrDqEa7RPjSB6xGhcKFNyqsNYiF8FQS6Qh3QiDY9vrHiXWzx+SiWzIEAfXzNKtb+bBkiVo3VNpj9PrTCfWNV8CzKo/k5ogda/GwElE97ejKgLR8zZm6GBX6zKuOz34f1UpY6NEQq2Dt+ZRbZ0HyLSpTDExKUT1t6MhZ9jPT0e/a/H7A7XIkQZBCUDGXcCev+yKbQ7xRwVbzymt/JGKKyRSGqfLN9stKX6jtcrpgIEnfyOJoZbIRssv+WyCRbfXpoWDgymuURLTva+eazoKZw2wbbpfEILhJ5lJhX0SYqTUaObZB5Uyjo5d8NSRpFz+QyntElKmFBlq7qiOchBBtNeawa/1i1XsehF7p3R6Z2uKIZh69ZhieQyqZVlmWFq5HQWfqezMJO/vE2IVos0K5YKN0s8mkdh4rMzgr3BD1m+iT63Nvi/UsKt/IqmejytnrUsmRYKccqCQeocPZecESTReFaAeulTDCZmawkZzaa77OgN/grTgyVmemviD5GkX0t0PPNe7ClwrXoSGTh0AqHaIPmvd+t/a7VXU50khXiR8RZYsUEFVWzl40wrXAtdjoeWAjyjCLyYFZJZmVkgI6e4V7bcYf2tMa7Dc9+RDZr9hJUkPxMK9wsZpmWt5hDq3dEoFlXj3ZDJYO5W4qntaH3/bsdnHVbShNWIKSInSWbPO7IliZlS7INUgmzmXM0JwBOJutoyKalfFv1scWRhAWzvg6ZTNARiUOQ2mMbhWu5U2nP9RBA2ZVptofmQEXpp92QJtrYlTe5vPt7RhP0TD1HibKkvLGkcK3OzCyw9jKNrl+LRV1bExtSXe/Qqn+kgoieGLTxdrTzIEs5Ebma7TXN+CtREdYsp3aUpMZCn6CJnCx92eZLXllkeMr29V3tz1naHQ3riITz31r98yRzI7vb9u9R4UyZNmOeqJiUs8Qozp5FZgSlrtHWgwz9KzF1aZnDqrflFe0ye5hw73Z+T597e04Uu+z+W1O1pM5qZ7hW5gFtJIIcgYWAopiBVyYGpD6yICIZgHeEQdYQwmgyyv7d7j/q/YioXF5A1tjNdNgzOUWZwXo8DWKP8yar9468O6KeUi94bW/53vOkoUXeSE3QXmib2Wff38NSprsyRIUbC9pgIc9oLwZWVuNeSvdNAUnLoaVwZxc/WpNw7znR4xZlsRpdDs+F0fVdb89Vv4CejHF1kkAYMOSein1zrdOb9eHtd1Fxum+T/JsDXIW+RakDSjkQ4Q6XkCC04r813j+6o5Qw41m7YtL1nsqid3JEBlI/bZP4gvwD3bGAvKPp/W2hbGe+v3p+6i3XKJM46YPUT8MmZaTVAhnDMn6Q5MS7/9v3jTg9Md6fVGBoh9umySKEckDeWDk3vabmI/NYth/7Ro5Y4fay4OxGxrprBez3cpRmbJdIVjJgvZG9L7KXHwnLRQsXRGMMOU3t6k1bxZS1EoJkEUe5E0/mU804XG0vXK1J1OPdlLc+FkeBDGkcZ9hLeacz3GqDfnaAzE686O1hyUgsoFdihtH+iFK40rbbaS5CZddN2CwMC3qgspKxTFhwJUN7aDObwWn1vHPmnavPk6KpdHeUKWS48JFDhXsDlcw/2BZjaGZUijb3o5qUd5MpUgfG4SYgyiFB4707OVNoJunfXak81X/3diG52TK142j6Os3njzzj6WdOOnisyA1Ncve0Z9xsH1KBbXa4UeEsmruelWeSmljIFxoeyjZbm1Rjl/Yvv8OVdqR2hzOrE/FAkoHp7jteZJD5dhGeobwViL4II4rSO1y0VRNaeXpoljVTvYkuGRKivOWUJnqMyEMG2RmlrMKt1lFXrOunOflYTGRI/VvVuQzl7l8PqGztyez8qUVZhYtKZKhFFdDSyUX3xcj7R8u6k9L1Zqf2WHUqXCF6fLb8VbhonR/ZQZYgdT4CM7mcV76PzEpdJHK1kruZcqvHnfMm2YP/jgPPaQCtPESPN2eJt/6+OglVkw8rBzvN+3NPzvFJhUF6oIRaIvA30xRahVbKgzoBjNQHJdOOljlH25MWUV4tmUmNiBhOg9RnmkjbG2Vce8JjtH+UTO0YrXBnLtnuEalcNBRuRF7qiDZDU7peaF2+kI1Z5Xn3vUrtcqWqwp2ZY8o5TUUr2ysWpjxPVt69am6cTepwl9zEA+t+QpPtnWFymj15SqAk/j53uHoUbMpfvLXtdXevgdZNOdLnabDbbnemvmh1GEFS3xG5zdwWb1TY4Urr8FbGxx0uV2hy78ydvDjPurbJAq6/8wJdRi3bxavuWhPNyrPR0Mpex4Qb+/EjtWMv5GJnoXjyztwdhBXnrNnZsuweXvaeu3RpPTJ7LI/0lbSelqFaJCfiOFyJgKEMNutz01VvRA+i328N6kT1tGhFLa8Uq/EfKaer53FkD4bOaN/06Ofz+cx6GY6c53lTKTuJFKSQA+2JS/s6RY8d7t17NNvF00nLcpEZMdZW5y6tHe4uZJ+Pzc9w314uXfFmdGCajR2NBK2sHrmYvT2gpfTO5rTaxWMCqnrGqLFblyRoIeTK8A53lixxpE/nM8gDyNKxZQUP78RMu6qW7Cv+K1nqY+XRTr+Od7KO1eNQ3OGieTtqM+pp/FROtB0kIUhoWJQyU6EO1kS30cocruUA919mz8IRtLM/EUKIBrvMR209vc7ANZ0Ye7pSbAnxMimfIAtWRkcIxKQPLR6mRvQ2eCKzie0O9PqglM9T2aDKyhXtsnocszG14yIZHSFGyoRYfjIGch/O7hq8QCifVtKMp+88hTqhhzxFKNvRz16ZKfOf2S8SIsHjbC/romO0LEhlJ+OMTu4jytnis0SfvztctMFsIRSS1d5TO6C1TyY8dhZvznERqSclWCwqIsm6+LFmdj7TSEik+T100JOvPF5eMHrAPcJImIelqUES3J5lUvBIQrLsMOB4Rp6p765kLnvLqrxY4R1GpzF/3pXF6rmZQTmnf+LxDLctgEcSg+O4bywtZT/z7EzC6Jl1aORv598tz67uQJosR8kkdz1Oq0KbQAOhblohHoSMIr6eLzKJgdXkWXlQae6SVnYE6CvOO1B3ZkQXr3622IlmShHqRYbkKzBeyis7KPKbiB3eU8yb9Xs1oRxi4JX9DnEHTubIkHzlv/eP+KARVCx5ByFPSHPsUo70kRz5WLa71bM1j8Qod/kR73A1OpsCsw8aE42r96BT7B75jff5vifcLJAWGJPycdjerkLGQXexJ/mxik2tDFobIJUHIblJD7HT1I8vJU2lR8aZ7Ws0b+MeGR27srNTSMuuTlORZnDv0C8pUzvcUecCpBUQsUezv72cZzy+gwTHpB+rspJR1trUkl7vakFNhDO1w318GMMpSjKzWsy0wz2O+lYbtIs5dtrhnszU+amOyDvcJwVo/Y63dyE4nqme4UZXhqt2G5goIC/Ms4uDZu5sK2csi4WQdrbA2UQ7CHOU6g73x4MdVhNoq/bKjK4os+1wjwP33GcW75tQpCDvzjzQmre0lWP7PK1UsJapeSWgyYeZwrVmpPFDbPUA5gsNZpVQRoV7HHXSfaKbbNHKF+3gM/tu7UUV8rxFhRsEcsOjmjJmWD3XjEi1ppEsoYIvAppCu4JQvmz9/KQMkedDLVCtNaPAZJqSMtvwkSZu5FUj+c3VzJat73gO20dyBngcOBN1W947eRwJxUOp065AJb54Y3Ui4UQkRyPphXduU0l6QI9yEFwqZxRrc0Nf80MzTzQGXYWbTeAika6ad8MzxpWZyvKwY2zqDCuLyGxt1LMQWjw3gv8BZXW5Faslzx8AAAAASUVORK5CYII=" id="image82803b981c" transform="scale(1 -1) translate(0 -342.72)" x="56.081276" y="-38.660006" width="342.72" height="342.72"/> - - + - - + - + - + - + - + - + - - + - - + - + @@ -219,17 +219,17 @@ L 3.5 0 - + - + - + @@ -238,7 +238,7 @@ L 3.5 0 - + - - - - - + - - + +iVBORw0KGgoAAAANSUhEUgAAAf4AAAH+CAYAAAB9b2wlAABrIklEQVR4nO2dd7x1R1X31woJLcYkRgiGjhAQQ6R3EIyIeQNSpIM0MQIigkgXAWMkBAMBaUakRroUAWPeEEAivRp5EUKvBgOGGENJCPP+cZ+5d599Z8+smVkzs2b2+n4+5/Ocsvc++zn33vOd35qy0RhjoEPuCm9gOc7b4N4sx/HhO9ca71+MR2Pe/i/w/OpRju3bnwjisc7njXlq9rF7Z+mzSaHm53nJ/z4/ep8Lf26/9Dc8J/Pv4HICvoL/ZeH/8KsCzo2bRxF+Xi+c/L8p21OOI4i9W5+A0im50rfHWJL3/HnfthlMhYR4rAp/D5zSt8er9dle+HP7Rck/S/pKP8QI3G7bUtyPwmLvjz0mfq60b2mV+rtO+wBlE7/i5IWI8KhKf7K9Jn4LRf4s0h8h8Vts8h8t6eek9hxixb10nswNAPHiX/qi66HUjx8HMDfefO6u8AYRwsczAMxtMg+i4q/CC3H5cy7ZCOhd/HMu+d/n86f7XOlbJMl/NHqXfurxPOzFdqQC2C883xefVPDjm/9aWkofz9i5uR4r8gj97vf4t9GKIiV9DmGr9JXKiBX//Autpy+4ueznj1sQknuS/HMSu6b9INTf+Z7+NhQHXFUDZTejpH3qNkTEin9ewqzVr8nBvLw/f1wbqtSrJ3+OAYKDEivzFyKyNwC4yvMSyvziOQd3bopMXmjCQqdss7QfxzZExIofYEf2LulzlMxLlt2t7FtLvzipyd1K/9G4c1OUHuEu1RPl/7IVVHo+A9dqfQq7sXK3Ip4/7gDxg/t85AzwkzDArhYxSV4H/MkgNb2XqIzlDPJbTdovkdQXGhQu4T+s369xJy7hHwZfiD8QZ6m/hth1VL8flT6NlPJ9tvwt87n3lRbl6Z3ckr0U+a9G+pYK8vel/FHk70v5UfIv0b/vEfBn4FppjZMlCs7jX90CPmuSPsCWxKsm/ikq8SQeZYyoxA+wI3FKA2B1wrdMJa199e15oSme+OeNlOnj7EZApPTxAADzfdq2XYo/Ju2vTfRioXYBFFqhT+FhLnVd7XCBeSPgcia7MRDq038ZojP1n4YId+ikGhDq02dP1RlIOVc8YPf9UANA9OC+JSgyfxvcW6UvCarMVfpdEZL+aSsYgBYkR/qT/UKl/OnrpyFu31yPpRISZS/Sj92uNl2KX4mDWr5nLfN3wFvgqNansEhP01enTAXjko508RQjdeR/wn6hz3i1PwMmYmVeUv7TtE95fvv1Xgf3ASyX/DXpu/H19S9JHy8DYH7IdAICBveFZH93eFfR949BWj+/jxSZ9FJ+npP8N5GS+h3i943qj/k5SP782Ub1A/D080/621NEXrJS4ZJ8qNTftfinSFkDn8rz4BHwWHhJs/dfWqsfLxPeN6sh4JN/Y+lbepZ/L9K3SJaPhe1vgkn8Flef/ijit7D0k6v4d+8ziviLcSACnJv/ET0PHkHarmljgPAFZ2GpAlQeyFdK/PhIAPPilDMKI138HGVjqQKK+XuY4v3biJF/gTL/FKmfexFy5J8pfUvp8Qkxo/q1j9/Fgbhzcz2OhCr92G05if2SS/1S3KDjgXz4yJ2b67HSNzm/3959qTIvLP2U7bsmdT78bL9UedcYlEiVPoAm/k1ixE6sAqSKvGbyz/mSY+v/L0zsQD5f6qfInbMCQEn9vZX450hKnyyNWshI/hlLAGviJ0BJ/4GFemKRMhvBouK3pKT5gPxz03sN+XN8yY0m/1zpW2rJv9UMABW/H/LfhZ3nz4CKP4HIFfJGEL+W+gvBUbJvVfZX3MSW8TnL/o8yZvvmeqzwwCX9qGNxX+RHiSOyGyBW4tKkD6Di3yKx7z55P0XJQGXv5hD4SutTaA41xWvaz4Mqc4nSB1DxKyuCMlpf0lQ+yXAPDEtd3OcQ+Mr2zfV4jYSkrtJ3E/s708sqgy60jx8gL7kv9PNzlelL9vNzljUB+unrt7wFjiKLPqdsX2qqXytKjAZPkRHli/rbcPWoY474N9HTWv2tmP4uxf7OWCRdRyCEip+jXD+TP3ffvHT5S/hyq0GK/FX6NGLFFJPOqF/k3NK3rOXvo3cOga8kS783+i31/yfTF1Du4jyO/TlF3XJBH0WRSGxJlrp9CUGr9PthLdIH6O2yvHPZzx//wnqLF3gNAPPl1mehKIpSHv2+y6OfxE9J+J5tEI9jPJn24DU2b0vPKXzElu21zE9D+58H4cSys5x833dKHH308ceW9WfJfyp9Y57k3od5AZ+Sg/tiftEpreI1rNzHSbWV+05EgMfI+vNsPbAvZ7Q+pZQ74uC+YlBEz/T7S/nO0woAHfniT+3L3yN/V9J3yr+TlftSWrel5D/0l1oAn/yTpV/xizQVbvGXGs0/J6b/tvrKfb2Rkuwzf29V/LwML34AYuIHEL9Wf05Ji1v+w36pJcBydb6YL1PXl6jdv3DDQMIyvSr+huSU8zN+N1X8vKxC/ABb8vdKf4qvAZAwCyBW/tzSt3DJf8gvtJbkJKilfQs2AHLln9unX1r8APnyH/JvhKMPP+H3krtrU5E+uC9nyt5sX7L0Abbkbm+ux5HETMlrOX1Ppd+A1C/TE9G/b8GBVq0H48VKPGWaVs7vufi/kRf0tdQ4VeYqfTqrSfzSeB48IkryEhK/+C+03ig8CrrWeID5ynC+igBno6HEyn0uhmkQu4T/aOLPg/N3tVDqV/HTkZ34B0YX5knjQXBS61Poh9INiz20qgCEpM61IIv54eZt6TlFkY79/kSA12z/1RrzgGYntMigiT8Gznmqqam/5ZebT/avgqMrngkzgyR+F67UX7qBsKYlV6Pxlfcpqb9x4gfwfw9q2nez9N25IX6AQeQ/kPQttUr9G+95GbnCn9NlA2Bg8Vu4LxDzMvgdeBi8hu14q6LjUv8cXbkvjO/7c5f4ATqX/4DSB2gj/paklPS7kv8KpM/Jy+B3dj2nDYBIUsVf4nd1sN9PaYS+P519/IgnFzmZLChCH1T6yoBwffE9xmwea/54AFzS9z3fgg8VWs6YlUebHdFP74fg/n0a7PdTGpTQtDi4T6z87W3+WKU/DKkD+FY98G9A4feClf6HEPtpAChZ4MGtz8AN9Tuw31H9KxN9bpm+pzI/N1L/SJUwoVTfOvW7RN+F/JVo8OCdm+txT7CIH1GnptUgVd4q/T7/OJVwP37rfv5bOAYuup6rAd6nyduugtD3R63vF66fsXNwn8U3yM8ne2N4rkynuBl5CUuOcv18kB8eDGC+k33YMjRa+7wnfKm+tfgtH0IUJXzz+gJv1GjJ3tbESL3U9wz1Z8xS6l/q5w8lfK0AlGXkJSxzR+a79hcrfYD0L8JaX6DXbF+2XpK7FOkDtEv5imKJCU3RiT9G6pr86zHSvNac1N/VlL4puVfn48Qn+y+2FZzO49/EV/oVl/o7TPsA9RO//Znan1/Mz3j8wX3KBqNIf7VQvxRbSp/yemFaSP+b8PPV35PKktyLSB9AfoWKmdi++9S+frzPzm3+3BI5P+O903dVqHwTfh6uBN9tfRrd8Co4evwFfFzMvxxPxLpfmFSpXxObJ/8aTIVv7+vfMYQvCe3atlPMd8on/haDMqPEH9t3j/iS1Zf77RdGrvz/AJ4LL4I/5jotpQdS1zR/BoB5BuuZKIKZloSLJX0XFRqq+/3wu3D+ZeRWXHJJkT7Hz3ixj39pRL/28cfDIX2LFPlf+vvnwY8O2L/oewy/Vj8T+Az/6+RGQEwZf/DE7yvva+ovy34/XP58WzQCSiX+1KQfEn/Wyn2KoiiKooxH9EV6NPHXZZr2LS1S/6W/fx5puxJVgGEvy5tJKOnP8Sb/lEF7K0z9mvbL4kv7FqmpP7Z/v1TiBwin/ujL8qr469Oy1E8V/pxS3QAPgpOGlj21CyVW+hY2+Q8ufQAVf20o0rfUln9I/DUH9VH7+H3y3yj1Uy7HS5W5Sp8PK/tepJ+7r48RpX/p75+3fXM9VtpwJfjutuin9xUFYEv29hZLzkh+6r6+70o0xhjEk0nS39hRl+wdGi7plB4A2DuUz3n+Gaamfcti6l9p4kd8Ixhzr9an0QUvQYRHFFqlUGri96X9nAV7Sid+F7Ziisbk/xR12t54qPjLE/MZTz/HYuIHoMl/EOkjvnHXc9oA2M1LPFcb5GoExEjf0lr+uav0tRC/hWVUfwvp402rv+Vq4Cwxa7m6M0JSH0T6Cg2f9CmvT8HPL78WK/GR5/bXoNvpfOajrc+gPPj41megSCM37ZOO8UWzc3M9HgBX2vc9r+Rjrt36DNKZ9uWn9uvvOmZCcudaoIml1K/wQBG9eU758+BO6Vru303KZ2w/x6Kl/hWhpf4wlETfotw/UuKnlvw5V2XsNvGPBjXdaxVgDGIbQ9p4UmpDLePHlPt9UGU+kvQBaELnXopZE39jUkVeKvmX6pNXce1G5OC+FaKj+pepmfgt0pbsrc38srxF3kPF347c9N6L/FX6blLFD1BmAR9EAP02kAv+M4D5zbrv2UL8U0a/SE8rtNTfCI6SvesY2hXQD9QGUcmGE+LOzfVYkQH+8+a/a0GlXwZN/I3gErR5jv9YKVUBTfx18X3evs8ud61+itz120EOLRI/QJ15/EpdVPwlOAkBjvZ/rDWTeaz8VfyJvBUB7pb355RyueOUy/LGJHr9hlAsJVfuU+qh4m9E7ZJ8K/m7JIb/AWB+ieXwSeCfApi/YDrYWz0GzWwEpILPCA/gU/GX5cL9EC55vn5wikxU/A1o1Q8fI/9S4sf/mJxPA/njn07eP1f+PulbGsk/hIqflwv383+g2ghQJKGD+xpQYxGeXDjK8z7pux6XZip91+MoKNKP2a4isQP3dKCfn5D0qdsoSi1U/MoiOfJ37TtP+LUT/zzhJyf+WJkLk39Kgm8p/y/Bldq9uaIMiIp/RaR0MfzogP2jGgCh7a3sW/XxW9mz9fF3SKrEW8jfSl/lr4wA/t/WZ7CF9vE3okU/P2cXQ8ro82FISfBC+vo55J36jXFfeCW8Dh4cvd+X4Erwi/DNtDctTGwJX/v629JikSqf7M1v1DuPKSp+B3grAPOBCu8jfGS/4iCnbC9A/i3Ef1945a7nUhoANbkqnAVfg0NJ21Llr9Jvg+93vqT9YtJ9dgPgOQjwePp/RsU/A2+1c380+av4mdDET8YlfYsk+V8Vzgpus9QQUPHLpdUiVSkl/Sj5P4fwH/M0BLSPf4aVfQ3pA2zJOFbIqfsoirLJVeEskvRjt1WUYlCkH9hOxe+glvQ33pMo5ul2Kfso64VrcB71OL60T3m9NKkSn+9HSfKa9tdD6gA+0n5U6Qe211K/YPDxNGlzr9U/PPdDgNcm/tp3XOYH0FK/hSO5+8YAzFfu+0v4Y3gKPDf7Pcl8BwEOlvN7l8JJiHB0hp5aLVKVM3LfW+6Plf6cSekf4RPGmBvmHU+RA7WxsDru5/mjoTYCOpc+gIrfUlr8AFuyX6JII+A7nh9uJ42Akzy/oCmNgBZ9/EXEnyv9GXsBAOAnWY8JiCdmH+MIeFf+iawQlf6M+6Ff+tNtfNsNIP0WLMm9d+mHjuOTPuX1aHzSp7xeGZfgfdKnvC6B3Hn6teb5I3xip72TmvwpojfmMcFtfLI/HY6KOCNlRF4KD4aHx/QLh4S/xLwC0Fr6T0WAY3mO1+M8fm44B+i5Un+M1NmSP0XsDVM/p7Rjkr8mfjd7Tx/gJ+PlT033iCd65R9K+EfAu0TI/x7w9/BmuH/r01gFL3VIYv5cVEOgJ56Ky48zGgHG5Mk/50tSgvSVupRI6TF9/6Hf97WOcNs1qj+m7B9b0ufoAmjBPeDvt2+ux8oyLnlz7re4XWraz92Xg7n0Y18PkPplt9YvSfFQy/iVy/1SSvPG7Nxcj8XDnPYBZqV+CyX150jclfwpffq1E3+M2LUKsINP2pSEntJY2HXcXHnbcn/tlfpipJ5Z/l/jpXlLzMO35f7UfnuWcr+wUn9p6eeM9q8B+wI+JQb3xZKb3Of7Uwfy1RzwF5vmNf1vCTsk7dA2pSsE0aT21ZeWfsr2M6jfncK/Y6OgLsObcrynwHOjJV51it9ASKkm9IqIBXyoSV5CH7+yG4rwXftQnks6JkepvnW5vxLTsqerFDqS9JU61JCy9MQfu/Z+7Yv1OMXPPb2vN1LTu6b+OFIaDCRSF+fhPkaHiPs+fdY6GmDZhMr4nczjHwnzG2GhU7YpgVP8uqCPQoVD3MXK9FzElu1rlPlz95POs3BH+tP7HUAt37OX+Q82OzfXY6UJVu5W8PPHJCKuvEchutTPNTJ/fpxQGV/L/Pk8F/6g9SksMoz8U8cEpA7UW9jvWvCZtONJYEnyTPLn6uf3HSck9eJ9+wPLXnqZ30dWumeUf9Kofg75hxb0aTVvn6NcL2mEv0/2fwwvyj6+RGFvj/DnWsBnim+Uf+6iPSnpfY/4Q6L/AhyWckZt8An+yTxffjWW7J1Sfa3+VE7f89kfkfY5r300fxUYRviLGNznolXCz5V2L9KnvB5CtPRLcTezc3M9bgAl3XdTAQileiGpP3b/rqQ/vx9BSTGr9PfAkPx3iV/792WA12t9BmHEr5qXMkAvZh9u2ceW+5mW8RVFKNEzJX6AdPlzTwkUwzTlJyZ+bo42ZvumTHi82bxFsiF+lX578Ho70p/eVxKJEbmEkfxUmY8o/QZ8DQ4lizxm2245woiRvhJBZANgW/wx0qdccKfk/qVJLdfnlvmXJJ8if2oZX/KAPxZi+vmlzN0PSX3yekwJv5ty/1KqZ0z7c6zUp3J3PSedP4S/an0KSkuI8kf4hDElr8o3R7r0LSmD/EqJHwDA/Hv88ShSH2mAn7PrIVbmElL/nMDV+ahCbzLA7zAE+EzGZ/osLCr8kZhK/6/hTxqeCc8gPy3vZxAYALhXTnk/VuK9SB8gXuIlpU95fe2IH2+QQ69l/cNw898UVPok5klfk//KcY0BmDzOHtVPlXlP0re8Ge4fFDplGwqhRJ+S+GvxcHglq3hjj7W4fUrpXkq5v3fmss+RvxJknvBbJ/7ctK5pn5lZFwAaw/8JI57Ypegp3AP+vtiUPe5SPwDfPH68HIA5J7wdR9nfipxyrGAjQXCpH/GtYMzdWI4lch7/VPY55X6FzB/CXzWX/pSUkr9Kvzx4Y3OG+RjcuvV5KHtwyZ8r7T8X/oAse7xceBtXQ4BT/K5jR1cWhIkf8a2Lr6U2AvDrPwFzlb03nrsWfEbGoj25ffxKt+A/AJjf3rpPbQCo9OuANzZnbHzS2giQAV6vTXmfIvw58wZAjvzZ++qFiN8n/DmUBgB+/Sf+Y8waAl1zBgLcRoXQE/gPO/et/KechKiSrwziv23fF7tyn6IoiqIo/OxK/ACa+tdKStqfMk3+Kam/2Mh8auoXkPYtS6k/lPR3HafX5H+G52em6b8LpqX+ZrwLAY7S35dp2gdYED+Ayr9n7gRvhnfCPaL2yZW+JVX+xafj+eTfsF9/CZf4Y6W/faze5O+TvkXlr8x5F7GBv7KGwFz6AB7xA6j8e+RO8Obt+zHyLyF+AKaR+dzcD6uN3k+RvmUu/1WInyJ9i8pfsVClb1mJ/F3SB1DxD0ls4ueSvsU37S9pZH7HcIk/Vfrbx4qV/wMQ4OQGX44q/ma8ABEe3eOAu1jpWwTIv/RnruJXFqkp/rXRpfgfMPkirS3/AcSP+C0w5oqtT4PECwLT7MQ3BFKlb2kgf99nzv15L4nfO6r/JvCvrCcxEm9iWItaGZsc6XPsn8QD0P+4FGdgnPTtPoJA/BYgfmv7vmRegBiUfsx2TciVPtcxIgh9lpyf9ZL0AQLij038+KaozbvjTYjbN9djRZmSuyqf3T837UcdY57wayX+25j4BC8s8Rtzxe2kLznxp8hFrPyVRYz5lcXXWObx45t2pD+93xM+eVPk3msDgLvMX+qYa4ZjcF7UMazsW/TxD4Bk6SvtkNR4yhb/kuR7kD8lwcfKvDf5l+iPX2sfP+KrW58CHyr9IcmRjyRxjUyN7pXFGDD6wD5Kgr+n9IEtSnPmsp8+NuaBYMzdWBfwGZ7bGJ3Hr4Th7JuvsMhPjMg5B/gZ8yvOvn5n4qdKP5TqpaZ+aipPTe+9pX4ljVDC56wA5JT7u5rHDxCWukp/vbwL+QfkVRjZ33J2hKuvf5f4Y5K+uWfe6y0GLauUFQ6oUkd8dXR6X23an2IH+1nJzx8r0XCUj5uV+0sIf0XM5b83QLuyfsz322vgXvA78MZyJ7NizDnlVu5TttgeoZ9xWV5zlb3Xs1b/lIFlf3n4BvwXXLnKez3amGxxN0mugwjffnY15/FPmcofjcl/J1dJP5T2KbwG7rX4WmojoGbi72mMgIo/jpgyvjEPXDjGW5PTfe3L8u59zgXwk8vty3rMNXN5+Mau52o0AFT8Dhqu4FdztUREAPtWLOLfPvCbeIQP4Je+JVb+Kn0/nFfnG5mUvvsl+XOAX/9JsWS/9zkX7HpOGwD5qPiJDCz9Wrh+5HvBnfk+2JrSj9nO0qOMa5IqbnPOeqQPEC/xktIHKFfOd0nf97xCwyV93/Oc5Ihb/PK9saxU+gBMC/hwEivz18C9ovdRlomR+NqEr6RzXfhU61MQw1Kyr9XXr8AqpO9jS/yMqV8Zo7JgpT6Vu+s5JUyPC/uEUn1s6v8s3CDndKLAt1d7qy5JSe5D9e2vRPq+Xh00dwID75DzQaSm95j+/tJ9/SOIXwkTK/TSJX9ufHKX1s/vk725S73ziKXmqP451P7+piV+DvmvRPQuuij155TsY/alivmexkRLXKW/HmJE3pv0eyKU8CVXALS8X5gVS98H66h+Dmokfosv+bsEHru9si62Fut5YPC5nuhhVD9F7JJTfwtiR/c3S/25iV/F70z9qxb/lNi1+TnW8j8ZER4g6+NXFCeS5/Gr+NPootQPkC5/lf4G03n8okr9Lald0j95zx/dyYjb9xVFKj1LP2Y7RRmVqbLEiT82uf8OvLG7pXxdolf5K0o81CSvib9jUpK7pn0v4sQPQJd/b8K3uMr7PZT8Hw7Pb30KiqIwQSnhNy/zW44yYZnbbXqX/udw61YQcX38U0qs1S8J6X38FNG/FP6owpkoyjLax89DlXXjX40AD2R6j3dh/5K3hER/Hd7/p2jxT9Gr89UlJt2r/JXW9DqPf3heTUiuXA2BXqGme0b5dyN+hcZ05GYMD4fnbws8taTP3gD4HgIctPyfwWcDmCfyvqXSP/h2lX1zKMKfs9YGgIpfScU1NtD3ky3VX58t/+95/gg8jQBFUYSQIn3LGuXfQPwiB/cpcSxNCFh6vuQgvaxj+6RPeV0J8zT9DJWC5EifY//eiBnExzjgT8W/MnRk/oqx0lf5K4oMYlK8Jn7FEpr+P31dpb9yjjGb/yoKJ1xpfW2pvwEqfkYuuGjv6u8ZGqFhXxcvfWoZX8v9eaj0ld7QhgA7OrgvA4ro993nJ8XPw5f6W4k/aZAfReo6wE9RZFJL0CMOAKw8j18TfyLUdF+jCrDUdGvVpNN5/YoC8DxdhrsMI1YArmN2br7nmKhfmx6AWJlfcNHerMn/7vA6eAvcd+M5K/nUefyKoqSzJPn5848d9Y+ztow5VwCUBkH0Pz0PYa/90///WuqPJCfB58j/7vC6xdfmjYA5XZT5LTqPX+mM2GSv8mdiVPEv8NPzlj/f2EZA0VL/0fDXJQ9fndyyfer+PulTXu+q9H6Q2bm5HiuKIFLK+doFoMTikz7l9TlFxX8S/GHJw6+CkNRjtysNayNDZa8IJkfgKn8GRuzrr4QO7lPY6KqyoCgZcIhb5Z/Jykr9nOjgPiUbFb6iKPBAoym8ANQyfsyAP038RLim5cUcJ7Z879tespwPuvjbrU+BDfzZ1megKMpIkGUeMcBPR/VHwCH/2JH9MfIPje4HKDvCP6Zx4ZP99y5xCMfpVMUlfPM/9c9DqQNXmX7IEf65V+ej7L+yMj8l9ceIXxP/yiiZ/CmNioMu/nYw4VO2UZRWcPbND9nPnyplu19o/5VJvwQ74n9h219AfFzTt18VreQfK/Ne5L9U3teyf2He0eY7izOlD5n4AbbkTBW0a1v73LQxEHPMAP8KN2E5Ti1CaT52Hj+avwb3Ho8q/wvpk705ofjbR9Oi1A9AK/dTyvw+OLsAlhoWKSLvpeyvpX4mboUAHwh897iEf+e6AtVSfyICVtybSv/W8LGGZ5JOzsp9iBd6Sv2FKwChhC+xApC77G7q/iGp50ofoPzgv9T03kvqVxK5FW7e5s/NWUr5jdK/EomAMr2Vfa/SB4hP+BbECwEgNJ3vhVgk+VOljo+Tl/z33ecnSck/t9EwlbtrrX6lLTbd48/WT/qI3wdjDqj7phy4xO7aJlQBUML8AgL8p36Olp6ln4qVPoAO7lMURVGUVVFd/LEl/BFK/pxX5gPgKe3P4ezjr31RIElsJ398RfH3Qvw+IH5/4759XIyzmErqlLQ/3zZUzq9Y7ufom6/Sv/8LuHWb31dWjSb+RKgy55Z+KTj7+OfHyu2n762f30q/hvyrcBbu3FyPaxEawFd5gF+OuFc3qE8RRVj8jaf5SWbffX6ycVt6bu3kjszvZWS/xZiHbPxbAl+yZ039IbnXlr8wUgReTfpL6V5T/+qY9u8DUMTPOLgvtWwvsdzvQpLo8dqtz2DdlJT+1vEPSHotSA2Rx5T55/sspfrKaR8AAPFHABAn8qpJf2kwnw7yWx3GXHLjcdWL9JgT0iQubWS/VOaynz42n697LkpHzGVfWv4fMGnyt1jJvwObCN9izKW377uE/jxELekrItE+/kEIJXxKBYCjn3/pGKnl+t7K/DUx5oDtdG/vR6d9DsnXKvfPGwsNpU9BhPT/0+wk/Ol9ZdX4xV9h9T5FFjnyl3wFwJFJLu1zCftQ/Z5YAvFfWp/CFi2Ff08dUyCBabm/yZK9MeV+LfPToCT6mHJ/zJQ8rqvyzdG0X5jW4k8p9wtezIcqeWN+tfCZpIH/DmCux3zQqfTfJPdnl8txiPAkCRUeAogXTi7LW2iVvsU3J8hfpU8jZiAft/xTU/5ol+Xtkh7FDyBO/qmpXkoDAP/d/TxbI+CeOJz0jyNcq0FyQ2BL/NMpe0LkX0v6H0WEmwr+AVHhTvwuHg7PL1LOP+jib6vsa9Na+pZY+Q8ifYsE+RcX/0BQhD9HYgOgWeLfdSIC1+XviRriV8qD+HdgzO/WebMY+VvBn4W8ffodi5+r/76l/Jekb1H575AifUsN+SO+B4z5Ndq22+JXukbF3z+If7d9v4r8U8TPjYq/eerXxB8mR/qWEvJHfM/ia75GgE7nG4SQ1FX68rGyr5b4JRAj8gGlz30sZT34pB96vdvEj+8AMHdufRZywWur7BUClNRfY7peKPkLkj4Av6xbp36AQqP6B4Aj7Vu4Un9I+lNcyb/qyn0c4Dvc97URsIlKXyFxqPHLv9Yc/bnYb4XiZN8Dx8MfwRMSr46p0l8PXZX6p6KPeU1RFA+Hmp2b63ELVPrRHL9nxs3xupCWEqAr8SuKiz+Gv2x9ChvgA1ufQQa6Cl+QEn3yucecy17lPy4xZf6l7bvp46cmei35r4up9J8LT2l4Jm7hm1fXPw+lPBL7+KeyTy33K5tw9u9bOPr5c/v4u0n8FKGr9PvnnyL/0KzsJUrf97yicGNlr9Lng3sKnpTFfLob3DcqiGeDMVdofRpNmMt++vj/EP5QWktfUaSg0lcosCR+/CLHUcL4En2vaR/xbEA8e/v+2gglfF+jQAqhVF879d8bXlX3DUtyU3k/76G5Kepn3gHUFfqWtsvq43cJ31wz9WiR7z3YPP41Jn4OiVMqAjXwyb1GP/+S7N8ADyr/5pxQpPNRIT/zEVbuo0peyGfeAonz+C2pK/d1K37J4M8BmP9ufRby4UrvEuTfUvyhhC9e/qkJs7GMuhZ/p595bSRLf07MWv3Jpf6l8n6tsr9E8Oe2bvP7SlkklP+X5K6j+gPklJUbl6Q5hN2V9HP3pfLa9n/PPUKVPkCG+JeSvSZ+hYIEWXNjXr0j+un9klD688X2+XNIJPMYz4QnZe2fI+7upM95DB/3k1FV6Cntx9LNdD7pLKV7Tf1uJJTnS1Ez5VPK+OJL/Y2w0ueQf4zEY7dX2sAl66Xj3Ag+yHL8FFgW8MEvatIHcEte+/qX4U79IzcmfHTZx8+dGhP7np8JT4Knw3G85zIB8V/kSF7IZ94TrtT/JGNI1YAY4X8Cbhl/chl0s3JfD6j44+AU/1qlb+luVL9KqD76mSdzHKK3AhB63eJL+TXlr+IvgI7qp8M5sv+fEFffAADYagSUEj7+LoD5O4YDqYTqU6JvXj/3KFT8irIHLfnLBn93+bXkRoCKvz41RuTrz2ERSp9+Lfmr+BVRzFN7aqOAS/5vgyPhrnAKy7F6wyf8OVENgFICUuksU3vqo/4snGjiVxQiPvlbwceu77/E2+DI4DZraAjESN/SVP4qmjArlz/iu8GYX296Dip+KZyLAAcyfQQHIcD31v1xlsbXj5/ax0+RvYuRGwBrEj8+BsCcyHYmcmmx4JEA+SO+e9dzLRsAOqp/FA5y/EFpA6ALUqVvGVH+KdK3kOXfWPz4mOXXem4EeBsxKv5tWid/gK0GQG3hW1T8ubikb2kof3wAgDm52dt3Qa70LaPJf2Tx+4Q/p5cGALkR02qJ44byd0nfIkH+rdCV+wYCH7Bzcz1WBHPj8ZYw9sIpgwLST9m+BaFz3HhdQPquzZLc1yx9ABV/Hr6073v9Dvxf8iG5q/w34Ur7yce6MW7elp6rTE7a59h/JBA/V/b4j+HdTlkPKv4cQqX86et3wJ3b/HGBhkALfnL+GP+PosRIvUEDIHdxHpbFfWIolPZz9wMAMOY66TuXooPUj6/lPZ4xv76d8Kf3c/hF+Gz2MVqi4q8BReydyv8n5+P2bfpYcZAq8VG7AXIl1IHERFL7c4sYW2Clzy1/AL7yvpV+z/JX8eeylPorDuyjlvG5y/0+wav8Z+TKW+W/uc9KpW8rENnjFWp+hhHvY+63+a9EvgTX3fi3R5JH9eOjAcwLuE+nc5bm8VPT/GkZc5EJUk8Z5Y/XBDBfdL8Wkvve+8n8cubs35/iHd3PIe6PV2xMlp7H7+OmuCOL6f1EOPq4W47wr3r+up7/KogWPz5693PaAPAQW8JPlD+n+NFziWXbCKAm+rXIv7j0LZXk31T8Bcjqqz+R6yzi4ByUF/w/lJzqp+IXR1Sp3yV93/MKxIk8I/Fz4ZP+9HWK0KVJv1TSH5FYiUuWfo9UHYnfan6/0oy9F195MAK8stwX97GI8FRdO4gNc7I/9VPSfkj60+2Wyv/SmMte5U/HyrzI1fmUDUouG+w9bmnpa9oXibvU/+DJL8Me+VNSPaXkf6zjgivDNwAq9PHPiV25jyr9KeaLyyV/CWm/puRHK/Uvgb/br+xTUnTJMn+NVN9U+gDDiv8oeAu8C+7e+jSS2S3+Bzt+GQjyp/bzr1L8AGH5Ny7zp4p/yk/ORxHCBxhU+pbG8u8VKeIvLXzSOav0ozgK3hLcpkZD4FA4E86Cw7OPQ078APnid0nfsgr5W+6ALKI/C64Kh8LXGE6IR/ySECN+gKESf++0XqtfhPQBtMRPhCL8OdwNgEPhzMXXUhsBOo9fURRFUVaEW/w25c8G9y2lemqZfynV10j7+Od8x3o+PDzvABlp/yy46vbN9TiFlLSfs99IjHZlvtExJ4ZTMWUbqTRfl3+gxZVS0n7Ofi58aZ/y+hLVF/Bp0cc/lb75s7Rj+GT/R/DStINGECP2lPL/SKX+2iP3tdTfB+TL1zZ4fy6ql/o/algWWZIGh7xzS/4xUo8t+SeX+lMX7XmqMduin94viZV9CelTXs8lNs3npP8RiE3hd4VTtm8p6BRB+URdvnZ0OPv37bFuips3RTTN+vhrD+YrJf3Y7RTZpDYAvPLnSuma9hUOaqTzCvK/NZxe5LhcpXrOkj83OrjPQ6zMS8g/Nb3H7hdbtpda5ucgNcFr8leWEFXmr0UB+d8aTt++uR6PwKFwZnTffez2Kn5lG6rMe5A+NbXPt8uV9+L+uWld034yVOmWlLM4KdeCUf4huY8i/7Pg8Og++/n2oYaAin9wPEsnOAlJvQfpW0Lyrz4iP1XeKv0sqNLtWc6iz51B/lSpj5b+Y7CVAiv9+eMpyaP6RyenbM81yp9jkF7uAj89rcsf4m1wZFD2HOV6tlH+Knw2KGm+tDxLVBSyzrnmILyMcQWpIv9XOCJ6nxL98qmj+1On6vmwlQFN/Aukyptzal+utDlW9RtF+gCC5tyHhP5xo9JnQtJo/VRJ23UF7P7zx8kMNgWPA+5V93KOx7E07xzbmFDxK8oeuAbnkY5j5W4FP3/cgOvDR5q9Nyf4mJ2bfRxCdKl8Avt5qvxFU0L+AL7L8irKyrgrnFKn1D9HkOynjz8NN6t9OtlQJV/yMriU947Zvjh2EZ6SJC7yk9Nff2s4PancL42p/KcX6UntCjgUztQ+/hAxff2lVvBL6evnunjP2mgi/gbEpPvcBsAXEeGaNZblfgx9WwkJv/VKgkGsrDkaBZ308QPw9vOXvGJfzhgALfUHoMq8xrK9isJBbEk/tQvgi4jwxT3TSqb3SxDbly+h779Y3z0XK+0G4JJ1jcv0prIX/mrrU5BPSOqlpR+b3jXtK0pfiJG90gW5I/611J/A8+HhzRK+r+zfg/DfBL8F94R/bH0aXnLK/dLL/DkD+GJK/r50X6Lsn5LgVbZEGpf6AeLL/Rx9+zkl/xppP0f+Kv6OOQuu2oXsAbaEP0dyAyBF/tKlD1BP/ABu+UuRvkXlTyRH/kxdBhT5cw/mS5F/rRK/il8RjUv6llHk34P0AcYUP4Am/iqkyJ95nIBP/iVH8FMaALX79FX8imh6FT8ATf5rkL4lZYR/jVH9Kv5KxMi/8OBA6nS9F8HD4A/gZazvfRS8RcTgvRT5nwWHx4sfbwhgPhn9XspK8UnfIl3+UyjL/kqmZuKviYq/IhT5e6R/JfgSfBN+kfGE1ksV8eMNd+6r/BUqPSd+sdwGAc6IT1Sjih+gv3n8LXg/3Axuy71CY8TiPFeCL23fV/nzECN/u/gPWfxT6VtU/goFFb8cRhY/wFjL83Lxfs/Pjb0RQEATfxl8DYD50r+a+JUq9Daqf2RS5N+D9C3iV8SriE/6lhbyV8oyXdrXRdRa/eaT2sevpGEl38M8fqUOiB8DY24S3u4uAObt9ONO5R67Jv/F+yNc4jwd76w4OAIBTu/jdyN0cR8d1a/wc30E+LT+Wkmm5lr9UxA/5n193hDAu0xei5A/lYv3Dw9U67khoImfgSMcvyOdNACWUPEreVyfOL1nhQ0BxNeBMfdtfRpefA0A7vJ+SPoWl/xbSd/So/wp0reo/D2o+BVlD1Thz+msAYC3BzDvbX0Wdbg+fKRoX36q+EsQI33LqPJX6U+Yl/Nd0rd0LP+oPn5FAYB06dt9O5L/WqQP0NcAvhxSpG/361H+igeX2H2yt3QsfYAVXpYX8fjWpxCFuPPNkT7nMZSmnA63jtqemvZjt40lVfpc+ytCOAJpgh+U3aX+OyLAqX23ZpaYStSYJzQ8Ez8+2Tc/by5pd5T6lS18sj8C/jW4v4RSP4e4e0v90ubxNydH+J0nfcvq+vgRj28vTw+UhN/s/LmTusq/GygJPyR/FX998FkA5sk7j4us3NeS2Cl2HCm/gfwRvwrGXI3teKvr45csfUWRCLWsfzrcmpT8lT3cHgHeW+hqhc/afd88eZCEP5f39PEgiXwK4le3/+WS/+r6+BVFoRPbl+/bnpLkpaf97OPcHndurscMTKVPeb4rQond13fP1adfcWyAlf7S41S6Ez/+fuszKAd1IJ+4AX8KAAB8EG7U+hTEY8xNtm/zx6Wn8XGV6JOPE5I7o/yVMZgnfK7E30Wpfy776WPzN3XPpSTGPEFuH3+JkfidTe2b4xL9/LlbwidqnQ4LNcv1Nebrr41Qqp/3+SvyMeZq7H384gf3URO+5AZAzIBCseIHaDK47xmI8Axhv6IpyV5qAyC2lE9Fal9/08F9lETP0Ofvk3/X0o8tsc/7+zlL9J2PJegi8feGS97z53SQoZ9nIO66L6EBkFrO/yDcKEn+r4O7w33hLUnvGWIV0j8GAZ7W/veGXMYvOOCve043cfK228buRz12x/LXxB/xxfAIeB68BB67+HpK37urASB2Hn/FxD8V//ZzjX9VOfrwKfJ/Hdx98TWuRkAp6QMIEf8xjt/VPX/nOak/a5xApcQP4E79Xad9i5RFdzqWPoBw8ccO5CPL3/WlYElMB7kD7qZCn3YNiFp3oJL4XdLffq3hr2sN8fukb8mVf0npAwgQP+Hvu8la/RXFbxmuT1/Fz4LoUf0xKZ5F+pTXHXCMsrfHmP8rRvoAvAPxfGl/Qe69S5/zOKkML30isRLvadGeKSp9xYVo8a+NeQNCp+0pPSFC+gUa9mzSD6V57dtXKqGD+zIpKWdRad/yaZNf8qeM5t+T7iWO6i8Fpcxvtys14C8VEdIH2CrlM5X6i6T8qdx1IB8dSWm/8zI/QKXEfwP4UPK+oRK++RvGMn/sdgWwshcpfUtOyT9y37VIH4Ded99a+lbyR8C/bt96gtq/X/xKfAvSvzp8ruz7Kqun2OA+n+w/BbdIPi7+fuacfYrUIwb4cSd+0cJ3QU3/gy3Uk8vSIL+Sg/s4+/fFy55pVH+Nvn2K6L8C1yl+HqKRkvgHSPsAhRJ/KOGXrAAolfm02X1zPd8x3IvvtFrMh0vW4qUPsCV524Cf3hcGNd33XgX4Glyh9SnkM4j0AQqInyr1GPmfBA9KPZ2ilOjfH2JAX+eib0kozbcu83fHTPix5fuS5f5Ymfcqfyv9ZPmXSvtUkZ9uhpI+QIFSf4zQKSX/qfSPhlclndMuGOfxr77UvxI4y/0xiZ97IB9Hub+LxO9BQqk/R+I9lv2/BleAq8LZ6Qfglv+SyDtckQ9PBDCPidtH9Kj+edI/CR7EI/+p3KUs6akoDjThj0ducr86fK47+WdJvxD41Z+Cudqs6N2Z9AHipQ/AXOqP7bsPbT+XPFvin6LSVwhw9cu3vlhPblrvPe0rimWX9FfEev/niqIoirJCWMUfO02Psr1N+UXSvpLND35M+xWibqeUJzW1j5L2qf32vS7Tqyghtr+N3wO3bHkeXiRLn3MwXg8D+37w4702bq7nXM+7HrNzcNm5vrll+tZl/imxEi8p/VPg14ode4mQ1FX6wuDse+fux3+xkDUGIhA/qr8HuEb2SxZ/KVlf9lI/zTuAT/bfKfPlnTLCX5L0p1BG+XNLnyr6I+E9rO/r4+L9UcxiPVR6G+CXDdfIfk7xT6X/yH4ai0VW7qPIfxTpWzgvyyuN0mX6JPnHpPuGDQARwr8cApxD+wxOh1uLSvc15V8LDvmvTvqWXPmXkr6lE/l3t2SvZFLkL1n4AHX65qPFn1LSLyT/KR+EG8kQveVyjs+J2AAoQWpJfzT5FxP/xxHgxn2IJ4tU+ZeYqqeJf5kbwIeGlb0LSgNAuvAttQblRclfqPjFIUj8uf34I8mfVfwf9/wtjN4IoDYASs/NfzF2JX2ASuJfO4jHVxE9fhnAXIPveDVH4pPFnzOAb03yd0nfUln+XIP3RpE/m/h90rdkyv9riHDVXhTR4ap7rehyjtWrsK9RlKWlj1/eus3vKytmSe4NS/0laTEzIJXc/nmy9AHo2834GiJ8bc/37PS+aFT6ZLpJ/CHZP6iP/wY7Psnnpv/ac+9Jqb+zxP9lRLhGq99NIaX+EomfckzpFYKU5B8l/SnE5B8SfDfpfwAQzwFjLlfk2OIT/6sQSQmfup0ik+LS59ifyJcRt2+ux9U4x+yIfnq/c6gNCelVgNjkv7aR/Pji1mdQF8RzNm7z51jfS3LiTxV5r+n/5XB/eCj8PXl7Skk/NfWLTPsA4hM/Re7NKgANkCDfEZL/hvQLJX5qOb906ncJ3zyy6Fs2hyp2rgqA+MS/Fl4O99/4lwLnQL452QvrrBBqoq+e/BsiQboSGh8+vgLX2bgtPQcAyX32lP0oQtdS/xhsi//7+8j6Msop2/dY8rdJPybxhyjZMOBkhEZGrMzXJH8JSJf/FG9JP3WUfidT+5bK+2sr+5dmr+/vg9vSt/elNQLWQor0l+Tei/SjSS3Xr2kqn6IkclVjFlN9jbS/VNIfudQf03/P0dd/M3j/cql/NPn3WAWgYq6xI/rp/R4YIe0rymhMGwC+xoCST0y/fW4f/83g/QAAgOfuDd6f6AEX1f+B15J0r4MAa9LlxXnmFE77OWX7tQz0k1Bqn443eAMi3Lvnzz6mr7+TMv8cfPHYSX9KjcF9VvoABPEDqPzXDKf4i6T7Blfnc5Ei/7VI3yJN/t1TYeU+pQ6lxT+VPoCO6h+6C4ADDllf9lI/LSf975idG8Dux0oR8G7x+6RI90h4D5ush5I+QFjqKv1uoAidczGfvdmO1DGvQtTk7+Gyl/ppcvJnFb4r3VdalGftuEQ/f868NXycI+E95OQ/nKhLMJX7Wq7ONyhzsZdcuY9U6gcYu9xvUfmHoTYAigs/RKPlean0VOaPSfcU+c85BX4tKHmObgJtSKybp8NT4Jnwl61PozrzMj+A4D5+AHnivx2cCu+DO1Y6mz74wY/3KjsyX/hKfXNGW7kvpaSfIv8QKn4llqfDU4LbrKUhMJe/aPED1JW/S/y3g1MXt9dGQGE4yvjC5D+69C3S5K/SXwcU2bsYvQEgVvzf3we971OjATAVv0/4c7QBUIhOxT+l6dX5MsiRvkWK/FX66yBV+paR5R8tfk7pT+VOWSBo6b2ng/G4GwQPMiZK+haVPzOcg/Z0hH80UsUPECd/lf46yJW+ZS3y947U4pK+a1ng2P2mTJP5g4xhG5Sng/sieZOOqBfDVXDrtgKoMlfpK814ory/xY/AbbfvLyb+qfRDZfgQHMv/ht6fI/mnpn2Lpn5GNPGHCYn+6+n/7+aJ/6UI8HD6+VNmBihjwpX2LVmp3yX8Z8v6/rkZvB/2OuAisy3V6f35BXumj2NEzrXm/2jXDlCULCjpPrECwCH9rOO8FDf/JaDSVxQaH4Hb7pT6D7jIsJTh57ScEaB0hk353IvyjLbIT4zQE+TP1TeffByb9CMSv6I0Z6m8L7Dsvy3+1ERdM4n73iu3fz63zA8QNxNA2cPBuHOzj7kZtdQ/Mir9dXAfeVJMZqmkL6zUD7BH/LnyllKGT5W/3S+3j177+COYyl5RlHVxH9yR/vR+JNz9+6WOKY3hLtITK38dyd8AFX46Kf32Kxntr6yPEtPvso75bLOT8Kf3hbFXycF3rSoBVJmr9JXuSBmpn7BPbj9/qTn8ygAspfs1lP2FQL5IjyRSBgzGXIFPF/ApSO20P2L/fmyCrzytT6WvBHFJ/vXxv6clyvIjL+Jj6a7UnzpL4EHGABw7UItSqcKT4JmtT6EpsRJX6Ss1WYOkS9Bd4k8Sv0v4Tw1fiY+Kpv0Iaib+hbT/JHgmHAdPX9zNJ3vfflWhpv6MtD+FkvxV+mNxHDwWngTPK/sm98GkpD9Hl+yNQ8UfYJSr8+H/AzC/3PgkGkqfKnNKwu9K/kzin4N3U9GPxnHwWO/rxRsBGaj46eCj1iB+X3mfKH/L7eDUrmQvktLyd6R8arn+OHh6X+Kf0rARoPRPSPqWkeW/BulbuurjT0r7S3KPlD5AXwl/SL5jNm9Lz02I6aMfvj9fp/Xx8PqxPkeq9GO3rU2OuGtI/ymCAkNXiT95+d+MUv82X0aAa3TzUcklJ/EnjNAvJXNRqb/iKP/V4pP9ffr9PFNFLjn5WygVgNLC98n+LxsGjW7Ez7Lm/7EYJ/wve/7YtRGQTor8E6fllRB/19K3dCp/fCKAeXbFN4xJ97kNgJchwMPq/lxGFv+cp8NTqpbzKQm/lfz36uEiOmznyCV9yutKc4Yv3XdOzJW08Ylbt/n9osSW9F+Pad0AL8Ot2/w+EXxy/FuuEWnSj9mOG9F9/NPLBFeFKnWVfxqx6T0x7YtK5goAbMne3uaPYxoCw7Ak+Qj5m2elvXVOf73kvv7WxMq8hfz3Amh/6Vz7/lb0zYQPEC9zlX8aC4PxordhJtRYENWYyBms12CgH0Xsrm2W0n3R1J8zgK+TwX855foeS/3KDnvbOwdcZJpeZa9140NJ5G4I8NaMn91U7AejiCV25/P6Rcl+ytdNN338UWV9BJiurm2e7ZZ81b7+EoRSfYM+f2UdbJT6myZtpS/uhlu36f27eb7IfK9ZGKSP/7T5OEbarm3FSr8jUkr4qyj7h6Su0u+O1LJ97XI/GhO+cs3398FdDQLO6oCYxkZO2X5No/xDEn+roYk+p1IwYS77Keb/bP3bxTK8KXSQ+FMl7vpmqjKqn6tUTxnl70v9lcQf21+vZX4/KRKvPbqfJP4lOOQvRvqWFPnXlv4JCPC4hp8bRepUMuXvk77Fyt/Ssnz/o30RLn0B889O+Dx+TvFXI1f+MVP7XPIXOq1PpR+mB/GLHtXfM5f9n3P5D3oCbt3m92vCKf3M41Gk79qupfSn/7IRI/JOpJ+7b1c8zOyIfnq/IhShq/THQcWvKIqiKCsiq9QPkFfuF1fmB8gu9buS/g9+9sCcM9rCl+5rl/25Uz9AdMmfmvanzEv+NXGlfPaSP4C/7N9otT4t9fdJlcvyDkpMub/F6n3ZiT9V3iKlDxDfXx+Qvu95ZUKJxoQg5pIvIn2ALbnbm+uxQiNH3ANIH0BL+zlQZd5syV6Og8RMA+xiyiBV/rUG9YX68mv39zONxl8bVvbFpD9HZa8ozQhJvelFenJL/T5c0wC7IuIiPZRUn1Xyp4i9xUj/BiP8U8r8Fl+5/xhEeFrT+vK4xJb7xfwYal6kRxmap8DTm8p+SlHxDwXhsrw++Wf381MTfc/yj6gkcPXxH7NgJG0A8EOVv8iPftDL8ipp4O8BmL9tfRbpqPgZKSp+gLD8S0vftTwvd998wdQ/F/+S9C0qf35C8pf0kX8AEW7lOqHXo8p+ZeDvhbfpqSGwS/z4bwDmV1qdTv8UG9U/ZakBUEL8PrFbSXea+FX8bZmvyS+BD3h+J5yNgM7Y/8f/Bedd6vKtT6MbKMKf00MDYEP8+G87L6j887js/5zLL3wXpVbxazHKvuCUvljpW1Yt/9MQ4A79/f/fBUfAUXB69H4+6Vt6lP/+P/6vxdfW0AjA+wGY1ybslyB9i3T5a+JXdtNqal3CbIGUJXstmvgdnOb5TDpsBFChSN/Si/x9wp8zagMA77dzP0b+OdLffj/B8t81nU+lr/REaFGelov2dMVp6Jc+dRtFBDHST9ne8ma4U9J+tbCyT0n8I6OD+5RNOkr7LvCf4mQvbVQ/XhHAfIv5oKGSfYrMB0v/oyX+FJHHpv6p9O8B74x+P6lwpH2L1NTPLv6/hqPhD+EkzkMqNemgb78Urefx4xV37mfJnyLyqbhXLv4Y6Vskyz81vQOkyX8k6QOo+KP4azh613PaAOiQXPG/1cQdQ4j0pZCc+FuU4Fcqf8nSB6gr/pJ8AhFu1OCzXoP4WZbsdUnf97wiFI6075rrv4RKfxfdSF8JgjpeKppPIG7fXI8VHvZufQKKIGLT+tIxpv9aYhoECh2VvljMv4W34SYn7U/3r538KWK325SsAnCmfXs8iak/O/GHUr2mfgUAVPojMlCjg1q+l17mzxX2eZe6vEjp52wfA7ekJUofgEH8oX587edXlEK0Fu9gffwhqUuXvqJQ0VK/sklOuV9TvdIR8wF908e3MobUGFDySE3vrQb+jQLL4L6lVL/2tI/4kdanoCjKjA8gBkfxp0zxk0JqqV7SiH6lLDqPnxmf7I25WcUzyUSn5MmnZam/0zL/aHP2l6ixgA8HOf310gf5Se3fB2BK/FN2Sf+oflvOsYQSflcVgLeasNAp2yhlaN2/r4hlDdLn2H/NlFmy1yf7d40pihipd5X8p+iUPFm0kv+K0r6ll9QfK/3W5X2piR+gztX5HgovgZfDI9LfKBF+8VMS/mDyT0ny3cpfkQO3+O9ghr463xrED0CTf2vhWySLHyBN/pJL/BbeUf3Usv5ROJz8FWUI5mv4dy77NRGT9lst1NOST8F14Qbw2ah9rMQpDYAehG/hS/wpffmDyF8Tv9KEEol/UDhG6cekfkSAmkWCntfnT0n9lLT/KbhucJvYhoBF6op8VFT8meQM2FP5K9lwyX9g6VtKlvpDhy7ZCMhdphegrfw5xU+RvYvUBkAun0GEwxp0I7GP6l8bqfJW6SvKGFC8pQPQl0npq3c1FlKln7tvKp/Z83/4TINfDh7xp07ZW9FUP0UpAkdSX0HaHxWOtM95nFRuZEzWYD0OcdeWv036/Sb+1JL9AKV+RSnO4wIN5Bxxr0j6qSPzexrR3zu2AUBpBIwwj7+F9AG0j5+NVczjV+rhk/0Jgb8bSr//QML/PCJcm/g1xr1yX+zhuL/nOZN660F+Lnxyt40D7qTeqr+/JnqRHiaMuRlJ/j7p4z4A5iLOs1K6JJTwH4d++c+lPti0vM87ZDB/bqkhYC++QyWU9o2hy18LB4oUeBfwiUn9A6X9KdS1+nEf2vG0IbAyQtKfEkr+g+ESfghfJcDXAIidukdBctq39JL6p10Bmvjj4R3VT5X5oNIH2JK7vbkeA9ClH7utspvHwnGtT0Hx8V6aNVOkH9rvVsZs31yPpcMtaYnSB9gc+Jc7CFDZouu1+hFPAWOOZDteDVJFHpP88eYA5sNp7zMCPtk/D55U8UwSWFPin0r/9sv/l1TpT6GOAUil1Tz+0fv4Q5QaiT966i8j/imMy/MinkLaTmpjIDe9++SPN/fsx9gIOP9SCPv9WK5wKAlfrPxjpG+pLP8rwNfgbLgq3wHfi17pA/Qh/jm1Vu5bu/gBtNSfQnnxM0AV/hxJDQCukr1L/j7pb+/HIP/zL7XzBSxR/jFl/SHk33viJ8AhfUtt+ddAxa/iT0H8yn2p0s/dV9mNlb1E6SvKGuGSda/SV9IQLX4Ocav8eVHpK6PBWVVQlB4QLf7qHN3fFwClzB+zXa/Ejt4XO9qfWr5fQZm/JJ9H3L65HvdEblrvPe1zlubXUOYHENzHz53Uvf39LuGfxDj7gHlK3ryfv1Yfv3Ra9PHv+7/fgwt+5iCWY22Qs3LfILSWcG9jAlL6+3uXvoWrn38t4tfEXwHORXh0QR857Pu/39v4l5UTzM5t+lgA+II679NavK0bHrGcd6nLk0Ues20PcAg75hh3hH/Mfr+W6JK9S+X9o5E19SvjccHPHFQu8Vts8p9WAObVgEoNgqnw7X3z6CpvrUQwF/r+P/6voSQPX0SAa+7+nb8BfDY5+adI/47wj3Aq/FbS+7VGS/0AxUv9AGWn8wHUm8cvna7n8c8RNLXPl/JLyl9C6m5deVBgS/ZLOBoBALTyf2qloGfpAwgVf6mR+IvyH0D8G++lK/ctvjak9KcUagCo+JVm+KRvWZD/lE/BdVfThx+iuvi/AofA1eHbwe2qJn5L4fJ+yZX7FDePhePKy/5XEeBfMn9vUkXvgln+lD79keWv4m8IRfoWgvyVLaqI/ytwyOJrS42AJuKvQI21+pUK/KrnCym2EcApfUtF+Zfu528tfgCVfzNU/EUoOqr/K3CIV/rUbUYiReAq/XK8Eu4bv5NP+pTXp5SQ/mDkSrf1/ooiDZ3OpyiKoigrolipPyXFT8v+o5b6LdSSv6Z9fkIp/8HwuuUXY9J8qORfMu0XGOTnKvfXnM7XquRfJfE/EgFeLLeygHcGMO+o/KYxZX6LlvtJiBU/AJ/8pUl/CdxHRV8aamnfKf8Y6VuW5F+6xF9weh++oO38/doNgKLif6Tj/yKoAYB33v1c1QaA9vEXoUipP7XPfk19/S5U+gobBRsWrRftubYxG7fpcyXeqxgu6fueVxQmRPfxcyT1XtK+orAiZHnfGujguzK40r7veaUfguJ/H9yixnkskiNulb6DGwpME1+vc04xI/h3bZtS5s/ZT4mGuwugSdqnvl6BpZI+tdSP+IX8k6CW77XMH4Wzj98n+9vBh7wH5CjX587tV+E7cAn/kwt/LKciwB0r/SFNpX+V8u8poo+/xhS+FSX+KRT5X9sY73bVKgg+uQvp54/p46eI3phrpZ1IwpK9OeArAMxD6u1Xm10X6Qkl/PfBLbzyvzp8O0v+vlX95kJHPEUlz8WpuPy4VCNgnvS/jlXk35wTjM7fb8xU7p9H1O6CBazkfaP6Y5K93Ta6ATCV+8JFenLBVyw/XpL5fB/XcxIbAqL7+EOo9Ikslfft83Ppzwm9nspc8muQfg1WmvZTaSb9pVQvJO1P4ZA+x34AwC59fIVb4L5tKPukbFuLrsWvEFkq6S89XxMr+0rS987RD20TuxRv7vr9KQiQ/qvg3s3eOyRxccn+xWZH9NP7HZDbh88yBiCTWCHnSFyS/Df6+GMG8pXo66dcvKcVn4VfhOvCl1qfRjq+Pn5Koq/V51+ZV8J9SY2BDSh9/bUX7xEgfIBN6T8I3tDwTLbQMn45OMSd3OfPRAsZSyj97xrcR5F/SPoA44j/s/CLu57rvgEwTfoxZfxB5Z8Ex0V6uOQvRPqWV8G9o6X/YHgpAAC8Eh5e4pQUZjjTeiv5t0rgQ4sfIE7+EqUPMKD4Xaw48bOQc1neFPkLE30qVvZLaCNALir+PFzyfwsi3L1SdapoH//V4dtBoVO2aYVL+r7nlfZ8BK5f/01z+vJjJT6A9B8MLw1KP2Y7Remdt+yZXvqWSstRs8/jn+JL/FJlP0cT/x4EJ36f7G8Gn652HllQkv8g0k+h2/T/cgR4aP8/tzm9J/7WA+1aJ/7gRXpC8/ZdSCnx/+iHCJe+TN4HuQrxA/jl36n0Ld3If8rjcAjRzyktfo6/+Wxe7vlbKtAIuD+8HP4eHsp+3CVKjMZfm/xb9/OzX52v5aC+H/0wnJpSvxRKjer/NdhajfA9IGhNgpor92UQU9bvUv6DkVu298nf9bdfvQHgE/4UJvnfH16+67laDYAaiR/xC0UbBBJTfy12rdzXKxTp2+1SvhBKpXxRwrcQpI/4DTDmyhVORlH8LP3ti0j/gkB8Jxhzp9ansYirMTF/rvX0P05aLu/LOrivxeV4f/RDJEt/uo+SDuI3Nv5VFKUurrTveh7xnds312MJIH6BXEGI2TZE63J7y/fveuW+HIGr/NOYy76V/GNH7zcZ7d8R+K0Lix6fY3S+6xihv+Nqf+fUMn/stgsslfSnz4fkLkn+sUhY9S+H1o2ObsXP8QfN9aVwfKUpGBKYl/djy/2IL2A5j9g+e+3j3w1+68Ltm+sxJxyj8l3HCJXyq5X6Y/rtK4zyp0o9Vf4SSu4sKwcKWEynBWx9/LmX4/0KHNLNFD+X6OfPPSEwZvI0uC3cAd7Pel6x4G8CmH+O38+YK0f38U+Fb+8b8+j4Nx+cMxHh8ApTekJyx29dCOaKlyx+Hko6Nt3XHtU/Glb+vsF+lG1i368lbOIveTleSVDT/fGITvmfBrd13q/VCMDfXH4c0whIlf78eZX/JjWkPxqXvoyRMaq/Ea2kb8y1mpfcOUf+T4U8HXjXevR/LJTw0G2pvwWxJX1pXQBz6ce+Lg1q+V7L/DLIKfeH9r30Zcy26Kf3q/JQEy7jCyrzp24/RULJvwTmIZtX4rP3c9N66bR/5h7nnBlwT5fi5xywQz1WqsSn+00T/hzfaz0T6tPP7fMPSV2lvxtqH37pAX8lEJHybQPASn7+uDCxU/ZSpvjZ0fWxid+Ya3XfWEiVd40Sv036ocTf7QI+XPKnfFFwJHdb9l8SfI1SPyXRp/T5B9/XI3fuUv9H4PoqewIUqZfq448d4d/tcr0NiUnxseKnyN52A/gW5+GiREOC0t8f2s61vRSGWcBH8UMt46cO+JOCSl8+VuRdXJ3v7QhwFwFVBCHEzLevIf3Qe6ViS/2u532PWy7KEwN74geos1Z/r4nf0mJUf6vED+BO/Tqwj4//gv0BAODycB5p+5aJ34VtBDSX/dsJf+udNAQoqT8m7acIu9fED0ATf68UEb8l9+p834aD4BD4nvO13sXfgpbi3z4HHckvBp/8VzeVjyL8OR00AHzyL1Hi3/0e/Yrf0kuKj6Go+KdQ5+l/Gw5afG3eCMiVfy3pW1rLX4L4FZmset5+ivQtHcjfkrtW/1rFPyLVRvXnSt/1es4IXuq+XLJuLX2AsNRV+uOB+O+k7aRJH/GYOm+UI32O/StSW/o5+yll6X5wnxV4TPoXMeWnEVO59z6QT3Ezl/30sTHXq306QZYkP3/emKfVOB3FQepiPUtpnGvxH037aXQ5j98FVeZrlv4clX4+T4Ontj4FANiSu71RtpMA4jFRyT52+yBcab2j1K8oAILEHyrzU7azK3a5VvFqtpqXMjTHwLGtTyFJ5K3lnyPwat0ASlFy07qm/XTEiH9p9H7qdgB86T63f15C/34LXitsyWJFBhziVvnXJ1a0lO1T5a3Sz0OM+KWTKu+1Sf+1iNs312OFl5zk3jr1K/L5R7jjxmOqcGPEHLOM7whL/nJweub3abXpfBQo5f6YxF+CmOl9a5F+rNTvt5LPpQa58q492I87qScP+CvRL9/R1L4Qc+EDAPwWnLp93zcwj0vMJVbkU7YQlfhDUm8tfQC6zFX6vPsoCivckh5I+hRs8rZinj/meg+lDOKm803l7lq573D4GJwJN6l9WhvMpX484mpEr8iBo1SP+O8ip/gpbXAl/elr09RvWYOgJXiHE1Glfh+Hw8d2PTfSD6JHcpN77yX/c+GycCD8oOk5aKk/Y24/Z7l/sMQfKvUvNQJGwuUcS+/u6UL8I/8Aembt4pdAT+IvNRJfRD//CsTvY7RGgM85FvHu+SoCXM39eymqj19RlHEpsfJe1jG5ZD2Y9AG2RG5lTpF6bENBMhTpx2xXna/i1m1+f4J48Yc+3MPhY3J/AAPDMUBPB/nlk5PY19C3j7dpfQZ9M1qSV7YQL/5QOeVMuIn8kotA8Cp5+3OU6bXUL4SHj9MAw9ts3pae2yY3rQtO+9+DfVufglKCD3v+Xh3p3vW8ePH3wPs7Sq54lR3pT+8r/ZKS3I253pbwrfSn9zuFmu7Z5O/Z71S4XdoxGfge7Lst/en9VKhl/BHK/bHV42rV5g/jzs312LLQpz9/vovBfQA6qt9yZfgCfAPSp8+4RG++nnYsHdwnE9+Av41Ggkv0Ly3/M+Ea5Dft308p6ZszHE9SBvw5hB8S/R3hfaRzysUn+YPgguTjUqQ+SrdAjMyrOMiX8C03n/xOulL/TPzi5vEvYT/g0eZTUrkyfGHX/dgGwFK6x6ukyf9+xiTLX6VfjqncF+fpL6X7h2MV+XOS2o+Pt3HIfy71tyNLsrfb1WoAKCvGSn6kUf1rlz7l+SWW5J6a+BX5LHYDLMm9gvQ5RvfbY+QO3gvuz1zOL9kFECrpa5//ylgq+0OH4ldkkZLcNe0rOfIvMS2wJqfC7Yo0AEKl/JxSf6iMP0qZH0BYuKSU+WO224OKX1EURVFWRDeD+9YKpZyfMtgvtV8/hK/PX5O+UBr361MH+7mSPsc8fecgvwCciZ2z37/U4L45oy/ZK2qAX+zgPgIq/g7wyT9nhH9pXouosp+QOyNjTSAeQyrpjyB+gPLy55T+Ghhd/FmlfnxOzt7K6Kj0d7CNt9gBmWullvQ5j5MDZ0PiILhgW/TT+2vmbR2ttVKDpMTvEr55PMfpKEu4hKHpUTY24evPrhwtEn+pkfk61Y8Xn+zv6tFeyqI8TVN/ZNoHWJn48S8AzJ+2Pos8tFwsF2qaX/PP74/geHg+PIHteKOU+i2x8j//4kvCfpe4sMi59Ehssl9qAIgq9c/5MCbJfkq0+H3lfcnyx7/Yud+7/BVZpJTv1yb/P4Ljdz3H0QBYo/jPv/iSi6+tuRGQWs53yV+0+BmI7uNfknsv0nc9VpRUUvvs19TX75K+73llGZ/0OV5X1sEq5vHPE74m/jgQL259CiLJlfea5F+KlLQeu78r3bfoj6dKe7rd+RdfcuO29Fzv5Azec+1LTfE9pn2AzOl8+BzZSX/OCH38tfDJ3phLVDwTuXCIe/SSPyXVtyr5L0mfUsa/I7yverk/RtL7XeLC6O17JnfUfkpff6/SB9B5/IoDSsIvKX/EU8EY2Zf45Ezra5Z/q4F+OdK3lJC/r5JQOp33LP9S4p8y0gXiurk6n1IHalkf8WI2+SPuXgFs/hxXQwDxBDDmcSzHUmRhzqDJn0P6KdvnUKMk39sMAc65+W9DDMp/FOkDrKSPX5GLS/o52/mPccLGv8oW5xRe3GQp1XOmfYs5Y/O29NycmhJPoZaQe+j3fxsi+4I8lMQvgWOY/ma01K9sEDOQLzfxp8g8Nfm7ZJ+T/Hsu9VNEf7lCXwvc8/g5kCT9lqX+KVKTf6kV+CSL3yf7pyXOjFHxK9ukjN5PlX9OgueQv0/6+GEAc/Pl45QYjV9D/inJvlQDQBJSxB+aKaDiX5f4Y9J9bAMAb2FONx+EX4s9J2VQaiR+jrJ9jvzn0scPB97L0QjoLfHnlPNHl38v4geoJ3+J4l+L9FPL+THy3wsA4JbwnqQ3UpTeiJU+dRvJ5Pbhlx4DoNDXBajZ168MyrNxZ3BfqvwRT2I7H0VRlBTeCXdI2k9C2o9dDGi/S1y4fXM95kBi4i/BKGmfvO+ztxrx29P5Usr9VvqIJ4ExR0fvr8jDmEs0n8ev8MGV1s9BFF3yvxOclrQf11z8ubypiwDlshZBr3UUPztPNADPxi3x50h/+ljlH+YViPAQ4b90IfnnSJ+jf98eJ3duf0wJfz7gb+lyu7GMvnjPWnE1BPSyu+nc1Zgqi/Ssgica2Ct1YN9c8q2ljw8psy0nr9jzi/uKDvpMjbnE9s31OP24PAvxcBzHN3I/Z1tFmaPSV0JwzNGnHiNrAR8r+1bSx4fs3KaPY7at1QiYy74H+Vu0rO8mN61r2le4yS39c48VUOikzslPOUb2yn0tpU95jSL3Gg2AeXlfWrkf/6z1GfRJqrylT+GrcTwp5KZxaWk+Vdy+/fDk1LPhI6dU36LM/2m4TvX3pDL0Wv2xMseHAJhXlDkXgC3ZS+rjn8t++tj8ed1zaYW5edo8/ilW4pQ+/55TvrjBfXdBgLfznFPqID9p0rfkXp3PJfr5c+YBKWc2NnPZTx9fHz5X+3QW6XLlvpLpvKT4JUFJ+CXl32LlPiqhlfuoXBm+0Fz0nCldhPjv4vn/MDQCYq/OJx2K/K30U1N9SgMA8e1gzF2S3i92kF+ttE9J+BT511jAp0vxA6j8c4gp60uTv/TL9UpjKPH7pG+pJP8epO9i6Qp8uaV8qvwR375730INgJrl/Ziyfkj+Kv4FSvfHq/h3KF3yj5G/Sj8O7j75puKnSN/CVP63jD4Vj6v/niJ/TvFPoVxWtySc4reUXKu/2mV5nwDHsByn1VQ8pQxUmav04xhK+o0ZWfo1cUnf93wMI87RfxocHxS6b5vfgjct7lc88buEfzw8Lfl4tcQ/aupPGb1fe6Afx+I8NbngMgj7/lDOF0+J0ffNxd8w8Y8M92j9UOovlfhbkjJ6P3Wg3zHwhGBjwCX8f4R7bjwumviXUn5q+pcq/fd1NM0pVuItRvdLl/4Fl8GN29Jzo9BE+lPRx0g/ZXulCxD/p/UpOImVeM7o/hTpu54fejpfSeaynz6+Xet0pLg5EgFOSf/ZxAjdbiupEpBCNem7ZJ0qcE38YrHpPmZU/1T49r4xP8t/ciuiWOIPpXquPv8WhBJ+TxWA1XAkbv4bSWqKr53+ucr8lzMmTvpPznhfTeiro/fyvkR8ffrz14v28fvkntLPX6PUHyrzx0hdcvJvPY+/CYmJn0PeNZN/ivyTkr1P9s8iHq+E9DXxkyi1Gh/nwj6+8r601M81jz8Hn/yn/fzVRvXnMtpofvwbxmP9evw+IakPJ32ArDK/MiOU8HMqADmo9MmUWHmP+5hLcpcmfYCw1Fe1ch/nqH4J8/dzEn9I9ub3yYdmB/+soOxPRoAH9PmFzFmqr5X6iyf+GKmHkj9n4lfpR1N7VH8KrtQvUfxzPg3XyZL9veA18Eb4nej9KKP6qy3g8wQ4JmsaH0A58VNH8af03Vv5UxN+S/lP+QJcGa4F38g7yMmOz6uzBkCP4geIk3/xvvwl+ecO3mNcq3+t9CB+C+L/dCH8VO4Fr/G+HtsI+C140y7hW7pauY9b/Clz9VMSf2xZv6X8vwBX3vVccgNAxb9B7RH+FPlH9+1zih8gXv4qelZ6Ev+ohIQ/J6UKMKebPn6lM1zS9z2vsBOSevNFeVbGgRed3foUdsEpapV+PLHST91nTlfi51xNb9SV+XJwpX3f816Wkn1HiZ97Kl6LhX3stDwr+fnjKFIH7LUa6NeYAy86e+O29Jyi1KYr8UuAOkUvtcyfug8HSyX97L7+TuEuze/7Q9N0Vb/shE+dohezX0zpvnGZ/x0R3XxUqefKHz+atTsA8CR1Tfvx5CT33NTfnfg5knruMULyn76e0l8vZYBfNg8wOwl/en+luJb3VYAm9EbSfwfi9s312EWszFPkjx/dkf70fio54lbp90c3S/ZyDezjKvFP5f4+RNGL9cRg0z3LqH7LyoXvQ9oFfpoxF7uAEfuhhP8ORLjz5O8+J70feNHZcO4+VyBtuyR5/CiAuWnyKWwInDLoT4XfL12M6ueQfss+/Z5G9Sub1ErlXcmfcx6/YCilfSt+rv56ivx96T5H/N73PDlN9G+Au8K94W3s59M7HAP0ANJH+A8lfit3fIi8wXu9zeNXdlD5O6DIv2PpA8gUP6WkX0r+MbwB7rrrOW0AbJIr/5xpfd318VOQJn0AmtBV+ko3hKS+AunHbMdFSOpSpe97XqmP+D7+mDK/xKQ/ZSp2/BsVfS+0Ho0vlqncn4zdy37KnY2JSvyK0hPiE3+MyCVLf45Kvy9qlOG7blzMpP8xOLzRidSHcz4+5VhLqV5y2qe+XpXD2/695ZTqc1fvK5f4P4oAN9XWsNIpZyLA4Zu/v1b+pQTdVR//DJfo58/dBM6sdTpVOXefK1Qd3AewI/nckfzc3Bve5pV7837+ueynj8/s9+8vFvGJX1EURVEUPnjF/1HcubkeK4pkzsSdm+vxHvb9odm4LT23Fqhl/d7K/6H+ewn9+5LSvnhCpf0Gpf+Ukj3HRXr4pvNR5J5R+g8N8uupf18RxpnEP/jD6b+/Kd0BPTYYUmTea8l/vmDPlNqlfumIm84XI/VGJX/uy/L64BF/TKJn6PeXPnpf4QPxg2DMLZNfD0KVvqWQ/NcifUuv8l9Cxe9GzAI+HYh/zr3gNayyn5Iv/pQyvg76UzwgfnDxNWNuGXw9ioLiB6DJf23St6j8NxlN+qLoUPwl0cF9ShHwbxP380id4/XahKTeo/QVN+fuc4VkeTeT/mdWMP4qtu++8TS/Gqj493BkoXLUd2G/Isdl5QN8v+j4tzvSn94n7cskbfJxYtN+4j7TAYD23zUOAlTcNJH+Z3BH+tP7IxKb4FeQ+PPm8aeO1hc0x38qfHv/FKZFJqz0vwv7wc/D+SzHZGUqfHv/VjJ+LlU43FTt459ellelXwa8GoD5at33zCnxN5P+0vOH6e/lGshL/KnyFih9yvMxzJO+uOS/lPIz0v9Suk8t+/dMqG+/51X6uKblcR0Hr7Zzcz0uCVX6VvC2OyCnW0ACNT5bpRxa6i/EPOGLTPzMmN+Le34Kd9+8tL7+keAalMdxnJCASgoqJukfeNHZMkQfKukHyv6uBlYXUMv33GX+x8ts4K9W/KFUz5H6rezFST+U6hn7/KlkTcnLOV7MKP3IEf1KWajS6UZONQiV8g8zi9ssfY7dfL4hqXNJ//G4c3M9FkC++GPL9kLK/KF+fK5+fnHSBwj342f085vf20n40/uiOdyEpV5g/n7xcv9D5XzRcBMrm27kNOE68OnWpzAeZ5qdm+txLiG5C5E/z0V6bmqKr9yn9EUXwp8zlbvjIj1UqJfxLTLAby776eOX698fFykD+qjl/qnw7f3PwfWj32+Rw4y7nO+pBlC6VGoPqtx4/78DML8budNgo/f/AxF+ibgsD9+SvQB++QuVvqukz5X2xeMq6Tce1c/RN8/dbZBCVfHHJnumBkDLlftSEjy3mGLlHyv9Oazyt0SM5Pd95q2lb4mWPzeURP8c3u/Y/8Dd7xlqAPCKf4qgKXsUjoS3iRX+z8M34btwpXJv8AFsLvwpVVfuK0Q18aeW8xvKv4X0LZyCGkL8EUgU/1T6U5o0AGLK+IzylyV+hYWfh29u3y8qf6EUX6u/ID75N0v7Fsayf4z8uWYElEr8+F4Ac3va8bjFT+nTlyj/lmkfYN2J3yV9i0/+Kn7BTKVvWaP8R6DIoj25g/cqy98n/TPhUAAAOBzOIr0fp/jxvZ59Ao2A2Hn8ISQn/imt+/TnJPXxl6CTUj/P4D6lCN+FK60+8Y/C6Cv1zaX+MTicJPrQ89SGQCo+6dvXffI/d58rBOUvYv4+M5KkDyBE+h3RPPEjfhmMuUbLUxBP8T5+pU8EJf5vIMKVCV8lS8IP4WoAxKT+lLS/vS+x9G/JXazHlfolpX0lgC/1M6f9Ke1G9SuKUgeuOfoM8v/GpNTok3+q9C2p8vel0xLi5+I68GkVfu88HovKPhUVv+KEmuCUhnSU+HOlb4mVf670t4/TSP6KUoKkPv5PIcINVApDMk1v9r42AJQQLX9HpnKnDjqzffeSE7+ilCJ6yd5P7ZHBpzzTCBRlzm3htNanoDSCK+1TjhWSPr53R/YxiV+hg/jmsm/wSnVPLlGlfpfsNfnv4eYI8OG+P4tveBpzsYmOIvr3wx2ijqk4KD2P/+kI8My832tO8QOkj/RPFb0mfjpT6RtzD/43mEr/wX1/37Ykuo9/Kv9VS//mhC/cDhsCLvnHSD8l2WsDwA++G8D8+sKLJcT/dM8xExoBPYtfpR8P4pvLS9+i8k8iaXDfqvv4KcKf01EDIEf8OeV8lf8O+O7wNhsNAc61+n3St0TKX4L4qX35MSv3KQ3QxM+CjuqPIUX6lo7kDxA3qp+r/17lT5O+xVkF8DUCQuV9ivQtRPlzS9/CLX+VfUe8ElX6maj4qeRI39KZ/Kmo+HmIkb5lsQsAYKsRENOXH0sj+Zco9av4lTURPapfkQf+TLv35hytv+aR/ynSD+7HOE9/BJbkrtJX1oaK3+JL9Bxpn/M4sCV7e3M9VvohVfpc+68Jc/sd0U/vK8qaWK/4b46bt6XnSr5/IiG5q/yVKFLK/Dn7CaCm8PE36r2XEseFF/T7O5zD+vr4Sws9lYj+f4rYzf9mnEsE3OX5NfbzcyR2b18/hYJ9/ABll+yVzFT65v+2Ow9lC4roL7nv+EpcV+KXKn0A2ee2QIk++TX38ythzoRDi80UKIGVvUq/LRdegOR0H7Ntr6xH/B2K1QW1jF+j3F8inZdK/FL/kLn65/Hdsvv6uZN6j/JX2pD6t8/xnSF1Zfv1iL8HCI0Tagm/Vqm/B+wfsET5Z5fouYhdkS9hBb81y78ViJ9sfQpNyf2bz91fakf6hvjxl1qdhodTGL6se0n7g87z5wJfGL/P/A9Xovw5yUr9VJlnrN1/OJzVXT99jyB+clv60/uKAjC5LK+VPv4SgPmPVqczw0r/FAQ4UqW4Nlyinz9nHuU/xiX3NRuyX8PAHSv/pGrCMw37Wv0u5vK36f1wOEuTvMICVyP/wgtwuO+NjVH9oqRv4ZB+D4k/Mu37+vBrl/m5V+5LSfahBoDkP95affNJDQGGq/PFkCL9NVQQ8AMA5lbEbT3p3pgbMp2RfDire1K/O1JZx3Q+KeKfyp3xMr74M2379DnFnyJ9S0j+JK6BAF+u/ychWv6ViZH/yNLHDyy/FmoEuOS/JukDrET830KAK8af2/jilyJ9gOH78HOvzpcjfUu0/K8R+P2o2AhQ+W+h4vdL3+KTv4p/YPF/y/P/IjYCxh/VL0W2Us6jIKlT8Zos2nMNDEs/ZjsGaglZ8rS/WHqb118LY264IXqVvqzjJeOTPuX1PYyf+AHap/4VSH8OJf1Phc+R9i3B1J8q8krpX5N/+lS9USoAuYl/+ziT5K/yT0dE4idKHQCCyX9v34vfQYSDV9AuiMJKnNKYWKHwLfMUf1s4rf1yvI3671OYSrlUQwDfXVf+Z8OBcAU4l7Rt6uj+M+HQ7uVPkb7dLiR/Y24IiJ9cnfQVP7sS/3c8Sw112wjgTPxLMmccrLdGiid+rnJ94YbDVPJWyqXEX1v6Fqr8AcYY5R/T4LFwJf41o4l/mY0+fp/0Ka9Tt6kOl5B9xyG+x39fQsbn8zB4UetTqEsHSX8u+Kz5+IKYSt/1eInUcr+EPv+z4cDtm+uxokQRI33C9tuJP0bY0+RP2U9EpYAj9Xee6H2yfxn8QcUz2YQz7VsW+/lzk3+DxO96jYtajYqUxJ8j8JapnyL30GegiZ8HjtQvIu0DlEv8MXwHkdxYiNm2GLnS3rP/Ca3/H4mEEn7LCgDL/HvK8TjK/YVH+FsRu4TMLemalQQrutiSd0/EJPrQdsG+e5W+kkFS4s+hefpPSf4fNk7hP671/4VIjNRbJf9qo/qFJ34KXMlfchcCR7m+ZupPLeFTG0IxK/cpm+SkfjFpH4A/8ddM4yKSPzX979l2KeX3mv4VRTq50pY2wC8XlX46qfLmlP5L4KH5B6Gu0EfYbvwFfBRFURRF2WZvgK3ye/MkXpt56tfpeIqiDMpT4WlwLBzT+jSagJcAMBdvfbdTyv5cSX+e8qePHwEvTzvoFQ3Lkr3V+/gtzfv6iVDK+ZL7+lMG7fXcz08aKCh85T4Kuf38kvv3Lb2M6s+doldiwONT4WnBbTgbAvgLAOY/2Q5XjRJX7Ywp6yc3ACyJF+nRUn+AkNQlSx8gXuItp/UpdHLE3YP0AdLlXbt/P0fcraQfs50L/IXN29Jz0mkp/ZTtd5EgfYCJ+HtJ4CU4DD7R+hQUyJ/WR94/JbkLSvuWFIH3In0ljViZx24fI/WeGgBrYyPxS5T/twt2QRwGn9iW/vT+nKVULz3tSwB/OW77VPlH7/dlQ5M5dbtGxIi8R+nHpvfRRvPHkJrgqfulSnwt8k9N7ywj/iPxXp1vepGeEmMAfA0Nl/APYRatS/SfgRt59zkBsUvhU/r6ucr8Ptmb/0c8BrG/n3vxn54u5OOj9gV4auDr85cg/Ni+fs4yf07Z3uLr8+eQd49jAGLIEXh2X38k3j7+qZi5qwGx0vc9n8JSug+V/XuUPkBY6jWkT3r9hXGD/NiX+2WSfmylg5vRpA+wJXd7cz1uzRXgXLLMR17BUJGPN/HP4Uz9KeIH4E39KYl/FB4GL2IfyBcjO1fyz5E4e/JPgKPSoYyBL/23HNDnYynxc5bqR039HOX6mqlf3Kj+UKov2ee/Jjilj78cn3Dn2+cm9xIX+ol6/8xKh1KeO8A7q72XTf/TaxTEVASUvsiVdu1S/95V343AIcZUS/w23R8Gn1hN0lf4oUodf1mTf01cop8/dxrcqfh5lJY9R9q3x1nrIj9rIyrxc/XzS5s9oNJvC1dab5H6cysdShmo6b5mFaAUXLJW6a8HcaV+gOVUzz2qX8knR2QqQaUEsTIfQf6l4J6Kx3G8vb7zg/yDFCC1XF+7zA+QIP7ctE7d/xBjtkU/va/IIqd0rWVvhZtUiav83XAPxuM43k8Pvmz+QVZOUuJPlX/Kfip8RSqpFQutdJQhV94q//45Dy4N58Glm71/bHpvkfYBMkr9BxsTLfLVXQFQCcLdL1+znz+1YjFSpQPv1foMFID8/vkR+venwq8lf8TdC6M9Al4eFDplm5JEzeOnYFf7c0le2qA+hZfUefycsq49nz8lvfcsforozRvLn4cLjsReY5R/SVJG+Iek38M8/iXR7w8/Yn8vl+wtxrinSb8EHtpU9HPYB/eJkvsDtcJQE6rQehbfWsF70dN9zLYKL7HJnbI9l6xdxzkW/oTl2C7Bc0sf8UVe6fu2kSR9gAKJf850vf/iUET/akENkwEJJWDuFft2Hb/BCn65KxZKJ0fitdI/Z/9876kfgJb8YxoJJdbqn0r/qfBX+W8AO8m/hPRjWUr/Eigu/mrEpPuW8v9tBPiHMT5yS/QV+GbyEyP+6yDA59J+NpTPYG3St/Qk/yLS/ywCXLft3zzH4jw58l+qGhwLf8Im/ZKo+KWRWs6vLf/fdpznAA2A1BHqJeSfJP3rLPz+JDQARlyrX8WfyGc930uNGwE+8PVb/5r7LLyeIP/e1+dPkb5FqvzFLdkbRU4f/gOxnvxd0rfPDyB/ZYuNAYsDLM/L1U+P92o34K8qPtm7thPUALDCnz+eNwCsxCkNgN6FPzIiV+4jwTFwTwf/ZcG5al9u3zxr2g+9RqB36SuRUKWfu48QzH9u3paeU2QSFP+H4AY1zmNcltL+9PXQNishVf7JjQZfOT+xr19pR26ZfoRBfSnM0z71tSk9i/4W8L7F13LK/Bz7l+L/A1tzdrchESLQAAAAAElFTkSuQmCC" id="imagee56cdb4664" transform="scale(1 -1) translate(0 -367.2)" x="480.513689" y="-26.344557" width="367.2" height="367.2"/> - + - + - + @@ -497,17 +497,17 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAABfS0lEQVR4nO29fdBtRXXnv5oXARElUIgE - + - + - + @@ -516,7 +516,7 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAABfS0lEQVR4nO29fdBtRXXnv5oXARElUIgE - + @@ -525,17 +525,17 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAABfS0lEQVR4nO29fdBtRXXnv5oXARElUIgE - + - + - + @@ -543,17 +543,17 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAABfS0lEQVR4nO29fdBtRXXnv5oXARElUIgE - + - + - + @@ -562,34 +562,34 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAABfS0lEQVR4nO29fdBtRXXnv5oXARElUIgE - + - - - - - + - - + +iVBORw0KGgoAAAANSUhEUgAAAf4AAAH+CAYAAAB9b2wlAABq/UlEQVR4nO29ebg1R1Xvv1ZIAhIjwTAGwqSEiDE/ZBKZFCJijMgg8wwiNyJgMIJIzA0YIxAIMglcxDCDCIQgIHAxIIRJJjFyI4SZMAUMSYxBSAj1++O8dU7vPtVVq6pWVa2qXp/n2c+7h+7e/Z6zz/7Ud9XQaIwx0CH3gDewHOd0uB/Lcbw8Cpdfe1mXP/4tHu/5f1F4vuf/Tjm2b38iiCc5nzfmuOxj9w7i+WzHMuZAtmOF2Pd7F0fvc+lP71/1/bjem433L/y9/UrH309LPJbw3fLCyf+bsj3lOILYu/UJKJ2SK317jCV5z5/3bZvBVPCIJ6nw98ApfXu8WvK/9Kf3j5KxCPEq5YkRuN22objPhWvAwfCdIsfGHhM/V9q3NEv9Pad9gLKJX3FS8stgTq+J30KRP4f0h0j8Fpv8R0v6Oak9h8iGw7lwDefz3H/z4sWPnwAwt9z9fBel/k8hwM1nP95HoQzhu84tFhV/FZa+DAD4vxCm9C7+Oft+72J2yeZK3yJK/qPRufQtnH/re7EdqQD4ic1/u+JTuPmvpaX0P4U7N9djRRyhL4PQ68oOJeTKcUyVvlIbseKfy74r+c9FKkGsoXNIOcecxK5pPwhV6ir/vuGqGigOBkn71G2oiBX/vLzvKveLZV5Czy2p50KVeu0GCscAwUGJ/SM/F67B3gDgKs9LKPNLZ9/vXbx9U4TyQhMWOmUbB5QyPmepv9s+foD8fv7ig/o4+tG5zoNKyvlyCVyrANukSpx9EBBDP/8axM8tbEr5H88EMHdgfVtxfAZuDIfB59MPwJn4XUJ/LLKN/K/Zxy9e/D5yxF9lJL8USot/ig74Y0GK+AHy5L8G6QOUKdcvyR/P3P3caA2Az8CNdz2X1AAoLX5mdFR/AJU+kZTyPVeVYj73vtKiPL2TW7KXIv+1SN9SQ/4u6VtGkb9L+pYo+Zfo3/fIH/GDYMzt2d6q5NTd1S3gsyrpA2xJvGbin6IST+Jg+I6oxA+wI3FKA2BtwrdMJa199QJ4oSme+BE/uPg4txEQ+7eMBwCYC2nbdin+mLS/OtFLhdoFUGiFPoWHudRrrsjXE/NGQOxqgi58ad++7kr9MUJojS/t29ez+vwZmUvf9TpnBWDxfQ7YfT/0+xY7qt8HReanw/1U+pKgylyl3xUh6Z8GR1U6E7nkSH+6X6iUP30dD9i5uR5LJST1XqQfu11tukz8SiTUcr+EGQgVwd8EMP/Y+izc5JT7W+IS/fy5e8E7ap2OGFLln7K4T0juPVUAJBIr85LJf+l3Hfoddzu4D2C55K9JfwGf/BekzypHAYP78Df9r0tqCEjr5/eRkux7bQDgTwCY/4nfj0v8vlH9MYlesvzZRvUD8PTzT/r3U1J8yZK/63ce+t12Lf4p94A3dCX818K94UHwpnYnsLDGQEiMAJly9Mm/sfQtPcu/F+lbepA//kR4G0pDgDvxu/r0RxG/haVPX8W/e59RxF+MqyLABfk/otfCvUnbtWwMUMUIwCTHygP5SokfHwNgXhR/PhSki5+jD1+q/CnCd+FrBJS+XPBo4mcjR/6Z0reUHugX04Wj4ndxVc+HJKERQJW+pYX8Y6RvkZSMKXCKHx/j2Z+xEaDib0Oq9C258i8tfYvKPwBhCh+FGqP7Y1DxT/EJfw6xARArfUtN+adI39KL/GP/j77/l0/62/tXln9vJf45kuSfK31LqvxzrtaniZ8ApQEQWKgnFhW/VGKkbwnIP1X6lhryz5G+ZTT550p/+ziV5N9C+gAq/hDUAYB2nj8HKv4EItfbH0H8Xc7j74Fc6XMdQ+EjRvop2/s4GL6zfXM9Vnjgkn7MsbikryQSuQZ/rMSlSR9Axb9FStrP2U9RMlDZuzkIvtz6FJpDTfGa9vOgylyi9AFU/MqKoHRJ9NJt0RruFflOg6OSjnkQfHn75nq8RkJSV+m7+SQcFrV9SOpSpQ+gffxb5CT3hX5+rjJ9yX5+jv79Kb1JM2Zxopyyfampfq0osQxvSh8/Re7fhBtGHZOz1A+QttAPN7pSX5ip9G8Bn0k6Rq21+TlQ8XOU62fy5+6bly7/3oSfSor8Vfo0YsUfk+ip8ueWvkWC/JUwn4TDkqXfG/2W+r/F1L+euziPY39OUTdd3U9RBBJbxqduX0LQKv1+WIv0AXq7SM9c9vPH115x8eJbuO7/v6IoqwFvBGC+1Pos+qWfxE9J+J5tEJ/BeDIC+BZu3paeU9iILdtrmZ+GpDn8SgbPLfudgzfaubkeK3T66OOPldgs+U6lb8yT3fswL+BTdHBfzM+DUAVYw8p9nFRbue+mCHC2rD/P1gP7ckbrU/r6RxzcVwyK6I/h+fxS5K4VADryxZ+aXPcIz5X0nfLvZeW+lJ9HIfmvUfqWImv135Twu23cEOAWf6nR/HNiRvfXXrmvO1KSfWYDQMXPy/DiByAmfgD5a/XnlO+Z5b9m6c9huTofRfoWl/zt/oUbBhKW6VXxNySnnJ8hfxU/L6sQP8CW/L3SnyLx6nwcffZM8lfpMxMjfYsV/NK+BRsAufLP7dMvLX6Aslfn6xaOPvwE+cf04av8acge3Jcju9m+ZOkDbMnd3lyPI4mZktdy+p5KvwEp0rf7+fZNPS6B1oPxYiUeuz1AnrjFS7/gZ6MEVJmr9OmsJvFL47Vw7zjJC0j8Kn1mSn8BVxoPcBoctdEY8FUEOBsNJVbuc0FJ/+JlD+D+vFE/I5wj9gulfhU/HdmJf2B0YZ40HgYvbX0K/VAp2bWqAISkziF9gC2pT29LzymKdPB39vwL99pJ/ObNrU7Hw6CJPwrOOfmJqb9l2vfJ/pXw6Ipnwswgid+FK/WXbiAcBF9mk/1w+D5rlM9J48QP4E/9mvbdWNHven4qfoBB5D+S9C2VSv1TYi5iU4KYdN9lA2Bg8Vvm3QC5vAweAo+CV7Mdb1V0XOqfoyv3hVmSPoBD/ACdy39E6QM0EX9LUkr6Xcl/BdLn5GXwkF3PaQMgklTxl1iRj2lhH8WNT/oAC338oZ2aQJFWR2JTVg6XmM82m8eaPx4Al/R9z7fgI9jBSPnpZyPmc8ItaZV+USj+XhzcJ1b+9jZ/rNIfhtQBfKse+Deg8HvBSv8jiP00AJQs8Jqtz8AN1dv9jupfm+hz/79r+3lNOaSDL2PFSSjVt079LtF3IX8lGrzmzs31uCd4xK9frHVIlbdKXz+jnRLqx2/dz//LjmVQXM/VAO/f5G1XQUju1eT/NJ7vMefgPot3kJ/vi/ScFYumBsxX55MER7l+1yC/Q1DuZzJnkN9KSra+VN9a/JaPIIoSvvm7Am/UaMne1sRI3ZxX6CRcwj9h98+SpdS/eJBQetJ0VRaqzDuTPkD+yHzn/lKlD5Au71rSZ0oYOSzJXYr0AdqlfEWxxIzLi0/8MVKX/IU7Gt/CLkXvIif1dzWlb0ru1fk48cnekTJqovP4N/GV98Wl/g7TPkCDxG///uzfWsTf4/iD+5RNBpH+aqHKvKX0Ka8XpoX0vw5Xq/6eVJbkXkT6AOnyXoH0U7bf5mm4c5s/t0RGI1zFX4MbtC+X9kRqau827VvslDzXfOsa0/WoUhdQ/q/B1+Fq29Kf3l89xxi6yGO2FUhsgk9K/A3+nvaO2jq2717yoKpaWOnfAAG+kv6z+AN4Dvw1/BHTSSldkCh6fCqAeSrrmSiCseke718w6buYC/25yC754T/LKdJn6G5b7ONfHNGvffzxMEjfIkX+V7rwIvjBAVcp+h7Dr9XPBD7V/zr5izPmS6hxX39pfOn+uvCfFc9kffg+zy0aAcX6+FOTfuBvL2vlPkVRFEVRxiP+Ij2a+KsyTfuWFqn/ShdeRNquRBVg2MvyZhJK+nO8aalRyVEyrtSvab8slM+01NQf3b9fKPEDhFN//GV5VfzVaVnqpwp/TqlugIfBS4eW/UPgZfBqeFRwu1jpW9jkP7j0AVT8tYn5TNeWf0j8VQf1Ef/2yJflJV+OlyJ/lT4rLQb3pUrfUnoMwCg8BF62+NpSI0DFX4+vw9VU+BXoTfxZc/ZzR/Jnyn8vK3uy9AHCUlfps9Ob9LmOMTo+6S+9nir93H1HJfQ7UOnv8OIVXoBoKe1nrc+f03CO2Ne8efNmn0NjGNaa1Gl7w8ElbU39y4SEM2Wa/HPlnZ36B0n7rp8/pZtlbfhk//tMSxWnfKZrpn72xA9QvNTvg2dUfwPp462rv+Vq4Ezqmvo7I/SlMoj0FRqhhB9TAcDPLb8WK/Gh5/ZXoNvpfOZjrc+gPPjE1megSIOjVB88xglm5+Z6PABL1ZaYKowSh7lJ6zNIx5y3k/Cn97NI+Xti+hvkKfUrLFBEb55V/jy4U7qW+3eTIhhbhi5a6l8RWuoPQ0n0Lcr9Q32GqSV/xoZ3t4l/NKjpXqsAYxArGBWSUhtqGZ9rwB9V5kNJH4AmdOZqmyb+xqSKvFTyL9Unr6l/NyIH960Q6toJa6Rm4rdIW7K3OvPL8hZAxd+Q3PTei/xV+m5SxQ9QZh4/IoB+G8gF3wVgfqPue7YQ/5ThL9LTCC31N4KjZO86hnYF9AM1ZZZMo4g7N9djRQb4rs1/14JKvwya+BvBJWjzLP+xUqoCmvjrkrJyH0D+Wv0Uueu3gxxaJH6AOvP4lbqo+EvwUgR4dODSiRWTeaz8VfyJvAUB7pn355TS35xyWd6YRK/fEIrlxYgq+wFQ8Teidkm+lfxd0sf/ADA/x3L4JPDPAMxfMB3sLR6DZjYCUqH0i6r4y3Lp/gj7Xqw/OEUmKv4GtOqHj5F/KfHjf0zOp4H88c8m758rf5/0LY3kH0LFz8ul+/t/oNoIUCShg/saUGMRnlw4yvM+6bsel2YqfdfjKCjSj9muIrED93Sgn5+Q9KnbKEotVPzKIjnyd+07T/i1E/884Scn/liZC5N/SoJvKf8vwnXbvbmiDIiKf0WkdDH84ICrRDUAQttb2bfq47eyZ+vj75BUibeQv5W+yl8ZAfy/rc9gC+3jb0SLfn7OLoYrXXjRekbrz0lJ8EL6+jnknfqN8QB4BbweHh693xfhuvAz8PW0Ny1MbAlf+/rb0mKRKp/sza/XO48pKn4HeDsA86EK7yN8ZL/iIKdsL0D+LcT/AHjFrudSGgA1uT6cA1+FQ0jbUuWv0m+D7zNf0n4x6T67AfAsBHgi/T+j4p+Bt9u5P5r8VfxMaOIn45K+RZL8rw/nBLdZagio+OXSapGqlJJ+lPyfRfiPeRoC2sc/w8q+hvQBtmQcK+TUfRRF2eT6cA5J+rHbKkoxKNIPbKfid1BL+hvvSRTzdLuUfZT1wjU4j3ocX9qnvF6aVInP96MkeU376yF1AB9pP6r0A9trqV8w+ESatLnX6h+eByLA6xI/9h2X+QG01G/hSO6+MQDzlfv+Ev4IngLPyX5PMuchwDXlfO5SeCkiPDpDT60WqcoZue8t98dKf86k9I/mZDAxgwIU2VAbC6vjgZ4/GmojoHPpA6j4LaXFD7Al+yWKNALO8/xyO2kEvNTzAU1pBLTo4y8i/lzpz9irxEERn5t9jCPgHfknskJU+jMeiH7pT7fxbTeA9FuwJPfepR86jk/6lNej8Umf8nplXIL3SZ/yugRy5+nXmue/lfgticmfInpjjglu45P9GXBUxBkpI/ISeDgcHdMvHBL+EvMKQGvpH4cAJ/Ecr8d5/NxwDtBzpf4YqbMlf4rYG6Z+TmnHJH9N/G723nXwSPlT0z3ic73yDyX8I+AdIuR/b3gtvAke1Po0VsFLHJKYPxfVEOiJ43D5cUYjwJg8+ed8SUqQvlKXEik9pu8/9Hlf6wi33aP6I1oWsSV9ji6AFtwbXrt9cz1WlnHJm3O/xe1S037uvhzMpR/7eoDUL7u1fkmKh1rGr1zul1KaN2bn5nosHua0DzAv9VsIqT9H4q7kT+nTr534Y8SuVYAdfNKmJPSUxsKu4+bK25b7a6/UFyP1zPL/Gi/NW2Ievi33p/bbs5T7hZX6S0s/Z7R/DdgX8CkyuC+S3OQ+3586kK/mgL/YNK/pf0vYIWmHtildIYgmta++tPRTtp9B/e4U/h0bBXUZ3pTjPQWeEy3xqlP8BkJKNaFXRCzgQ03yEvr4ld1QhO/ah/Jc0jE5SvWty/2VmJY9XaXQkaSv1KGGlKUn/ti192tfrMct/gJ9Cj2Rmt419ceR0mAgkbo4D/cxOkTc9+nT1/1dRCZUxu9kHv9ImF8PC52yTQnc4tcFfRQiHOIuVqbnIrZsX6PMn7ufdJ6OO9Kf3u8Aavmevcx/TbNzcz1WmmDlbgU/f0yC2cnRpX6ukfnz44TK+Frmz+c58AetT2GRYeSfOiYgdaDewn43hs+kHU8CS5Jnkj9XP7/vOCGpF+/bH1j20sv8PrLSPaP8k0b1c8g/tKBPq3n7HOV6SSP8fbL/I/jr7ONLFPb2CH+uBXym+Eb55y7ak5Le94g/JPrPw2EpZ9QGn+D/lOfLr8aSvVOqr9Wfyhl7fvZHpP2c1z6avwoMXfEiBve5aJXwc6Xdi/Qpr4cQLf1S3NPs3FyPG0BJ991UAEKpXkjqj92/K+nP70dQUswq/T0wJP/d4tf+fRHgL7Q+gzDiV81LGaAXsw+37GPL/UzL+IoilOiZEj9Auvy5pwSKYZryExM/N482ZvumTHii2bxFsil+lX5z8Bd2pD+9ryQSI3IJI/mpMh9R+g34KhxCFnnMtt1yhBEjfSWCyAbAjvgjdqJccKfk/qVJLdfnlvmXJJ8if2oZX/KAPxZi+vmlzN0PSX3yekwJv5ty/1KqZ0z7c6zUp3J3PSedx8GzW5+C0hKix7cG9xW8Kt8c6dK3pAzyKyV+AADz7/HHo0h9pAF+zq6HWJlLSP1zAlfnowq9yQC/wxDgMxk/06djUeGPxFT6L4A/bngmPIP8tLyfQWAA4F455f1YifcifYB4iZeUPuX1tSN+vEEOvZb1D8PNf1NQ6ZOYJ31N/ivHNQZg8jh7VD9V5j1J3/ImeFBQ6JRtKIQSfUrir8XR8ApW8cYea3H7lNK9lHJ/78xlnyN/Jcg84bdO/LlpXdM+M7OAj8bw/4QRn9ul6CncG15bbMoed6kfgG8eP14dwHw3vB1H2d+KnHKsYCNBcKkf8S1gzD1ZjiVyHv9U9jnlfoXM4+DZzaU/JaXkr9IvD97SnGk+DrdvfR7KHlzy50r7z4E/IMserx7extUQ4BS/69jRlQVh4kd8y+JrqY0A/NqPwFxv743nbgyfkbFoT24fv9It+GYA8ztb96kNAJV+HfCW5syNn7Q2AmSAv9CmvE8R/px5AyBH/ux99ULE7xP+HEoDAL/2I/8xZg2BrjkTAe6gQugJfPPOfSv/KS9FVMlX5lbwwe37YlfuUxRFURSFn12JH0BT/1pJSftTpsk/JfUXG5lPTf0C0r5lKfWHkv6u4/Sa/M/0/M40/XfBtNTfjHcgwFH6eZmmfYAF8QOo/Hvmt+BN8Ha4d9Q+udK3pMq/+HQ8n/wb9usv4RJ/rPS3j9Wb/H3St6j8lTnvIDbwV9YQmEsfwCN+AJV/j/wWvGn7foz8S4gfgGlkPjcPxGqj91Okb5nLfxXip0jfovJXLFTpW1Yif5f0AQA6+kZQKLwd7h2d+Lmkb481lf9c6kkj87mRuDpfgFTp232j5f9gBHhNfz8nJZ3nI8LjexxwFyt9u48A+T8bHgd/DC+o/r6a+BVW8QPQ5vuvBa7EnyN+gMjU/+DJF2lt+Q+Q+BG/AcZcp/VpkHh+YJqd+IZAivSnNJD/s+Fxi69xNwKWEr93VP/STgrAGxnWolbGJkf6HPsn8WD0Py7FmRgnfbuPIBC/AYjf2L4vmecjBqUfs10TcqXPdYwIfNKnvB6Dz99e8ccmfnxj1Obd8UbE7ZvrsaJMyV2Vz+6fm/ajjjFP+LUS/x1MfIIXlviNuc520pec+FNELlb+yiI+f7PM48c37kh/er8nfPKmyL3XBgB3mb/UMdcMx+C8qGNY2WsffxKSpa+0gzPN55It/iXJ9yB/SoKPlXlv8i/RH7/WPn7EV7U+BT5U+kOSk9w19dfh2fC44o2ExRgw+sA+SoK/j/SBLUpz5rKfPjbmoWDMPVkX8BmeOxidx6+E4eybrzDCP0bknAP8Pg63d/b1OxM/VfqhVC819VNTeWp67y31K2mEEj5nBSCn3N/VPH6AsNRV+uvlHcg/IK/CyP4WU/YsLp/vEn9M0jf3yXu9xaBllbLCAVXqiK+KTu+rTftT7GA/K/n5YyUajlJ9s3J/CeGviLnXsy/L60v1IfHH8Gq4LzwE/j77OLXE31s3QamV+0YlJs0b89DJfnmX5V3NWv0r4RpwLnwHDq72frnibjKvv7TwK8/lrzmPfwk0Jv836ZI/h/RfDfddfC21EVAz8fckfxV/HKni3zzGW5LTfe3L8u793UvgR1ffj/WYa+YacO6u52o0AFT8Dhqu4Fdz5T5EAPvrYxH/9oHfyJfyfdK3xMpfpe+H8+p8I5PSd78kfw6SluQlsvd3L9n1nDYA8lHxExlY+rVw/cr34nRhTenHbGfpUcY1SRW3+e56pA8QL/GS0gcoV853Sd/3vELDJX3f85zkiFv88r2xrFT6AEwL+HASK/NXw32j91GWiZH42oSvpHNT+NfWpyCGpWRfs69/9axA+j72AlhuFShpjFBZsFKfyt31nBKmx4V9Qqk+NvWfDb+YczpR4FurvVWXpCT3ofr2VyJ9n9cRgLOXP5/U9B7T31+6r38E8SthYoVeuuTPjU/u0vr5fbI3d693HrHUHtU/hdrf37TEzyH/lYjeRRel/pySfcy+VDHfx5hoiav010OMyHuTfk+EEr7kCoCW9wuzYun7YB3Vz0GNxG/xJX+XwGO3V9bF1mI9Dw0+1xM9jOqniF1y6m9B7Oj+Zqk/N/Gr+J2pf9XinxK7Nj/HWv6vQYQHy/rxK4oTyfP4VfxpdFHqB0iXv0p/g+k8flGl/pbULum/Zs8f3WsQt+8rilR6ln7MdooyKlNliRN/bHJ/CPw9y1K+NXGJXuWvKPFQk7wm/o5JSe6a9r2IEz8AXf69Cd/iKu/3UPI/Gp7X+hQURWGCUsJvXua3HGXCMrfb9C79z+LWrSDi+vinlFirXxLS+/gpon8J/GGFM1GUZbSPn4fnI5YX/asQ4KFM7/EO7F/ylpDoD+X9f4oW/xSuq/MpNGLSvcpfaU2v8/iH51WE5MrVEOgVarpnlH834ldoTEduxnA0PG9b4KklffYGwPkIcODyfwafCWD+hPctlf7Bt6rsm0MR/py1NgBU/EoqrrGBvt9sqf76bPmf7/kj8DQCFEURQor0LWuUfwPxixzcp8SxNCFg6fmSg/Syju2TPuV1Jczx+jNUCpIjfY79eyNmEB/jgD8V/8rQkfkrxkpf5a8oMohJ8Zr4FUto+v/0dZX+yjnRbP6rKJxwpfW1pf4GqPgZueSyvau/Z2iEhn1dvPSpZXwt9+eh0ld6QxsC7Ojgvgwoot9vnx8VPw9f6m8l/qRBfhSp6wA/RZFJLUGPOACw8jx+TfyJUNN9jSrAUtOtVZNO5/UrCsBf6TLcZRixAnCo2bn5nmOifm16AGJlfslle7Mm/3vB6+E0eMDGc1byqfP4FUVJZ0ny8+efMOofZ20Zc64AKA2C6H98EcJeV0n//2upP5KcBJ8j/3vB6xdfmzcC5nRR5rfoPH6lM2KTvcqfiVHFv8CPL1r++cY2AoqW+h8NLyh5+Orklu1T9/dJn/J6V6X3A83OzfVYUQSRUs7XLgAlFp/0Ka/PKSr+l8LjSh5+FYSkHrtdaVgbGSp7RTA5Alf5MzBiX38ldHCfwkZXlQVFyYBD3Cr/TFZW6udEB/cp2ajwFUWBhxpN4QWglvFjBvxp4ifCNS0v5jix5Xvf9pLlfODl32x9CmzgT7U+A0VRRoIs84gBfjqqPwIO+ceO7I+Rf2h0P0DZEf4xjQuf7M+/wkEcp1MVl/DNf9U/D6UOXGX6IUf4516dj7L/ysr8lNQfI35N/CujZPKnNCoOvPybwYRP2UZRWsHZNz9kP3+qlO1+of1XJv0S7Ij/hW0/gHhs07dfFa3kHyvzXuS/VN7Xsn9h3tbmO4szpQ+Z+AG25EwVtGtb+9y0MRBzzAAfhFuxHKcWoTQfO48fzQvAvcdjy38gfbI3pxR/+2halPoBaOV+SpnfB2cXwFLDIkXkvZT9tdTPxO0Q4EOB7x6X8O9WV6Ba6k9EwIp7U+nfHj7e8EzSyVq574XoKfUXrgCEEr7ECkDusrup+4eknit9gPKD/1LTey+pX0nkdrh5mz83ZynlN0r/SiQCyvRW9r1KHyA+4W+zx+v+CPtCLJL8qVLHY+Ul//32+VFS8s9tNEzl7lqrX2mLTff4U/WTPuKFYMwBdd+UA5fYXduEKgBKmGsjwLf052jpWfrJTMK8Du5TFEVRlBVRXfyxJfwRSv6cV+YD4Cntz+Hs4699USBJbCd/fHnx90K8EBAv3LhvHxfjHKaSOiXtz7cNlfMrlvs5+uar9O9fG7du8/vKqtHEnwhV5tzSLwVnH//8WLn99L3181vp15B/Fc7BnZvrcS1CA/gqD/DLEffqBvUpogiLv/E0P8nst8+PNm5Lz62d3JH5vYzstxjziI1/S+BL9qypPyT32vIXRorAq0l/Kd1r6l8fM4+Hxc84uC+1bC+x3O9CkujxJq3PYN2UlP7W8Q9Iei1IDZHHlPnn+yyl+sppHwAA8QcAECfyqkl/aTCfDvJbHzOPV71IjzklTeLSRvZLZS776WPzubrnonTEXPal5f8hkyZ/i5X827CJ8C3GXGn7vkvof4WoJX1FJNrHPwihhE+pAHD08y8dI7Vc31uZvybGHLCd7u396LTPIfla5f55Y6Gh9CmIkP63zE7Cn95XVo1f/BVW71NkkSN/yVcAHJnk0j6XsA/R74klEN/f+hS2aCn8++iYAhFMfN5kyd6Ycr+W+WlQEn1MuT9mSh7XVfnmaNovTGvxp5T7BS/mQ5W8Mb9S+EzSwH8HML/AfNCp9N8o93eXyzMQ4ckSKjwUXoiTy/IWWqVvCYr8Vfo0Ygbyccs/NeWPdlneLulR/ADi5J+a6qU0APDf3c+zNQLug8NJ/xmEazVIbghsiX861F+I/GtJ/2OIcGvBvyAq3InfxdHwvCLl/AMv/6bKvjatpW+Jlf8g0rdIkH9x8Q8ERfhzJDYAmiX+XScicF3+nqghfqU8iH8LxvxunTeLkb8V/DnI26ffsfi5+u9byn9J+haV/w4p0rfUkD/ie8GYO9O23Ra/0jUq/v5B/Nvt+1XknyJ+blT8zVO/Jv4wOdK3lJA/4nsXX/M1AnQ63yCEpK7Sl4+VfbXEL4EYkQ8ofe5jKevBJ/3Q690mfnwbgLlb67OQC95EZa8QoKT+GtP1QslfkPQB+GXdOvUDFBrVPwAcad/ClfpD0p/iSv5VV+7jAN/mvq+NgE1U+gqJQ4xf/rXm6M/FfjsUJ/seOBn+EJ6UeHVMlf566KrUPxV9zGuKong4xOzcXI9boNKP5uQ9M25O1oW0lABdiV9RXPwR/GXrU9gAH9r6DDLQVfiClOiTzz3mXPYq/3GJKfMvbd9NHz810WvJf11Mpf8ceErDM3EL37yq/nko5ZHYxz+VfWq5X9mEs3/fwtHPn9vH303ipwhdpd8//xj5h2ZlL1H6vucVhRsre5U+H9xT8KQs5tPd4L5RQfw2GHOt1qfRhLnsp49/k/CH0lr6iiIFlb5CgSXx4xc4jhLGl+h7TfuI3wbEb2/fXxuhhO9rFEghlOprp/77wSvrvmFJbi3v9z0y+KqtmyIb6gp9S9tl9fG7hG9+NvVoke892Dz+NSZ+DolTKgI18Mm9Rj//kuzfAA8r/+acUET/MSG/8wFW7qNK3qy4y0riPH5L6sp93YpfMvjTAOZ7rc9CPlzpXYL8W4o/lPDFyz811TduAPQs/tRUv7YGgGTpz4lZqz+51L9U3q9V9pcI/vTWbX5fKYuE8v+S3HVUf4CcUn7jbgAOYfck/dx9ybyu/d9zj1ClD5Ah/qVkr4lfoSBB1tyYV+2Ifnq/JJT+fLF9/hzizjzG0+DJWfvniLs36XMew8sD21fwAPpK+7F0M51POkvpXlO/Gwnl+VLUTPmUMr74Un8jrPQ55B8j8djtlTZwyXrpOLeAD7McPwWWBXzwC5r0AdyS177+ZbhT/8iNCR9d9vFzl+kT+/ufBk+GE+AZvOcyAfH9YiTPndTX0N/vSv1PNoZUDYgR/ifhtvEnl0E3K/f1gIo/Dk7xr1X6lu5G9QsR/5pQ8afzDERvBSD0usWX8mvKX8VfAB3VT4dzZP8/Iq6+AQCw1QgoJXz8XQDztwwHUvFXp0Tf/Jrkz4GKX1H2oCV/2eDvLr+W3AhQ8Venxoh8bQgsQ+nTryV/Fb8iinlqT20UcMn/dDgS7gHvZDlWb/iEPyeqAVBqGp7Kf5Haq/FpA8CNJn5FIeKTvxV87Pr+S5wORwa3WUNDIEb6lqbyV+kHWbv8Ef8JjPm1pueg4pfCBQhwVaYfwYEIcP66f5yl8fXjp/bxU2TvYuQGwJrEj8cAmOeynYlYWqzBL0H+iP+067mWDQAd1T8KBzq+xLQB0AWp0reMKP8U6VvI8m8sfjxm+bWeGwGfhRvCofBl52sq/h1aJ3+ArQZAbeFbVPy5uKRvaSh/fDCAeU2zt++CXOlbRpP/yOL3CX9OLw2Az8INF1+bNgJaXXWvpfxd0rdIkH8rdOW+gcAH79xcjxXB3HK8JYy9cPbJF5B+yvYt8El//rqE9F2bJbmvWfoAKv48fGnf9/pd+L/kQ3JX+W/ClfaTj3VL3LwtPVeZnLTPsf9IIH626PFD0o/dTlkPKv4cQqX86et3wZ3b/HGBhkALfnTxGP+PosRIvUEDIHdxHpbFfWIolPZz9wMAMObQ9J0L0UPqx9fxHs+YX9tO+NP7OfwMnJ19jJao+GtAEXun8v/Rxbh9mz5WHKRKfNRugNxyv07hS6K2/GPGFljpc8sfgK+8b6Xfs/xV/Lkspf6KA/uoZXzucr9P8Cr/GbnyVvlv7rNS6duyfWz5fr69eWi9BkDM+5gHbv4rkS/CTTf+7ZHkUf34eADzfO7T6ZylefzUNP+ejLnIBKmnjPLHnwUwX3C/FpL73vvL/HLm7N+f4h3dzyHuT1RsTJaex+/j1rgj9un9RDgG6bUc4c/RR780xW+Orue/DqLFj4/f/Zw2ADzElvAT5c8pfvRcYtk2AqiJfi3yLy59SyX5NxV/AbL66p/LdRZxcA7KC4m/5FQ/Fb88okr9Lun7nlcgTuQZiZ8Ln/Snr1OELk36pZL+iMRKXLL0e6TmSPxW8/uVduy9+MrDEeAV5b64T0KE43TtIDbMa/ypn5L2Q9KfbrdU/pfGXPYqfzpW5kWuzqds4FtxLxffcUtLX9O+TNyl/odPSpN75E9J9ZSS/0mOC64M3wCo0Mc/J3blPqr0p5gvLJf8JaT9mpIfrdS/BP5uv7JPKfeXLPPXSPUtpQ8wrviPgtPgHXCv1qeRzG7xP9zxJUWQP7Wff5XiBwjLv3GZP1X8U350MYoQPsCg0rc0ln+vSBF/aeFTKgcq/TiOgtOC29RoCBwCZ8E5cHj2cciJHyBf/C7pW1Yhf8tdkEX058D14RD4KsMJ8YhfEmLEDzBU4u+d1mv1S5A+gJb4qVCEP4e7AXAInLX4WmojQOfxK4qiKMqKcIvfpvzZ4L6lVE8t8y+l+hppH/+c71jPg6PzDpCR9s+B62/fXI9TSEn7OfuNxGhX5hsd89xwkqdsI5XW6/LXXBioNClpP2c/F760T3l9ieoL+LTo459K3/zvtGP4ZP+H8JK0g0YQI/aU8v9Ipf7aI/e11N8HvjJ/DdG3Hsw3havUbx66daxRZG/hkHduyT9G6rEl/2Tx51J7Oh/+eRnpW0rKPyXNx8p/JPEDxMl/Ku7URsNaRvX3CqVvv7T8pYhfB/aFGV38zfr4aw/mKyn9mO0U2dwD3plUvvc2GLhkrdJXGKgh5RqNi9vDGUWOy1Wq5yz5c6OD+zzEyryE/FP77mP3i03vktN+LqmpXxcHUpaQkvZrUkL+t4cztm+uxyNwCJwV3Xcfu72KX9mGKvMepE9N7fPtcuW9uH9uWte0nwx1Ch/HxXyWkCblWnDKPyT3UeR/DhweXbqfbx9qCKj4B8ezdIKTkNR7kL4lJP/qI/JT5a3Sz4Lad9/rSH4A2Q0LDvlTpT5a+o/BVgqs9OePpzQb3CednLI910C/nCl6ltwFfnpalz/E6XBkUPYc5Xq2Uf4qfDZGHdyXI/yaF+fJGVeQKvIPwhHR+5Tol08d5Jc6Vc+HrQxo4l8gVd6co/tzpc2xqt8o0gcQNOc+JPRPGJU+EyXL97GkSvpQ+PL2zfU4ld5H3peAe9W9nONxLM07xzYmVPyKsgeuwXmk41i5W8HPHzfgZvAvzd6bEzxm52Yfh+ilzM9d0lf5y6aE/AFU/IqyDVdFIPo4jWVvb67HvREjebtCX03px4q7Rt+95Ol9Of31o/T128F+thGQMvhvyiFwlvbxh4jp6y+1iE+NBXyULar08QsgRuyfhl/Keq8vIMLP1liW+xj6thISvq/PX8JgPbsiH8dYgF76+AF4+/lLXrEvZwyAJv4AVJnXWLZXUTiITfOp6f8LiPCFPdNKpvdLENuXL6Hvv1TfPRdr7QbgknWNy/SmsleJkYOjEZJ6aenHpndN+4rSF1Jkr/RBrre11J/A8+DoZgnfV/bvQfhvhN+G+8A/tD4NLznlfull/py++5iSvy/dlyj7pyR4CeX+Hmhd6geIL/enlvmn5JT8a6T9HPmr+DvmHLh+F7IH2BL+HMkNgBT5S5c+QD3xA7jlL0X6FpU/jRz5c3UZUOTPIfwpKfKvVeJX8SuicUnfMor8e5A+wJjiB9DEX4MU+XOPE/DJn1v6UygNgNp9+ip+RTS9ih+AJv81SN+SMsK/xqh+FX8dYuRfenDg7eEMkuz/Gh4FfwAvY33vo+A0EYP3UuR/DhweL368OYD5VPR7KSvFJ32LdPlPoSz7K5maib8mKv56UOTvk/514YvwdfgZvhNaMVXEjzffua/yV6j0nPjFcgcEODM+RY8qfoD+5vG34APwS3BH5sWZ7Hx/CteFL27fV/nzECN/u/APWfxT6VtU/goFFb8cRhY/wFjL83LxAc/vjbsRQEETfxl8DYD5Sn+a+JUq9Daqf2RS5N+D9C0++av0d9NC/kpZDoGzvMv67h1zMPMp7eNX0rCS72Eev1IHxI+DMbcKb3d3APNW+nGncsdj4mR/+VUQrnCRjndWHByBAGf08dkIreWvo/oVfm6GAJ/Wj5Vkaq7VPwXx497X5w0BvPvktQj5U7n8KuFlhHtuCGjiZ+AIx2ekkwbAEip+JY+bEddfX2FDAPH1YMwDWp+GF18DgLu8H5K+xSX/VtK39Ch/ivQtKn8PKn5F2QNV+HM6awDgnQDM+1qfRR1uBv9StC8/VfwliJG+ZVT5q/QnzMv5LulbOpZ/VB+/ogBAuvTtvh3Jfy3SB+hrAF8OKdK3+/Uof8WDS+w+2Vs6lj7ACi/Li3hy61OIAvHs1qewSY70OY+hNOUMuH3U9tS0H7ttLKnS59pfEcIRSBP8oOwu9d8VAd7dd2tmian0jXlSwzPx45O9MTeteCYOuKTdUepXtvDJ/gj4YHB/CaV+DnH3lvqlzeNvTo7wO0/6ltX18SOe3K30Lc3kz53UVf7dQEn4Ifmr+OuDTwcwf7rzuMTKfU2JnWLHkfIbyB/xK2DMDfiOtzbxS0fFr0gjpqzvk7+Kf8adEOB9ha5W+PTdz00bAF2TM+CuQ/EjfmX7Ppf8VfzCUPErkojtywfIk7906VuS5X8nzzkwNQJc0rd0L3+quF1y5uzTryT/qfQtHPLvbnAf/q/WZ1AO6kA+cQP+FAAA+DDcovUpiMeYW23f5o9LT+PjSupFpE95XVkdc8lzJf4upvPNZT99bP5P3XMpiTE3lZv4S4zE72xq3xyX6OfP3RY+Wet0WDgDbk8aqMdBjfn6a8OX9u3r3af+lWHMDdbXx09N+JIbAIhnk2UtVvwATUr9T0WEpwr7iKYke6kNgJRSPoVajYdYmvbxUxI9Q7l/2FJ/bKl+Xo7vsNRfiu5K/T2AePbGbek5ZZmnIsJTEXfdb01qOT91v9fDvZL2o7AK6Z8o43NDLuNruX+ZWNlO5+pzz9nvfA2A1Sd+vCWA+QRt29+Hv4IXwxOWj5UgdFd6FzuPv2Lid4m+dfLn6MOnJH+f7B8Ap2WfA0A56QMIEb9L+MdvfX5yUn/WOIFKiR9g4FH9UoTbeeIXLf7YgXxU+eMtPccgNgJ2HTMzxU+FPu0aiOkmKE4l8fvSfUv51xA/JeHnyr+k9AEEiN+X8jPknz04sKL4LcP16av4WRBd6o9J8RzSp7zu3IehdD/tEpj+K0b6ALwD8Xxpf0HuvUuf8zipDC99IrES72nRnikqfcWFaPGvjXkDQscCKD0hQvqhPv2EPn826YfSfKHFfBRlThfT+SRTUs6i0r7l0ya/5E8Zzb8n3Usc1V8K6kC+18O92Pr6uRAhfYCtUj5Tqb9Iyp/KveDKfcMhKe13XuYHqJT4fxE+krxvqIRv/g9fmT92uxJY2YuUviWn5B+571qkD0Dvu28tfSv5I+CD27eeoPbvF78S34L0bwifLfu+yuopNrjPJ/t/hV9OPi7+r7w5+xSpxwzw4078ooXvgpr+B1uoJ5elQX4lB/dx9u+Llz3TqP4affsU0X8ZDi1+HqKRkvgHSPsAhRJ/KOGXrAAolfm02X1zPd8x3IvvtFrMh0vW4qUPsCX5PaLfuC8MarrvvQrwVbhW61PIZxDpAxQQP1XqMfJ/KTws9XSKUqJ/f4gBfZ2LviWhNN+6zN8dM+HHlu9LlvtjZd6r/K30k+VfKu1TRX6GGUr6AAVK/TFCp5T8p9J/NLwy6ZzmcM7jX32pfyVwlvtjEj/3QD6Ocn8Xid+DhFJ/jsR7LPt/Fa4F14dvpx+AW/5LIj8Cu5M8PhfAHBO3j+jpfPOkz5X8zSd2bq7HiiIFTfjjkZvce0z+WdIvBH7lx7uf7Ez6APHSB2AWf2zffWj7ecLnSvxTVPYKBa5++dYX68lN672nfUWxmBuIzr1FWe//XFEURVFWCKv4Y6fpUba3Kb9E2lfy+f4PaR8h6nZKeVJT+yhpn9pv3+syvYoSYvvb+L1w25bn4UWy9DkH4/UwsO/7P9xr4+Z6zvW86zE71yw71ze3TN+6zD8lVuIlpf9OuHOxYy8RkrpKXxicfe/c/fgvErLGQATiR/X3ANfIfsniLyXrK1/RMcAmBp/szyvz5Z0ywl+S9KdQRvlzS58q+iPhvazv6+Pyq6CYxXqo9Di6Pwuukf2c4p9K/zH9NBaLrNxHkf8o0rdwXpZXGqXL9Enyj0n3DRsAIoR/dQT4Lu1ncAbcXlS6ryn/WnDIf3XSt+TKv5T0LZ3Iv7sleyWTIn/Jwgeo0zcfLf6Ukn4h+U/5MNxChugtV3f8nIgNgBKklvRHk38x8X8CAW7Zh3iySJV/ial6mviX+UX4yLCyd0FpAEgXvqXWoLwo+QsVvzgEiT+3H38k+bOK/xOev4XRGwHUBkDpufkvwq6kD1BJ/GsH8ewqoscvAZgb8R2v5kh8svhzBvCtSf4u6Vsqy59r8N4o8mcTv0/6lkz5fxURrt+LIjpcda8VXc6xeiX2NYqytPTxS1u3+X1lxSzJvWGpvyQtZgakkts/T5Y+AH27GV9FhK/u+Z6d3heNSp9MN4k/JPuH9fHfYMcn+dz0X3vuPSn1d5b4v4QIN2r12RRS6i+R+CnHlF4hSEn+UdKfQkz+IcF3k/4HAPG7YMzVixxbfOJ/JSIp4VO3U2RSXPoc+xP5EuL2zfW4Gt81O6Kf3u8cakNCehUgNvmvbSQ/vqj1GdQF8bsbt/lzrO8lOfGnirzX9H8qPAgeCa8lb08p6aemfpFpH0B84qfIvVkFoAES5DtC8t+QfqHETy3nl079LuGbxxR9y+ZQxc5VARCf+NfCqfCgjX8pcA7km5O9sM4KoSb66sm/IRKkK6Hx4ePLcOjGbek5AEjus6fsRxG6lvrHYFv8F+4j68sop2zfY8nfJv2YxB+iZMOAkxEaGbEyX5P8JSBd/lO8Jf3UUfqdTO1bKu+vrexfmr0u3Ae3pW/vS2sErIUU6S/JvRfpR5Narl/TVD5FSeT6xiym+hppf6mkP3KpP6b/nqOv/8J9cLnUP5r8e6wCUDE32hH99H4PjJD2FWU0pg0AX2NAySem3z63j996HS/YG7y/0QMuq/8LryXpXgcB1qTLi/PMKZz2c8r2axnoJ6HUPh1v8AZEuF/PP/uYvv5Oyvxz8EVjJ/0pNQb3TcN8UPwAKv81wyn+Ium+wdX5XKTIfy3St0iTf/dUWLlPqUNp8c8r+Ksf1T9yFwAHHLK+8hV/XE7655mdG8Dux0oR8J7x+6RI90h4L5ush5I+QFjqKv1uoAidczGfvdmO1DGvRNTk7+HKV/xxcvJnFb4r3VdalGftuEQ/f868JXycI+G95OQ/nKhLMJX7Wq7ONyhzsZdcuY9U6gcYu9xvUfmHoTYAigs/RKPlean0VOaPSfcU+c95J9w5KHmObgJtSKybE+Ap8DT4y9anUR3XQH2xffwA8sT/q/Bu+Ge4a6Wz6YPv/3CvsiPzha/UN2e0lftSSvop8g+h4ldiOQGeEtxmLQ2BufxFix+grvxd4v9VePfi9toIKAxHGV+Y/EeXvkWa/FX664AiexejNwDEiv/CfdD7PjUaAFPx+4Q/RxsAhehU/FOaXp0vgxzpW6TIX6W/DlKlbxlZ/tHi55T+VO6UBYKW3ns6GI+7QfAwY6Kkb1H5M8M5aE9H+EcjVfwAcfJX6a+DXOlb1iJ/70gtLum7lgWO3W/KNJk/zBi2QXk6uC+SN+qIejFcD7duK4Aqc5W+0ow/kfe3OPX5YuKfbhQqw4fgWP439P4cyT817Vs09TOiiT9MSPRfS/9/N0/8L0GAo+nnT5kZoIwJV9q3ZKV+l/CfKev758J9EPY64DKzLdXp/fkFe6aPY0TOteb/aNcOUJQsKOk+sQLAIf2s47wEN/8loNJXFBoHXGZ2Sv0HXGZYyvCuN1EUEjblcy/KM9oiPzFCT5A/V9988nFs0o9I/IrSnKXyvsCy/7b4UxN1zSTue6/c/vncMj9A3EwAZQ/XxJ2bfczNqKX+kVHpr4P7y5NiMkslfWGlfoA94s+Vt5QyfKr87X65ffTaxx/BVPaKoqyL++OO9Kf3I+Hu3y91TGkMd5GeWPnrSP4GqPDTSem3X8lof2V9lJh+l3XMZ5qdhD+9L4y9Sg6+a1UJoMpcpa90R8pI/YR9cvv5S83hVwZgKd2voewvBPJFeiSRMmAw5gp8uoBPQWqn/RH792MTfOVpfSp9JYhL8n8X/zktUZYfeREfS3el/tRZAg8zBuCkgVqUShWeDE9rfQpNiZW4Sl+pyRokXYLuEn+S+F3CPy58JT4qmvYjqJn4F9L+k+Fp8Aw4YXE3n+x9+1WFmvoz0v4USvJX6Y/FM+AJ8GT4q7Jvcn9MSvpzdMneOFT8AUa5Oh/+PwDz841PoqH0qTKnJPyu5M8k/jl4TxX9aDwDnuB9vXgjIAMVP50L98EViN9X3ifK3/Kr8O6uZC+S0vJ3pHxquf4ZcEJf4p/SsBGg9E9I+paR5b8G6Vu66uNPSvtLco+UPkBfCX9IzjObt6XnJsT00Q/fn6/T+nj4u7F+jlTpx25bmxxx15D+UwQFhq4Sf/Lyvxml/m2+hAA36uZHJZecxJ8wQr+UzEWl/oqj/FeLT/b37/fnmSpyycnfQqkAlBa+T/Z/2TBodCN+ljX/T8I44X/J88eujYB0UuSfOC2vhPi7lr6lU/njnwCYZ1Z8w5h0n9sAeBkCPKru72Vk8c85AZ5StZxPSfit5L9XDxfRYTtHLulTXleaM3zpvnNirqSNf7J1m98vSmxJ/+8wrRvgZbh1m98ngn8a/5ZrRJr0Y7bjRnQf//QywVWhSl3ln0Zsek9M+6KSuQIAW7K3t/njmIbAMCxJPkL+5ulpb53TXy+5r781sTJvIf+9ANpfOte+vxV9M+EDxMtc5Z/GwmC86G2YCTUWRDUmcgbrNRjoRxG7a5uldF809ecM4Otk8F9Oub7HUr+yw972zgGXmaZX2Wvd+FASuScCvCXjdzcV+zVRxBK783n9omQ/5Wummz7+qLI+AkxX1zbPdEu+al9/CUKpvkGfv7IONkr9TZO20hf3xK3b9P49PV9kvtcsDNLHf9x8HCNt17Zipd8RKSX8VZT9Q1JX6XdHatm+drkfjQlfuebCfXBXg4CzOiCmsZFTtl/TKP+QxN9iaKLPqRRMmMt+ivnNrX+7WIY3hQ4Sf6rEXd9MVUb1c5XqKaP8fam/kvhj++u1zO8nReK1R/eTxL8Eh/zFSN+SIv/a0j8FAY5t+HOjSJ1Kpvx90rdY+Vtalu9/sB/ClS5h/t0Jn8fPKf5q5Mo/ZmqfS/5Cp/Wp9MP0IH7Ro/p75sr/dQH/QU/Brdv8fk04pZ95PIr0Xdu1lP70XzZiRN6J9HP37YpHmR3RT+9XhCJ0lf44qPgVRVEUZUVklfoB8sr94sr8ANmlflfS//5PXTXnjLbwpfvaZX/u1A8QXfKnpv0p85J/TVwpn73kD+Av+zdarU9L/X1S5bK8gxJT7m+xel924k+Vt0jpA8T31wek73temVCiMSGIueSLSB9gS+725nqs0MgR9wDSB9DSfg5UmTdbspfjIDHTALuYMkiVf61BfaG+/Nr9/Uyj8deGlX0x6c9R2StKM0JSb3qRntxSvw/XNMCuiLhIDyXVZ5X8KWJvMdK/wQj/lDK/xVfuPxERjm9aXx6X2HK/mF9DzYv0KEPzFDihqeynFBX/UBAuy+uTf3Y/PzXR9yz/iEoCVx//iQtG0gYAP1T5i/zRD3pZXiUN/D0A8zetzyIdFT8jRcUPEJZ/aem7lufl7psvmPrn4l+SvkXlz09I/pJ+5B9ChNu5TujvUGW/MvD3wtv01BDYJX78NwDz/7U6nf4pNqp/ylIDoIT4fWK3ku408av42zJfk18CH/J8JpyNgM64yg+/Axdd8RqtT6MbKMKf00MDYEP8+G87L6j887jyf13AL3wXpVbxazHKvuCUvljpW1Yt//cgwF36+/+/A46Ao+CM6P180rf0KP+r/PA7i6+toRGADwQwr0vYL0H6Funy18Sv7KbV1LqE2QIpS/ZaNPE7eI/nZ9JhI4AKRfqWXuTvE/6cURsA+MCd+zHyz5H+9vsJlv+u6XwqfaUnQovytFy0pyveg37pU7dRRBAj/ZTtLW+C30rarxZW9imJf2R0cJ+ySUdp3wX+Y5zspY3qx+sAmG8wHzRUsk+R+WDpf7TEnyLy2NQ/lf694e3R7ycVjrRvkZr62cX/Ang0PA5eynlIpSYd9O2XovU8frzOzv0s+VNEPhX3ysUfI32LZPmnpneANPmPJH0AFX8UL4BH73pOGwAdkiv+t5i4YwiRvhSSE3+LEvxK5S9Z+gB1xV+STyLCLRr8rNcgfpYle13S9z2vCIUj7bvm+i+h0t9FN9JXgqCOl4rmk4jbN9djhYe9W5+AIojYtL50jOm/lpgGgUJHpS8W82/hbbjJSfvT/Wsnf4rY7TYlqwCcad8eT2Lqz078oVSvqV8BAJX+iAzU6KCW76WX+XOFfdEVryFS+jnbx8AtaYnSB2AQf6gfX/v5FaUQrcU7WB9/SOrSpa8oVLTUr2ySU+7XVK90xHxA3/Tx7YwhNQaUPFLTe6uBf6PAMrhvKdWvPe0j/kvrU1AUZcaHEIOj+FOm+EkhtVQvaUS/Uhadx8+MT/bG/FLFM8lEp+TJp2Wpv9My/2hz9peosYAPBzn99dIH+Unt3wdgSvxTdkn/qH5bzrGEEn5XFYC3mLDQKdsoZWjdv6+IZQ3S59h/zZRZstcn+3eMKYoYqXeV/KfolDxZtJL/itK+pZfUHyv91uV9qYkfoM7V+R4JL4ZT4ffT3ygRfvFTEv5g8k9J8t3KX5EDt/jvYoa+Ot8axA9Ak39r4Vskix8gTf6SS/wW3lH91LL+UTic/BVlCOZr+Hcu+zURk/ZbLdTTkn+Fm8IvwtlR+1iJUxoAPQjfwpf4U/ryB5G/Jn6lCSUS/6BwjNKPSf2IADWLBD2vz5+S+ilp/1/hpsFtYhsCFqkr8lFR8WeSM2BP5a9kwyX/gaVvKVnqDx26ZCMgd5legLby5xQ/RfYuUhsAudRuIFrYR/WvjVR5q/QVZQwo3tIB6Muk9NW7Ggup0s/dNxX7X2jx2eARf+qUvRVN9VOUInAk9RWk/VHhSPucx0nlFsZkDdbjEHdt+dv/br+JP7VkP0CpX1GKc2yggZwj7hVJP3Vkfk8j+nvHNgAojYAR5vG3+mhpHz8Tq5jHr9TDJ/tTAn83lH7/gYT/OUS4CfFrjHvlvtjDcX/Rcyb11oP8XPjkbhsH3Em9VX9/TfQiPUwY80sk+fukj/sAmMs4z0rpklDCPxb98p9LfbBpeZ9zyGD+3FJDwF58h0oo7RtDl78WDhQp8C7gE5P6B0r7U6hr9eM+tONpQ2BlhKQ/JZT8B8Ml/BC+SoCvARA7dY+C5LRv6SX1T7sCNPHHwzuqnyrzQaUPsCV3e3M9BqBLP3ZbZTdPgGe0PgXFx/to1kyRfmi/2xmzfXM9lg63pCVKH2Bz4F/uIEBli67X6kd8JxhzJNvxapAq8pjkj7cBMB9Ne58R8Mn+r+DJFc8kgTUl/qn077T8f0mV/hTqGIBUWs3jH72PP0Spkfijp/4y4p/CuDwv4jtJ20ltDOSmd5/88Tae/RgbARdfEWH/H8oVDiXhi5V/jPQtleV/LfgqfBuuz3fA96FX+gB9iH9OrYVZ1i5+AC31p1Be/AxQhT9HUgOAq2Tvkr9P+tv7Mcj/4ivufAFLlH9MWX8I+fee+AlwSN9SW/41UPGr+FMQv3JfqvRz91V2Y2UvUfqKska4ZN2r9JU0RIufQ9wqf15U+spocFYVFKUHRIu/Oo/u7wuAUuaP2a5XYkfvix3tTy3fr6DMX5LPIW7fXI97Ijet9572OUvzayjzAwju4+dO6t7+fpfwX8o4+4B5St68n79WH790WvTx7/ff58MlP3kgy7E2yFm5bxBaS7i3MQEp/f29S9/C1c+/FvFr4q8A5yI8uqCPHPb77/M3/mXlFLNzmz4WAD6/zvu0Fm/rhkcsF13xGmSRx2zbAxzCjjnGXeEfst+vJbpk71J5/9HImvqV8bjkJw8sl/gtNvlPKwDzakClBsFU+Pa+eXyVt1YimAv9Kj/8zlCShy8gwM/u/sz/IpydnPxTpH9X+Ad4N/x20vu1Rkv9AMVL/QBlp/MB1JvHL52u5/HPETS1z5fyS8pfQupuXXlQYEv2SzgaAQC08n9qpaBn6QMIFX+pkfiL8h9A/BvvpSv3Lb42pPSnFGoAqPiVZvikb1mQ/5R/hZuupg8/RHXxfxkOghvCN4PbVU38lsLl/ZIr9ylungDPKC576mfaS6roXTDLn9KnP7L8VfwNoUjfQpC/skUV8X8ZDlp8bekLs4n4K1BjrX6lPCmf6UU4pW+pKP/S/fytxQ+g8m+Gir8IRUf1fxkO8n5BUrcZiRSBq/TL8Qp4QPQ+lM80mRLSH4xc6bbeX1GkodP5FEVRFGVFFCv1p6T4aYl01FK/hVry17TPTyjlPxxev/hazOc6WPIvmfYLDPJzlftrTudrVfKvkvgfgwAvkltZwLsBmLdVftOYMr9Fy/0kxIofgE/+0qS/BO6joi8NtbTvkj/HZ3qb0iX+gtP78Plt5+/XbgAUFf9jHP8XQQ0AvNvu56o2ALSPvwhFSv2pffZr6ut3odJX2CjYsGi9aM9NjNm4TZ8r8V7FcEnf97yiMCG6j58jqfeS9hWFFSHL+9ZAB9+VwZX2fc8r/RAU/z/DL9c4j0VyxK3Sd3BzgWnia3XOKWYE/3xbrWLJh7sLoEnap75egaWSPrXUj/j5/JOglu+1zB+Fs4/fJ/tfhY94D8jxRZc7t1+F78Al/E8t/LG8GwHuWukPaSr965V/TxF9/DWm8K0o8U+hyP8mxni3q1ZB8MldSD9/TB8/RfTG3DjtRBKW7M0BXw5gHlFvv9rsukhPKOH/M/yyV/43hG9myd83EnoudMR3quS5eDcuPy7VCJgn/a9hFfk35xSj8/cbM5X75xC1u2ABK3nfqP6YZG+3jW4ATOW+cJGeXPDly4+XZD7fx/WcxIaA6D7+ECp9Ikvlffv8XPpzQq+nMpf8GqRfg5Wm/VSaSX8p1QtJ+1M4pM+xHwCwSx9f7ha4bxvKPinb1qJr8StElkr6S8/XxMq+kvR9c/RD28QuxZu9fn8KAqT/Srhfs/cOSVxcsn+R2RH99H4H5Pbhs4wByCRWyDkSlyT/jT7+mIF8Jfr6m3xREjkbfgZuCl9sfRrp+Pr4KYm+Vp9/ZV4BDyA1BqZQPtvVF+8RIHyATek/DN7Q8Ey20DJ+OTjEndznz0QLGUso/e8a3EeRf0j6AOOI/2z4mV3Pdd8AmCb9mDL+oPJPgeUiPVzyFyJ9yyvhftHSfzi8BAAAXgFHlzglhRnOtN5K/q0S+NDiB2Be3rQRw4nfxYoTPwdZl+VNkb8w0adiZb+ENgLkouLPwyX/0xDhXpWqU0X7+G8I3wx+IVK2aYVL+r7nlfb8C9ys+ntmfX5jJT6A9B8OLwlKP2Y7Remd0/ZMLz2t0nLU7PP4p7Bes7wRmvj3IDjx+2T/S/DpaueRBSX5DyL9FLpN/6ciwCP7/73N6T3xtx5o1zrxBy/SE5q370JMiZ/hj24V4gfwy79T6Vu6kf+UY3EI0c8pLX48BcAcm/QWfJzq+Vsq0Ah4EJwKr4VHsh93iRKj8dcm/9b9/OxX52s6qM/3B2dJ/MMrNar/zrC1GuF7QdCaBDVX7ssgpqzfpfwHI7ds75M/nrL7ueoNAMr3DwCb/B8Ep+56rlYDoEbiR/x80QaBxNRfi3Hm8VP/6KjbzSiV8t8LR8qSPgBJ+ojnVjgRRQnjkr7v+bWC+PbWp+AF8fMbt6XnRqFlw4NV/E0uZHIqxss8Uf7KFlb6Kn9FaYMr7bueR3z79s31WAIxUudsALQut2viTyVH4Cr/JOaybyX/2NH7LUb79wR+49Kix+cYne86RijVV0v9Md8nDN89SyX96fMhuUuSfyy9p//WjY5+xc8hbib5n1xpCoYEjDnY+zgE4vNZziO2z177+HeD37h0++Z6zAnHqHzXMUL9+NX6+WP67SuM8qdKPVX+rVfcA2BaOVDAYjot2HV1vlRyL8ebtQhKZVyinz/3pMCYyffAHeEu8AHW84oFfwPAvCt+P2MOBsRzo6Q/Fb69b8zj4998cM5ChMMrTOkJyR2/cSmY6+xb/DyUdGy6rz2qfzSs/H197pRtYt+vJWziL3k5XklQ0/3JiE75vwfu6LxfqxGAv7H8OKYRkCr9+fMq/01qSH80zLFCRvU3opX0jblx85I758j/qZDx5byyr8qbEeB3/N8j/Zb6GxBb0pfWBTCXfuzr0qCW77XML4Occn9oX3Psjuin96vySBMu4wsq86duP0VCyb8E5hGbV+Kz93PTevG0/2bc/HeBPsXPOTCPeKxUiU/3myb8Ob7XeibUp5/b5x+Sukp/N9Q+/NID/kogIuXbBoCV/PxxYYz5raLbA2xOs4t7rxt331hIlXeVEr9N+oHE3+8CPlzyJ/wxciR3W/ZfEnyNUj8l0af0+Qff1yN37lL/v8DNVPYEKFIv1ccfO8K/2+V6GxKT4mPFT5G97QbwLc7DRYmGBKW/P7Sda3spsPXxK7KhlvFTB/xJQaUvHyvyLq7O91YEuLuOu7DEzLevIf3Qe6ViS/2u532POboDasCe+AEqrdXfaeK3tBjV3yrxA7hTvw7s4+M7cBUAALgGXETavmXid2EbAc1l/1bC33onDQFK6o9J+ynC7jXxA9DE3ytFxG/JvTrfN+FAOAjOd7/Yufhb0FL82+egI/nF4JP/6qbyUYQ/p4MGgE/+JUr8u9+jX/FbeknxMRQV/xTqPP1vwoGLr+1qBOTKv5L0La3lL0H8ikxWPW8/RfqWDuRvQXx70kC+nf3XKf4RqTaqP1f6ztdzRskS9+WSdWvpA4SlrtIfj9DflEWa9BFPrPNGOdLn2L8itaWfs59Slv4H91mBx6T/StNqJDKVe+8D+RQ3c9lPHy92nTVkSfLz5405vsbpKA5SF+tZSuNci/9o2k+jz3n8LqgyX7H056j08zkejmt9CgCwJXd7o2wnAcQTo5J97PZBuNJ6R6lfUQAq9vGHiPkyIqeWU5FF9KMM7lPGJFXkLdN/rsBZ0j+nsDvq60+FM/HnHJN6bGUZMYmf+iUU9WXFlO5zpb1W6b9O2JLFigw4Unu1MQDKNrGipWyfKm+Vfh5ixC+dVHmvTfqvQ9y+uR4rvOSU7aWU/BW5/APcdeMxVbgxYo5ZxneEJX85OCPz+1RMqR+A9kXUenBSTNl/LdKPlfoDV/JzqUGuvGv/PXEn9eSSf4l++YHK/XPhAwD8Nrx7+76vRM8l5hIr8ilbiEr8oS+h1tIHoMtcpc+7j6Kwwi3pgaRPwSZvK+b5Y673UMogbjrfVO6ulfsOh4/DWXCr2qe1wVzqJyOuRvSKHDhK9d7VMZXV4Ur609emqd+yBkG/CxF+Y6DveFGlfh+Hw8d3Pde6AbB2cpN77yX/C+DKcFX4ftNz0FJ/xuh+HdW/SKjUv9QIGIl3eb7fem8EdCF+l/QtKv92rF38EuhJ/KVG4ovo51+B+H2M1gjwSd8iXv5fQYAbuM9RVB+/oijjUmLlvaxjcsl6MOkDbIncypwi9diGgmQo0o/Zrjpfwa3b/P4E8eL3pX37emgbhR+OAXo6yC+fnMS+hr59vEPrM+ib0ZK8soV48YdK+WfBrbTcnwBeL29/jjK9lvqFcPQ4DTC8w+Zt6bltctO64LR/PuzX+hSUEnzU8/fqSPeu58WLvwc+0FFyxevtSH96X+mXlOR+EJy/JXwr/en9TqGmezb5e/Zr+Z1wPuy3Lf3p/VSoZfwRyv2x5ftq5f6P4s7N9diy0Kc/f76LwX0AOqrfcjB8Hs6F9OkzLtGbr6UdSwf3ycQ34G+jkeAS/UvK/064BvlN+/dTSvrmTMeTlAF/DuGHRH/HSp91n+QPhEuSj0uR+ijdAjEyrzLAz5fwLbeZnIcr9c/EL24e/xJW8hLm8bfgYPj8rvuxDYCldI/XS5P/A41Jlr9KvxyhtTAAYDndH41V5M9Jaj8+3sEh/7nU34osyd5uV6sBoKwYK/mRRvWvXfqU55dYkntq4lfks9gNsCT3CtLnGN1vj5E7eC+4P3M5v2QXQKikr33+K2Op7A8dil+RRUpy17Sv5Mi/xLTAmnwAsUgDIFTKzyn1h8r4o5T5AYTNz6eU+WO224OKX1EURVFWRDeD+9YKpZyfMtgvtV8/hK/PX5O+UBr361MH+7mSPsc8fecgvwCciZ2z37/U4L45oy/ZK2qAX+zgPgIq/g7wyT9nhH9pXoeosp9yDAI8V38eFBBPJJX0RxA/QHn5c0p/DYwu/qxSPz4rZ29ldFT6E47BzX8VL7Wkz3mcHDgbEgfCJduin95fM6d3tNZKDZISv0v45okcp6Ms4Ur9ktO+AjsJ3yV7Tf4stEj8pUbm61Q/Xnyyv4fnZ52yKE/T1B+Z9gFWJn78CwDzZ63PIo/cBXyUglDT/Iql/4dwMjwPnsR2vFFK/ZZY+V98+b6w/xUuLXIuPRKb7JcaAKJK/XM+ikmynxItfl95X7L88S927vcuf0UYKeX7lcn/D+HkXc9xNADWKP6LL9938bU1NwJSy/ku+YsWPwPRffxLcu9F+q7HipJMap/9ivr6XdL3Pa8s45M+x+vKOljFPP55wtfEHwfi5a1PQSa58l6R/EuRktZj93el+xb98VRpT7e7+PJ9N25Lz/VOzuA9177UFN9j2gfInM6Hz5Kd9OeM0MdfC5/sjblCxTMRDIe4By/5U1J9q5L/kvQpZfw7GlO93B8j6f2vcGn09j2TO2o/pa+/V+kD6Dx+xQEl4ZeUP+K7wRjhl/jkTOsrln+rgX450reUkL+vklA6nfcs/1Lin/IuxK5lP6Wbq/MpdaCW9REvZ5M/4u4VwObPcTUEEE8BY45lOZYiC3MmTf4c0k/ZPocaJfneZghwzs0/HTEo/1GkD7CSPn5FLi7p52znP8YpG/8qW3y3sMCWUj1n2reYMzdvS8/NqSnxFGoJuYd+/9MR2RfkoSR+CZzI9DejpX5lg5iBfLmJP0XmqcnfJfus5N9xqZ8i+qsX+lrgnsfPgSTptyz1T5Ga/EutwCdZ/D7ZH584M0bFr2yTMno/Vf45CZ5D/j7p40cBzG08ByoxGr+C/FOSfakGgCSkiD80U0DFvy7xx6T72AYA/rI5w3wY7hx7Tsqg1Ej8HGX7HPnPpY8fDbyXqxHQWeLPKeePLv9exA9QT/4Sxb8W6aeW82PkvxcAwG3hvUlvpCi9ESt96jaSye3DLz0GQKGvC1Czr18Zk9vCe3cG9yXL/5n6paAoSlveDndJ2k9C2o9dDGj/K1y6fXM95kBi4i/BKGmfuq/1/Lb4k8r9Vvoq/2Gglu91EZ8+4Err0lP/b8F7kvbjWoHvjsZs3GL2yWEtgi4xil+a9GtgPb/X9EEUc9mr/Em8XPgXKEBY6jnS5+jf5zpOTAl/17Zc/fKDL96zVlwNgZTGgbIFh6St7Nco/CkfhjvDXskD+/7E+B9XBh9RZltOrPR7kb+9uR6nH5dnIR6O43hH7mdsqyhzVPRKCI45+tRj5E/neyY2k/6SwM3L6dsubc+NS/aPWOmXQctR/XOoqX9R/Dmj+4WP5p8z6uh+jn5+SWLPGZgnueugxrK8rcmVP3Vkf/7KfcKkP38NHxFO+JRtcplLXpr08X+3PoNOSZV3Z9IvcTwp5EpbkvQB0uXt2w9fk3o2fOSIu4X0Pw2HVn9PKkOv1R8rc3xE2fT/CGPg5YhipD+X/fSx+fO659IKc5vEefxTrMQp6b/jPn1xif/uCPBWvsF5KclfmvQtuVfnc4l+/px5cMqZjc1c9tPHN4PP1j6dRbpcua9kOq9R9pcAJeGXlH+LlfuoBFfuo3IMNhf9cKX+u3v+PwyNgNir80mHIn8r/dRUn9IAQHwrGHP3pPeLLfnXSvuUhE+Rf40FfLoUP4DKP4eYsr40+Yu/XK8whhK/T/qWSvLvQfoulq7Al1vKp8of8a279y3UAKhZ3o8p64fkX0P8XZb6W43KV3gx5q5R8lfpxzFUnzxF+na7TPnPpf4BxG5FP6eE9O0xapf+p2KnXFa3F6zAS67VX+2yvE+CE1mOo9IfC6rMVfpxcEu/edpvyCjSb40r7fuej2EU6U85Hk4OCt23zW/DGxf3K17qdwn/ZDg++Xi1xD9quT9l9H7tgX6I7+5K9Jf8BMJ+/yPni6dE0m8ufmriB2Ab8LcGuEfrh1I/Z6lfCimj91MH+p0ITwo2BlzC/we4z8bjool/KeWnpn+p0v/njkqqsRJvMbpfuvQv+QncuC09NwpNpD8VfYz0U7ZXugDxv1qfgpNYieeM7k+Rvuv5Lvv4JTCX/fTxr7ZOR4qbIxHgnem/mxih220lVQJSqCZ9l6xTBa6JXyw23ceM6p8K39435qf4T25FFEv8oVTP1effglDC76kCsBqOxM1/I0lN8bXTP1eZ/+rGxEn/TzPeVxP66ui9vC8RX5/+/PWiffw+uaf089co9YfK/DFSl5z8W8/jb0Ji4ueQd83knyL/pGTvk/3TiccrIX1N/CRKrcbHObrfV96Xlvq55vHn4JP/tJ+/2qj+XIYbzZ+TkGbgr8XvE5L6cNIHyCrzKzNCn1/Gz3cUKn0yJabfcR9zSe7SpA8QlvqqVu7jHNVfWv6UQX1ZiT/0ZUhNSQXA/11Q9q9BgAf3+YXMWaqvlfqLJ/4YqYc+05yJX6UfTe1R/Sm4Ur9E8c/5NByaJfv7wqvh7+Eh0ftRRvVXW7nvSXBi1jQ+gHLip47iT+m735Y/9cuyofynfB4OhhvDuXkHeY3j/9xZA6BH8QPEyb94X/7SZzp38B7jWv1rpQfxWxD/qwvhp3JfeLX39dhGwG/DG3cJ39LVkr3c4k+Zq5+U+GO/LBvK//Nw8K7nkhsAKv4Nao/wp8g/um+fU/wA8fJX0bPSk/hHJST8OSlVgDnd9PErneGSvu95hZ2Q1JsvyrMyrnrZt1ufwi44Ra3SjydW+qn7zOlK/Jyr6Y26Ml8OrrTve97LUrLvKPFzT8VrsbCPnZZnJT9/HEXqgL1WA/0ac9XLvr1xW3pOUWrTlfglQJ2il1zmT92HgaWSfnZff6dwl+b3+x/TdFW/7ISf2gXl2y+mdN+4zP+2iG4+qtRz5Y8fy9odAHiSuqb9eHKSe27q7078HEk99xgh+W+8nvJlKWSAXzYPNjsJf3p/pbiW91WAJvRG0n8b4vbN9dhFrMxT5I8f25H+9H4qOeJW6fdHN0v2cg3s4yrxT+X+z4iiF+uJwaZ7llH9lpUL34e0C/w0Yy52ASP2Qwn/bYhwt8nffU56v+pl34YL9rkWadslyePHAMytk09hQ+CUQX8q/H7pYlQ/h/Sb9ul3NKpf2aRWKu9K/pzz+AVDKe1b8XP111Pk70v3OeL3vudr0kT/BrgH3A9OZz+f3uEYoAeQPsJ/KPFbueMjBA7e62wev7KDyt8B5fPc+WdZovgpJf1S8o/hDXCPXc9pA2CTXPnnTOvrro+fgjjpA9C+BDv/olRWROiz2vlnmTqQL2bAHwchqUuVvu95pT7i+/hjyvwik/6U6Zfhn2L3X45rofVofLEM/Hm+mzFRiV9RekJ84o8RuWjpzxnoS3IN1CjDd924mH2ePw6HNzqR+nDOx6ccaynVS0771Nercnjbv7ecUn3u6n3lEv/HEODWKjelU85CgMM3P79W/qUE3VUf/wyX6OfP3QrOqnU6Vblgn2tVHdwHsCP53JH83NwPTvfKvXk//1z208dn9fv3F4v4xK8oiqIoCh+84v8Y7txcjxVFMmfhzs31eA/7/Y/ZuC09txaoZf3eyv+h/nsJ/fuS0r54QqX9BqX/lJI9x0V6+KbzUeSeUfoPDfLrqn9fkcVZxD/4w+mf35TugB4bDCky77XkP1+wZ0rtUr90xE3ni5F6o5I/92V5ffCIPybRM/T7ix+9r7CB+GEw5rbJrwehSt9SSP5rkb6lV/kvoeJ3I2YBnw7EP+e+8GpW2U/JF39KGV8H/SkeED+8+Joxtw2+HkVB8QPQ5L826VtU/puMJn1RdCj+kujgPqUI+DeJ+3mkzvF6bUJS71H6ipsL9rlWsrybSf8zKxh/Fdt333iaXw1U/JZCfwD/CfsXOS4rH+L7v+Pf7Eh/ep+0L5O0yceJTfuJ+0wHANp/1zgIUHHTRPqfwZ3vvOn9EYlN8CtI/Hnz+FNH60ua4z/9wNv7h/Gcm5X+f8L+cDW4mOWYrEyFb+/fTsjvpQaHm6p9/NPL8qr0y4A3ADBfqfueOSX+ZtJfep7pu0+RTV7iT5W3ROlTno9gnvTFJf+llJ+R/pfSfWrZv2dCffs9r9LHNS2P6zh4g52b63FJqNK3grfdATndAhLA97c+AyUHLfUXYp7wRSZ+ZszvxT0/hbtvXlpf/0hwDcrjOE5I7iXlH5P0r3rZt2WIPhRqAmV/fP+O9Kf3xUMt33OX+Z8os4G/XvFT/gAysbIXJ/1Qqmfs86eSNSUv53gxo/QjR/QrZaFKvUby74ZQKf8ws7jNkuSHkT+X9J+IOzfXYwHkiz+2bC+lzE/5A2BAnPQBwv34Gf385vd2Ev70vmgON2GpF5i/X7zc/0g5XzTcxMq8R/kfCp9ufQrjcZbZubke5xKSuxD581yk59am+Mp9Sl90Ifw5U7k7LtJDhXoZ3yID/Oaynz4+Vf/+uEgZ0Ect90+Fb+9/Fm4W/X6LHGbcFU1P2Amlenw/gPmVzPPKAP8WwPxu5E6Djd7/D0T4OeKyPHxL9gL45S9V+pF/AEPhKuk3HtXP0TfP3W2QQlXxxyZ7pgZAy5X7UhI892j/WPnHSn8Oq/wtESP5ffJvLf3t84iVPzeURP8s3u/Y/8Dd7xlqAPD28d/a7NxcjyUy7dPy9G+15Grw9TIHvp3ZEf30fkNC0s59fThSyvlMXQCp8m4h/Zz9hkbg910MU+nbx/PnqkEt4wso9/MmfoWdqfT/E67b8EzaUHyt/oL4Un+ztG9hLPvHJH+uGQGlEj++D8DciXY87sRP6dMvkvojcKX+lmkfYN2J35X2Lb7Ur+IXjCvpr1H+I1Bk0Z7c5F5Z/j7pnwWHAADA4XAO6f04xY/v8+wTaATEzuMPUb3Un0jrPv05SX38Jeik1M8zuE8pwn/CdVef+Edh9JX65lL/OBxOEn3oeWpDIBWf9O3rPvlfsM+1gvIXMX+fGUnSBxAi/Y5onvgRvwTG3KjlKYjnavB1lb6yG0GJ/1xEOJjwVbIk/BCuBkBM6k9J+9v7Ekv/ltzFelypX1LaVwL4Uj9z2p/SblS/oih14JqjzyD/cyelRp/8U6VvSZW/r2+/hPi5OBQ+rcLvnSdiUdmnouJXnOC3fgDm2ldqfRqKj44Sf670LbHyz5X+9nEayV9RSpDUx69SGBf81g923dfftRKCUuYvxVTu1Kvz2b57yYlfUUoRPY/fymAqCEUJcUd4T+tTUBrBlfYpxwpJH9+3I/uYxK/QQXxT2Td4Rft58L0TVep3yV7T4B5ugwAf7bvXxNeYi/09U0T/AbhL1DEVB6Xn8Z+AAE/L+1xzih8gfaR/qug18dOZSt+Ye/O/wVT6D+/7+7Yl0X38UzmsWvq3IXzhdtgQyG3cpSR7bQD4wX8CML+28GIJ8Z/gOWZCI6Bn8av040F8U3npW1T+SSQN7lt1Hz9F+HM6agDkiD+nnK/y3wH/KbzNRkOAc61+n/QtkfKXIH5qX37Myn1KAzTxs6Cj+mNIkb6lI/kDxDXuuPrvVf406VucVQBfIyBU3qdI30KUP7f0LdzyV9l3xCtQpZ+Jip9KjvQtncmfioqfhxjpWxa7AAC2GgExffmxNJJ/iVK/il9ZE7xX51OagD/Z7r05R+uveeR/ivSD+zHO0x+BJbmr9JW1oeK3+BI9R9rnPA5syd7eXI+VfkiVPtf+a8LcaUf00/uKsibWK/7b4OZt6bmS759ISO4qfyWKlDJ/zn4CqCl8/PV676XEcekl/X6Gc1hfH39poacS0f9PEbv574xziYC7PL/Gfn6OxO7t66dQsI8foOySvZKZSt/833bnoWxBEf2++42vxHUlfqnSB5B9bguU6JNfcz+/EuYsOKTYTIESWNmr9Nty6SVITvcx2/bKesTfoVhdUMv4Ncr9JdJ5qcSPQn/9XP3z+E+y+/q5k3qP8lfakCpxDvlL/d5Zj/h7gNA4oZbwa5X6e8D+8Un8I8wu0XMRuyJfwgp+a5Z/KxA/1foUmpIr79z9pXakb4gff67VaXh4J8O3dS9pf9B5/mw8Pv73OJe9RPlzkpX6qTLPWLv/cDinu376HkH81Lb0p/cVBWByWV4rffw5APMfrU5nhpX+OxHgSJXi6nCJfv7c8/2fC2M2ZS+1Bc6JlX9SNeFphn2tfhdz+dv0fjico0leYYGrn/7SS3C4AX8bo/pFSd/CIf0eEn9k2vf14dcu87Ov3JeQ7EMNAES50q/VN5/UEGC4Ol8MKdJfQwUBXwhgHkvc1pPujbk50xnJh3OA3tDiHxYp4p/KnfEyvviTbfv0WcWfIn1LQP4kboQAX6r/JyFa/pWJkf/I0scXLr8WagS45L8m6QOsRPzfQIDrxJ/b+OKXIn2A4fvws6/OlyN9S6z8bxR4z4qNAJX/Fip+v/QtPvmr+AcW/zc8/y9iI2D8Uf1SZCvlPAqSOhWvyaI9N8Kw9GO2Y6CWkCVP+4ult3n9tTDm5huiV+nLOl4yPulTXt/D+IkfoH3qX4H051DS/4bwOdK+JZT6U0VeKf1r8k+fqjdKBSA38W8fZ5L8Vf7piEj8RKkDQDD5e8V/HiJcc4R2Aaf4rcQpx1yh8Je4I7zHn+xriN/233cg/qmUSzYEasr/23BVuBZcQN5+rfKnSN9Clf/apA+g4vexS/zneSY6d9sIKCF+13uo6NMpLX6ucn1h+U8lb6VcSvy1pW8pLX9x4v80AtwsctYOU+JfMyr+ZTb6+H3Sp7xO3aY6XEL2HYf4Ht+7goyfz6Pgr1ufQl0ajNSPZS74rPn4gphK3/V4idTEL6LP/9O4c3M9VpQYYqRP2H478ccIe5r8KfuJqBRwpP7OE71P9i+DP6h4JjM4077FV+7PoUHid73GRa1GRUrizxF409RPkXugAqCJnweO1C8i7QOUS/wxnIdIbizEbFuMXGnv2f+U1v+PREIJv2kFgGP+PeV4HOX+wiP8rYhdQuaWdM1KgpV9TJm/O2ISfWC7kNRV+koOSYk/h+bpPyX5f9Q4hX9s6/8LkRipN0v+tUb1C0/8FLiSv+QuBI5yfdXUn1rCJ/b9x6zcp2ySk/rFpH0A/sRfM42LSP7U9L9n26WU32v6VxTp5Epb3AC/TFT66aTKm1P6L4ZH5h+EukIfYbvxF/BRFEVRFGWbvQG2yu/Nk3ht5qlfp+MpijIox8HxcBKc2Po0moBXADCXb323U8r+XEl/nvKnj38fTk076HUMy5K91fv4Lc37+olQyvmS+/pTBu113c9PGSgofAEfCrn9/JL79y3djOrPnaIXOcefwnFwfHAbzoYAXhvAfIvtcNUoccndmLJ+cgPAkniRHi31BwhJXbL0AeIl3nRan0ImR9w9SB8gXd7V+/dzxN1I+jHbucBrb96WnpNOS+mnbL+LBOkDTMTfSwIvwWHwydanoADkT+uj7p+S3AWlfUuKwHuRvpJGrMxjt4+Rek8NgLWxkfglyv+bBbsgDoNPbkt/en/OUqqXnvZFEFu+T5V/7H5fMjSZU7drRIzIe5R+bHofbTR/DKkJnrpfqsTXIv/U9M4y4j8S8kV6SowB8DU0XMI/iFm0LtF/Bm7h3ecUxC6FT+nrZyvz+2RPFTS1wcC9+I+9kE/nzC/0MwK+Pn8Rwo/t62cs8+eU7S2+Pn8Oefc4BiCGHIFn9/VH4u3jn4qZuxoQK33f8ykspftQ2b9H6QOEpV5F+tTXY6oE3Mv9Mkkff57lMMmMJn2ALbnbm+txc25m6DIv0LevKFS8iX8OZ+pPET8Ab+pPSfyj8Cj4a/6BfDESdiX1HIlzJ/8EfLI3/6/eeSgC8KX/hgP6fCwlfs5S/aipn6NcXzP1ixvVH0r1Jfv81wSr9GNTut3H9zjlHBoSSvitKwAKwL7fu7jem9n0byU/f6wMRa60RZX6WxBK9JyJ/zNwi+2EP72vKDFQpa7yr8u+37t447b0XHEKy54j7XMeR5FPlPi5+vmlzR5Q4TeGK603SP2xMlf514Eq9apVgEJwLcSz1pX91oi4xA+wnOq5R/UrDOTItnF5XhmTWJmPIP9ScE/F4zjeXud9P/8gBUgt19cu8wMkiD83rVP3P8iYbdFP7yvCyBlUJ2BAnjIWqRJX+bvhHozHcbwfX/PK+QdZOUmJP1X+Kfup8BWppJbttdxfhlx5q/z75yK4ElwEV2r2/rHpvUXaB8go9V/TmGiRr+4KgEoY7nJ/xe6D1Cl6I03tQzy/9SkokN8/P0L//lT41eT/2N3fN78PpwaFTtmmJFHz+CnY1f5ckpc2qE9hJnUeP6esK3cfpKT3nsVPEb0xB1Y4k91wJPZLf3p/hjNpR8rI/JD0e5jHvyT6q8AP+N/MIfttXuj+/nkxPLKp6OewD+6TJPd7wBtan8K6oEpX+/a7A/F8crqP2VbhJTa5U7bnkrXrOCfBH7Mc2yV4duk/Fv3S92wjSfoABRL/nOl6/6WhiP50uF+FM1kxofTOvWIf5fiFiUn9Pab9HInXSv+c/fO9p34AWvKPaSSUWKt/Kv3j4Nn5bwA7yb+I9GNZSP8SKC7+WsSk+6byfxQCvGyIH/kOuVfgEyJ+xJPAmOPS9iXIf23St/Qk/xLS3/d7FzdvTBwHx2f34+fIf6lqcBL8MZv0i6Lil0VqOb+6/B/l+OCM0ABIlXYJ+SdIH/Ek5/MpDYAR1+pX8afhO5fWjQAv79/zd/gr7r+lFPl3vz5/ivQtQuW/d+sTyCGnD/8e8IZ68ndJ3z4/gvwVANiUO/58v7K3cPXTI57fbMBfTWJXCxTVAHg/uh/PGgBW4pQGQPfCHxiRK/dR4Bi4p4P/MuFctS+3b54x7Ydeo9C79JU4UqoNPa8bYL61eVt6TpFJt+LvhqW0P309tM1aSJV/4n6+cn5qX7/SjtwELSqB12Se9qmvTeha9L5Sfk6Zn2P/Qvz/somQzAz5TGgAAAAASUVORK5CYII=" id="image76521af3a7" transform="scale(1 -1) translate(0 -367.2)" x="915.916058" y="-26.344557" width="367.2" height="367.2"/> - + - + - + @@ -764,17 +764,17 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAABfHElEQVR4nO29e/BtRXXvO5qHQBAkUIgE - + - + - + @@ -783,7 +783,7 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAABfHElEQVR4nO29e/BtRXXvO5qHQBAkUIgE - + @@ -792,17 +792,17 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAABfHElEQVR4nO29e/BtRXXvO5qHQBAkUIgE - + - + - + @@ -810,17 +810,17 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAABfHElEQVR4nO29e/BtRXXvO5qHQBAkUIgE - + - + - + @@ -829,34 +829,34 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAABfHElEQVR4nO29e/BtRXXvO5qHQBAkUIgE - + - - - - - + - - + +iVBORw0KGgoAAAANSUhEUgAAAf4AAAH+CAYAAAB9b2wlAAALjklEQVR4nO3csW5cWR3A4XOtzXZICMQr8AY0KyQkHgFeYctoK6ioqaBCKXmFfYWVVkI0dLzGaleRtoPiUCQhTjwej2cmc2fu7/skS7F9Yx1Fjn/zP+f6LnPOOQCAhLu1FwAAXI7wA0CI8ANAiPADQIjwA0CI8ANAiPADQIjwA0CI8ANAiPADQIjwA0CI8ANAiPADQIjwA0CI8ANAiPADQIjwA0CI8ANAiPADQIjwA0CI8ANAiPADQIjwA0CI8ANAiPADQIjwA0CI8ANAiPADQIjwA0CI8ANAiPADQIjwA0CI8ANAiPADQMgyfjfnu3fm12suBQD41D6Y+Jffr7UMAOASHmz1iz8AbNfOM37xB4BtevTmPvEHgO1xVz8AhAg/AIQIPwCE7A2/c34A2Ja94fdAHwDYFlv9ABAi/AAQIvwAEPJo+J3vA8D2mPgBIGRn+E37ALBND8Iv+gCwXR+EX/QBYNvu3sVe9AFg+5Y551x7EQDAZbirHwBChB8AQoQfAEKEHwBChB8AQoQfAEKEHwBChB8AQoQfAEKEHwBChB8AQoQfAEKEHwBChB8AQoQfAEKEHwBChB8AQoQfAEKEHwBChB8AQu7GX5a11wAAXMibiV/8ASDh/Va/+APA5n14xi/+ALBpD2/uE38A2Cx39QNAiPADQIjwA0DI7vA75weATdod/j/OCy8DALgEW/0AECL8ABAi/AAQ8jD8zvcBYLM+DL/oA8CmvQ+/6APA5r0Jv+gDQMIy51R9AIhwVz8AhAg/AIQIPwCEfLb2AgCAT+tX4x///7OJHwBChB8ANuz+tD+G8APAZn0c/TGEHwA2aVf0xxB+AEgRfgAIEX4A2JjHtvnHEH4A2Jx/jV8/+jnhB4AQ4QeAEOEHgA16bLtf+AFgo3bFX/gBYMM+jv8y55wrrQUAuDATPwCECD8AhNwty9pLAAAuxcQPACF3Y4xh6geAhrsxxnBfPwA02OoHgJA70z4AdJj4ASBE+AEgRPgBIET4ASBE+AEgRPgBIET4ASBE+AEgRPgBIET4ASBE+AEgRPgBIET4ASBE+AEgRPgBIET4ASBE+AEgRPgBIET4ASBE+AEgRPgBIET4ASBE+AEgRPgBIET4AaDi1SL8AJDwahljmPgBYPveRn8M4QeAFOEHgBDhB4AQ4QeALbt3vj+G8APAtr2cH7wr/AAQIvwAECL8ALB197b7hR8ACt7Gf5lzzicuBQA2wsQPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACF3vxz/XnsNAMCFLHPOufYiAIDLsNUPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AEa9fLMIPAAWvXyxjDBM/AGzeu+iPIfwAsGn3oz+G8ANAivADQIjwA8BGfbzNP4bwA8Bm/fS/88HHhB8AQoQfAEKEHwA27OPtfuEHgI27H3/hB4CAd/Ff5pwPb/kDADbJxA8AIcIPACHCDwAhwg8AIcIPACHCDwAhwg8AIcIPACHCDwARr18sntwHACUmfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4ACBF+AAgRfgAIEX4AiPhifCP8AFDwxfhmjGHiB4CEf47fjjHGWOacc+W1AAAXYuIHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOEHgBDhB4AQ4QeAEOHndny1rL0CgJu3zDnn2ouAnQ4J/d98+wI8h/BzfY6Z7L0AADiIrX6uy7Hb+Y4BAA4i/FyPU+Mt/gBPEn4ACBF+rsO5pnVTP8Bewg8AIcIPACHCDwAhws/6zn0u75wf4FHCz/rO/fAdD/MBeJTwA0CI8ANAiPADQIjwA0CI8HMdznVDnhv7APYSfgAIEX6ux6nTumkf4EnCz6f13IfpHBtv0Qc4yDLn9BOT89oX+0MDfegLBsEHeBbh57wOCfa+WB/zuF3xBziYrX7O59BoP3bdsc/Y92x+gIOZ+DndseG9P6mfI94mf/b4/Icfx39+9pO1lwGr+2ztBQB8Cp//8OOTH/NCgCJb/azvXFv1tvx5a1f0T7kOtkT4Oc0psRVqPoHnxlz8qRF+TnPKubozec7s2IiLPyXCD2zCqfEWfyqEn3Wde7vf8cFFLcv3ay8B1vPyNn/e+HU+zuc50T33r/Lt+rqc3SGhn/PnF1jJQ+eY2N3lz5P2xf7Vbfz82fTE/4fx57WX0HJodMX55izL9wdP98+5Fm7Gy+XpCf+Qa67Apib+Q0L/1/GnC6wk7KnpfVf0TfxX7ZSIX2r6P+f5vKmfB46J+RVP/5uZ+A+d7lffBfjy+l8NPttXy/u3Q669Ustih+hjp07ul5r8zxXrTxL97673e56mm5/4jw35xSf/XcH/+03/079xjsf1nvJ19n3NAzwW+zntDI1xnnDf0tR/tvDvi/0vrvj//bdv1/2bK17jpZ2ydX+lU/9NT/ynTO8Xnfwfm/K3OP2zGeea1jPn/d8t798Oue6afLu8j/6u99mUmw3/OcK9+rb/rTvnU/tOPZs/47T/1OfggWNCfm3xJ+PJ8IvjiZ6a6r9cTP7vHBv/I//evu18W/2359Rt+uxNffsm+8LUv28r/9Q79K/0Dv//AVY2MkVrvp0+AAAAAElFTkSuQmCC" id="imagee4b102db1c" transform="scale(1 -1) translate(0 -367.2)" x="1351.318427" y="-26.344557" width="367.2" height="367.2"/> - + - + - + @@ -1012,17 +1012,17 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAAAKCElEQVR4nO3dP4tkWR2A4XPbCQaEDUz2 - + - + - + @@ -1031,7 +1031,7 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAAAKCElEQVR4nO3dP4tkWR2A4XPbCQaEDUz2 - + @@ -1040,17 +1040,17 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAAAKCElEQVR4nO3dP4tkWR2A4XPbCQaEDUz2 - + - + - + @@ -1058,17 +1058,17 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAAAKCElEQVR4nO3dP4tkWR2A4XPbCQaEDUz2 - + - + - + @@ -1077,34 +1077,34 @@ iVBORw0KGgoAAAANSUhEUgAAAc4AAAHOCAYAAAAR5umwAAAKCElEQVR4nO3dP4tkWR2A4XPbCQaEDUz2 - + - - - - - + - - - + + - + - + @@ -1236,12 +1236,12 @@ L 643.690957 218.16 - + - + - - - + + - - + + - - + + - - + + - - + + diff --git a/docs/examples/clusters_centers.cpp b/docs/examples/clusters_centers.cpp index 72cc863d..0a8761af 100644 --- a/docs/examples/clusters_centers.cpp +++ b/docs/examples/clusters_centers.cpp @@ -15,14 +15,14 @@ int main() auto I = GooseEYE::dummy_circles({500, 500}, true); // clusters - GooseEYE::Clusters clusters(I, false); - auto labels = clusters.labels(); - auto centers = clusters.center_positions(); + auto labels = GooseEYE::clusters(I, false); + auto names = xt::unique(labels); + auto centers = GooseEYE::labels_centers(labels, names, false); // clusters, if the image is periodic - GooseEYE::Clusters clusters_periodic(I, true); - auto labels_periodic = clusters_periodic.labels(); - auto centers_periodic = clusters_periodic.center_positions(); + auto labels_periodic = GooseEYE::clusters(I, true); + auto names_periodic = xt::unique(labels_periodic); + auto centers_periodic = GooseEYE::labels_centers(labels_periodic, names_periodic, true); // check against previous versions H5Easy::File data("clusters_centers.h5", H5Easy::File::ReadOnly); diff --git a/docs/examples/clusters_centers.h5 b/docs/examples/clusters_centers.h5 index 7266907a..acf04188 100644 Binary files a/docs/examples/clusters_centers.h5 and b/docs/examples/clusters_centers.h5 differ diff --git a/docs/examples/clusters_centers.py b/docs/examples/clusters_centers.py index fcdac2e6..5f841778 100644 --- a/docs/examples/clusters_centers.py +++ b/docs/examples/clusters_centers.py @@ -6,14 +6,14 @@ img = GooseEYE.dummy_circles((500, 500), periodic=True) # clusters -clusters = GooseEYE.Clusters(img, periodic=False) -labels = clusters.labels() -centers = clusters.center_positions() +labels = GooseEYE.clusters(img, periodic=False) +names = np.unique(labels) +centers = GooseEYE.labels_centers(labels, names, periodic=False) # clusters, if the image is periodic -clusters_periodic = GooseEYE.Clusters(img, periodic=True) -labels_periodic = clusters_periodic.labels() -centers_periodic = clusters_periodic.center_positions() +labels_periodic = GooseEYE.clusters(img, periodic=True) +names_periodic = np.unique(labels_periodic) +centers_periodic = GooseEYE.labels_centers(labels_periodic, names_periodic, periodic=True) # if __name__ == "__main__": @@ -51,19 +51,24 @@ if args.plot: import matplotlib.pyplot as plt import matplotlib as mpl - import matplotlib.cm as cm + import cppcolormap as cm + import prrng from mpl_toolkits.axes_grid1 import make_axes_locatable - lab = np.sort(np.unique(labels))[1:] - lp = np.sort(np.unique(labels_periodic))[1:] - centers = centers[lab, :] - centers_periodic = centers_periodic[lp, :] - - # color-scheme: modify such that the background is white - # N.B. for a transparent background -> 4th column == 1. - cmap = cm.jet(range(256)) + cmap = cm.jet(names.size) cmap[0, :3] = 1.0 - cmap = mpl.colors.ListedColormap(cmap) + + rng = prrng.pcg32() + names = names.astype(np.int64) + index = 1 + np.arange(names.size - 1) + rng.shuffle(index) + cmap = cmap[[0] + list(index), :] + + lmap = GooseEYE.labels_map(labels_periodic, labels) + assert names_periodic.size == lmap.shape[0] + assert np.unique(lmap[:, 0]).size == lmap.shape[0] + assert np.unique(lmap[:, 1]).size == lmap.shape[0] + labels_periodic = GooseEYE.labels_rename(labels_periodic, lmap) try: plt.style.use(["goose", "goose-latex"]) @@ -73,7 +78,8 @@ fig, axes = plt.subplots(figsize=(18, 6), nrows=1, ncols=3) ax = axes[0] - im = ax.imshow(img, clim=(0, 1), cmap=mpl.colors.ListedColormap(cm.gray([0, 255]))) + bw = mpl.colors.ListedColormap(np.array([[1, 1, 1, 1], [0, 0, 0, 1]])) + im = ax.imshow(img, clim=(0, 1), cmap=bw) ax.xaxis.set_ticks([0, 500]) ax.yaxis.set_ticks([0, 500]) ax.set_xlim([0, 500]) @@ -87,8 +93,8 @@ cbar.set_ticks([0, 1]) ax = axes[1] - im = ax.imshow(labels, clim=(0, np.max(labels) + 1), cmap=cmap) - ax.plot(centers[:, 1], centers[:, 0], ls="none", marker="o", color="r") + im = ax.imshow(labels, clim=(0, names.size), cmap=mpl.colors.ListedColormap(cmap)) + ax.plot(centers[1:, 1], centers[1:, 0], ls="none", marker="+", color="k") ax.xaxis.set_ticks([0, 500]) ax.yaxis.set_ticks([0, 500]) ax.set_xlim([0, 500]) @@ -102,15 +108,15 @@ cbar.set_ticks([]) ax = axes[2] - im = ax.imshow(labels_periodic, clim=(0, np.max(labels) + 1), cmap=cmap) - ax.plot(centers_periodic[:, 1], centers_periodic[:, 0], ls="none", marker="o", color="r") + im = ax.imshow(labels_periodic, clim=(0, names.size), cmap=mpl.colors.ListedColormap(cmap)) + ax.plot(centers_periodic[:, 1], centers_periodic[:, 0], ls="none", marker="+", color="k") ax.xaxis.set_ticks([0, 500]) ax.yaxis.set_ticks([0, 500]) ax.set_xlim([0, 500]) ax.set_ylim([0, 500]) ax.set_xlabel(r"$x$") ax.set_ylabel(r"$y$") - ax.set_title(r"clusters (periodic)") + ax.set_title(r"clusters, periodic (color-matched)") div = make_axes_locatable(ax) cax = div.append_axes("right", size="5%", pad=0.1) cbar = plt.colorbar(im, cax=cax) diff --git a/docs/examples/clusters_centers.svg b/docs/examples/clusters_centers.svg index cc04d7e7..9030a675 100644 --- a/docs/examples/clusters_centers.svg +++ b/docs/examples/clusters_centers.svg @@ -6,7 +6,7 @@ - 2023-11-23T11:19:43.446477 + 2023-12-06T12:02:20.342524 image/svg+xml @@ -39,30 +39,30 @@ L 162 355.403697 z " style="fill: none"/> - + +iVBORw0KGgoAAAANSUhEUgAAAX0AAAF9CAYAAADoebhRAAAxR0lEQVR4nO2d7ZLcOgqGPanc/y3P/sh2jkexJRBfL4inKrV7km5LQghLCOiv7+/v7+u6rq+vr2vG/z9myqoPT2j266l9j3FTsJDN19eXyvi0noPAjpzvWOujtD3u+CLWPaouSXXjDep4tdbZr8/DKA1aYv18CqNAkZTPoi9az0SSUyTaclg9r4rcP+P4/v6GHVO0ffq0//X1Je7Lb40O7TC+tb6/v8MEe+/Lpx/WyldpdxzBm65Uk+l9PFKdiTZcM5DnzVJulHE/tS/Rha/ruljf1HIHPD0vwr3jebScjY9zxKOAvIikWLoiJQs8g8wR3TvIIBp8zvef+LX1raJEGXzKvzd/sHZF7upAVeP4cSe0fvKZ6QRVXyz0im30NSb/7krReA5CX7zgnAh6wTYjVnqeScc8+/q5pxj/RBLi3nmjsuvCa2yVfd3eronWx2dWLllUeez01SKaa9cfrxq902CAulhQ4MhH8xQ4+/esc5a135kYZXw/de+cwLXm7Jf3QnqDcjmXeZF5MJNhpuM3EqPeVdLDcVxc3nTqLdokEk5fs7ZPdenC7PTflK7KAvNA4+KoeedNhtEGTQo3XPrz2dmavX9WM8Z8F0pfrUAL4vj6vo165g/28BVnycyTQPUrSvx+T1TKXI72tUe3z4WqS7vjegrBRsjwH9m1L5JQck9doY7vN+VDK7eBdmZn5cSl2RhHOb/lM0QyO6Z69ZGyM402+NF46pJXQqOUE+wLhR87/ccPJNvVfEDeKXPa9WqfijRZRLPezwwLeUUkD3KRrlctuWbRZyqcud9NOPWSSRmjL1WyqHFmypCk9PXNVcX5vLQvaLt8t8Ws9FLS2PhUM/ofuHqHaD+ntXe4lztRE0nN0tS4iIs+Gka2v3Kr7Cj97nje+pLVmCDRMnxn3MVnlNU0egclnNOSLD7ajFjL9imU8lR2Zd36vw9F3xB1EiZkc5edULNmn8jQtzcQwu40vjvGWWfW19lLGNEQSqDmGHH/zYql0c/6NstA1kWtvcNGl4NFKj61DXTZrKh+GuNe1CLIgrTTr5T0o7GItBZiNtmNaIfqIuJhdKXJOxleDMhzLGH3PioS8o+oeEdEWLWn8VxKJFD0xDa1mOkUN6O20SXbWg/75awVb8lLqALOkFjlTXZjpNH3U+feEutcj+pzFnqRu3MJKynVEBW/rWn4sinkqr+aCXTaoF8Qn8R4uS297D5Z7mFGnxpbb030JSTCS8sajSgO7UXvgWcQxO5z0HWKMsfIOoDIMiPXrOGNTLXVsU56XONmEWqn5UdkmaLD1RMLt5p11rRm1iZi2v8ulmUvqmYMUwjZ6e/G1lNcBZKwqMgopTb4/8LVk9m9igQE+Wv3ITqrHBmE+bYk1U4fDY+dPvL4rUG8SL2fNjXnS/ulj7iJ4NzHSeZeeiKqvuZ+fwZffaDaSC6QqKF3lnNyauSClLt8NKOTtGu6ZJhH5DpSVXga49d1/ffD6N4TkN2vZuVztF4MWeSOuNN/QjJfyGHI2iDt9E/hSY6hIZs9Oc9EGnzqZ6zJYvB32xkjkZr/aHno8Fra47rt9D+0MaZhGV1ggXUUijbZ5Msh6v4mizu30k7f+zS3kl36KpuRcCcSTRk59O5Lj6jiavfn93za85RXgkAbfScyG/wPKEqbHY1kNWm70S7E6ni82LeDSa4H98510RORKhgzDTKEgGVz71xXTGivx3FcUk4EGc1xZXXvUfqtXQlgjP6a8VhwjZN5elL0wQztkLvmD5TQOovMW2vf9z3Wv4quaO/wuWGVVeS4Qirndu8YcIryeRFZ+MzaVRFVBNCCSL2vuubuNaa07gWW0TsVMmcp7OzsMu7STplPDh7HcS8Q3EYeeSZSt1H0nYZWHaWn57Cjd8aHeFYKjMSqSJYWnnVkMs/n087o5IvFijt+SSIcYjTNE5Yhqz+MfubFrsFOhT5LxRmNlpYRiywsZ8nq7snq2chknk9NPN13lMKQ1szaaJ/+Bh6hbytllBr/e0XSsTopIhR5SJ8xA1k2zRwN3dHCU4/e2vr682/7/qVeDLpkDVOzgBoGKw1FzezTz3iv5I33/GrYSou7t4+u/KZ+qRWrQULT2K1CAxF1f3QxIvZxF80NZtSdBsKF+sinD+3eKUBWfzMSUVmyjR5R9Yyy8Zic1fxLu7d8ofroNeXfc5kbpPmT9uWevKfdRu/0CVhGhTTPVA8tbZ6xWGsI0TTaiPIUSLe4B+OZzGQZipkRavmFjDWFtKjmz78uu1N1u3/+0EZ/QkQkjdVuJiOco+3Oy7mNwD532WnLrF2ptrR7R5nOCNWDs8i57qCoWjtV+MiyDXE++iK3gYZTjXIWelm9plIE1hVIGxva6L+gveOzLNX7toO1zhbWSjbRvLRtg7Gm3Vpn0+6dF6IWAfris6g7hFi8rqqbp91aTRt9QLR92Zrs1B1CM7LoL9amsaTdO6A8RaegxK5nNpqcl4ulSy4CSuGxKmO1wFI+ni63Ujv9ykfUrItxx8hmJEO0VsUkJQ8s6/DPnrfTDuU75Xb6noW4mjUcGWY1Ok/j89w1ZysWl4mZQfbIyaG0Mz5nFcxRaqd/XfpKTnWpoLhemnOg7Dp701KbrdNAZ+TqckI2IWeXg7bLt8iyjphzjXHc5/EUfz53nNRSIDv94PDUzu4zyrl3oqm8cN7CNV9/oQfM4Dc/GV1vWhfXiBsfi3GijIf7nV99/GsodKXRd54WP9oun/McyfMRdGHm46b8PSKql8fXdf3VToqi7h53It/+pxxdqXAv/rSKmVHbm6ER2sZZQIh6o1GUj/IM7V+q8gx35DLrm0U4pdS9Ixkz6yIXLclmhWWoFRKWYZFIIZdaO7Yu6RCDhX54rOl7oAY1aMMS6ZjJRh9p8VPar3CkW8F9qXm9tC10paNU/uDpetGWqVcJZiuifqVt/Ky0H+UucrViX5Gh+td33C3czz4RFZvPmdfdjOdoJLkj3PEhy6PCS54ylxZz8GOnn12QmU4jHmgY71PwHGtl3TtJZzSYuYusZPljp98Ths/OET1iXjV3MVWM5Bg2GLneVvMj6VvbET7cfAnJiY8cvWN1WaaJReKNFloRAJ4G8K6InM/f0Yra4vTBItpCA81+aet69EtIO2mKCoJeSNiRQ7kyDByis0CjL9Y8eIp8iIhhj5ZddL+Qi63dgxE8yW7wr2tvDEcb/R0ijUeUkmrUFfLoO/Ii1vbbSqI/0LhvCrzaQ5cJB+5m6q/RryQEC8bwyOY/EAz6ifpLWehZ5JKln+iQEmw5Bdcy1FJBzATVvjDzSkjhtOk9528+4KiMUK4/urKRewsbtmyHSmW5j7zJh+Xe0TjmW2PRx2h/rDfRc0gBrY/ZSztoUXVNZGR0+3z+P9unP1NYFGXWjn31jqO1YveFmK38hidjGObpeK6JSslm1vxI1OS4d05mXNCSULvd0NjdDNun71P7Q21PS42kIZ738Xi5Uaq7a5D5yB7N/YgMu8rm6VgucO59hKdLwWNRSdpAjc1v7PjM+dP9U8/9v/wNRLna6EOwa8C9LtetL0gtEsBm34lAK1Gt+Q9rA1/lBfLDDXndjP6HCoNE4G0n8vY5DlTDbzGX2gtBku2dIaLsuvK8mJpac/U0lk7OMsbC4I/fe7ult1JOFKXvi9MaIM0jUtCCVTvlSisjEWEcUQxyRqgnswoguC3eIp+i+oXy8nmSi6ZMtnf6KAJa8cmkvf9p8nNC3aKqrNZhxDpF0SePnKAto49WjoArqCrGv8IYdrGI0a5Wk2XGKePMhNd6Zhv9sWORhmesh8NNlMluNHvhNtngrLns6xMV1o+ozHbOngZodTRs8FhFGO1E4XC+F82sr/3yjiOL/uzylNPDush9U9w3pUW4LGrwOSWrMnv/pSAZWKS+eHBfX78sw/tOV3IKuzKqKNuduk4ZigBmRdsw9jzM0a4Z9vZ8dsjmuCPTLA0coRR9GsFityBel2HQY7wbazn6Yl07yr3gmsYRXnMHgqTQWbJLd8jiukHakETgMf5oPdewH1n0ITwj94SIGgkrRToppDAjFXT3Sb9a536SXR6/KihqJbxLKqCAroeU/lWfIy0i72GkelZhjt3cO5KiWtznUUsPV5jATGSYj2j3jnfxvCgix+lZkjyaUPcOR3iSncAYx/32meyTmZH7qeXpRINAuzfiQT/1ZeJJd1MXXKPccktuwjtywQc0GaP15zSs5Z8pqU+DUZ6uF7lWvjyL576Vd2ia5gyqvvzd6+nvJOBEQHETedAvnKYi0Wt9lQgV3T9LUrt3PIhKGHv778rK2JyFRRIS91nWiVBSLAIL3JOzmn+5K1xkaCCq4jfNE9FJXh5YRDm10TdgnKgnEXvHC0eHIjaNJtoh4KhYGP3+jVxlnibJ4jcItHz9p90ZnDbe5g8Z592qz230ncmofE2DxClryOp0cqzRj1CcKGU9ZZFQyHrMbxotjoreqRYVQ714PS0ZpWmeqHSvJenzMUZ/ZfS0IleeDKyVUmVU1gaLjtjCloFFv44w+tRdLnfy3364wyJaxwpUZW9sWAUatD7kYfeHg1RCNpHflDvGVvpDLm/f75+fayKpEtdusYFCH/OIJJRT5SI3m8CkUFxF1pwm88YP1FOpJSeN+djoncy0wW+4cI0ashG00P9Ma0o6N6WN/q5wrJKnEOr4oIDar6ZBR2pHShv9XeFoRfFYPZvCvSQ0Wnlo1H41dcm0k7fm93VhX8RWRBo3//kuN0po9j0v2sg/02uQx11W1EvNqEqeFrzZEEq/ft93XdQvUamUDHFnZbS5P+pykiE8NVFsZijuazD72ohgXEuWMkTS3Z2y0F9fX/+6d6oV8uIqAPXzmu4bzR2I5ucaGR/31cydZVGM72Q8fmoRDY7Bv67r+rqu6/EboiL9gPHAkXXqV0gW+u6JAUV5tX9A447Gc3f7t5oLjdMilyj98MpQb+Z85qH0Re6dlaJFKqLGhXPGkDyEPrzhcREefdn/RnT7jS3HGP3r+q9Ewkepx//OjJUbyxKP+yPNZyG/pChw75o0oPy+RGPPXebqRp8zoZGT7xk62byjNQ/S53i8NJ4+M/a7mk/6qT2EDcdp/PAKXIf49D3Z9dVq+FyR7y484EYy7CCtzcR9VtNoMPXptyLGII0caviRDFbPb/zo0zSPf4y+ZTaqdjtNgwq6ft/DScfQ0oi+IDzDAwSX9g/3jscljkU7aGiG4klDGjvh5xmrktvcNtDClu949K16OCeim+/3J1749Mp1qEhlWGUOIl5elmsjAxHZrZXkjXr6+H1ddQxDU5sow9/Y8JSgVkXeO3kzFsEzj/W5vqtIGZRKO5dqeGXEIpTZRr64rrZGtDLstdobnwnxG7lV3/bXVWss1ZBUKuS2c131jNsMzlhPkQkK4Rm5nbHXRPKUoW3Z1gmMlXsbLMKN/hutMDF4he5FhwmOnGKQG2w81gOs0e9FqAtSBc4uJ1yb+8mp4eEhM1ijj0Rmo8StFtkLtdGg9QgX1kWuxYVrK4cdO9UiK8wHYmBAtMxX9fsjiJZJFWZz+yRHiOgddFoB84CW8EOtuHmajq3k8laFtDKSsXK+S3bvVIuyQag5goiHLLzLCUeRpcz4G1bzgjjWkyAb/a6LnQv0hdWXff9i/etnHFmjGHx0PR5BToL7wHLv9ALNg8SH6+VuqKxPqMYqUubo+qjBuO5W6/CxTMLwfW06eqf5hywL7ImTTqRVx5Wd8RT7Sfp7++87HuHMx17k9oKZk2l3NaJdNyerHCqRbR7e+oowhi64dgj3RWOdqJVtgd7RqIEv3Z1lld0K7V1rRTl51IJq984h3BVnpkTUz42MkVCVI6MsE9wqGjIrKuqWB8e6dzLvRjVYGX7NcMPTZW3J6bL1GL9nst/TRbA2xxn9u0A9EkCyLkpKn3deDMiyyLBzXOXLRMsX4bcDNIlI9rOWV7t3jODWvGneySg7i4VLze6NYlX2I6PxrxgNdpTR59SikSyenZo32ZDEXFM/53lHUD1p6A2tcVDLKjTxHOXeWf1S0ixGFuXtjlhMTBPOblZz7Nx7DKtf19KA437w1p+dCLIVlPFKdEYiI0QbctRO/7rs675Y7niq1T8aqbbbRjW8muyevrRf2JTPRMgZsdyIqOBaViwnYvVMapvI8pb2DXVsVvow/hn/ngLaC1HD1caVQVbQxrd073hHu3iBOIYs7iVJXZ/rWtcb2emPJ9L2dl0Mke6n67J5kaBuACrzz07f62KnMjsp2OjyGi9VqzLbeZ6wKx3RmmvNF30j44fRHxf1bhRKhypej0f5N6iXl1HhYyfOIWf+0NDoq2bI8ekGH22sU/fOKtqlGhbjtYjy8HRpeNRLQVsUd6rq+huac+EhO9T58XDV7tqBH0b/yaBI/beaeBg77vPfZGNxQfcZP6qir5i5TVB0DJm7/E7ajD2BOlbrkGONlwm5yibH4FrEkm8NTmiQd5/PbYdq8LwV3cIQv41B231QkWh95kCNm9d+biTWoauU51OeJ/q5xNVnNXelaPGu6CnxGljEmWeXSSNHmqty8l2hBiXr6VvvnLkKR2lH69SgDWd3IQ0pjE7yQcdyp+/ty0e5O9Byk3mcVLXs2nEZuaigGi9qsplG8hBXBqgys2AmXw0DepIsP+xGJyKzuve5rjb6UOzE93uA2K9omXgzGy+SLCL6smOkKxeIW4XbHlVwLQNIC/iOV79mJwdU2VjjFaLLiaK6z5NHhnEEEdneMygyW51evr+/e6ffyJGUUHjDMzkK1fhkyIJGymE5AQ2Z9U6/EbO7a6MosJexR6srtXohRqLZvtaOXxJSno2nUxZ1TF9fXzWjdz4gRDsUFu8PMkXeaM+dZrYlml5FuDg8dMlCzpFrgNN2u3c2id6lNo0HrcP4cF82pY3+xxc8/tF8/s6/WRJ1dM0Sbqktn1lafJMba53WTlylUtroezC+TCJr40RXNz1xVziO2dPtUhUP40nNP9F+rvT5GpT26Z8EUogj6iWkpc9Vy/eN5tOPxitTfTZ/0rn1uBfh6A3J6KPFqzY/QTWy14WnO9JSEda00f8Jsm4jwdGbpXun8jGyCogZs959qKKnCHNmyU7dqif36WxXXkUXOHACS5Y7fbT45eYdi5LWFcmym0Zy2Uno3XoMb6fs5U6/JyUPCJfJjR6cAIETd7foRM/J62moL3LzguYvz4TVBSElIVDr9JxlB52ln1qgn7jb6Cchi0viuvK9jDT762XgsunDGwj90wbdLde1d4qBYHCj2+eSrb/RboMGPwpsRidnbeC96DR+oKSRgfLzmK0L8WSXae/0iczS7b0qQXK/h7bDyAZ3zrUqRlbkqTIkGqu+IRUVlMixd/pN88Dpxltr/OPvASAa/NUvTaEh7V8b/aYZsHDleJZokHxP0wBmKEa3+qUpq+drPG/32aHuHfRb7mgQF8ku6BEcWm4Hy7Hsuo92fhdg/HutevXI7p0MaLjJwnb61m/YHdCMrKU/0JNVe1FH6k+7uztbNH1BArk0yAeKXqIikePx7p23hY884RK8fZeoRlSjrUp1hTIbwF0o8zfeSeyAJrvyRn92ouAoeoadCxoW/synP1UZNyPXZVdr3qK+fNRvDWgj1TG0cacM2aSkus/+Trr79JxEaz8uGm++SrSLtaiyy58aPJRxIOgAQh/eqLxhmFF+p980GZHeeWn+mhSy4W74HGf0M77dNY/0FStxes+ph9x2DbB0XjmVPTPjpTOI8hO7dziulrd/zxDGFd2/e6jW6jPUZ1kivfji9FEakqjZhiUUHdAOPd1d3w0uEDv9ViA63F8SikK627Rg97lRsh3n2ZvVywUJtP5cF65dExl9qVKgxYtbfdcKVKWy4KSxjjzV4p+hoauI6/cNjbBKTRA3YXdConfGVGKrMLSn7+0qBvIknkLPAU2HJXLirg8E16x3+9HjlbK905fsBO5Cyy7ARhdrffDaYDQNKttGn7IYKFEkDY9MflZUkC68d+h11UgQ/Vyi5THTkizJThGZgBbJaJax5RKsisChF5ebcZL709sO7GZVayP+jdyMIV3cyY4ai2d9GOsXOLoh1PJNZ8mUfSPLhkgLzng1NwKRMktZhkEK50I3s8HXbEtqFFHkiJB1inD5aUmm8UmCO3bbiZaNeKdfCU1llTxLWwlX/fDa7XjjeQqtskPeHQf6SY5DppfWDhDJWdeFcQmpdbxHixs+laf5RF/M0TqjdQ/E+ff75xCqp6LriJRwoz8ayWil1wZhPAh9mIHeP2tGQxdt+CJKYDz9++l6MaIljzCfPiX0sPob14uZHCOTccYkvevSn/PsOhTlarBOAosio+vmaZ1c1778wzNyMyA1SMiKxr3IsjD4T3+PKi9NOG6P68LMPM20lu8nqSz6ZSHfX1YP1gClX9JaGpEKhqjcmeq6NHMQ9euJUZ9O1q9flf3pCGRZFBQqjaXBwvrSfXxWBV3esddfX1/X13Vdj6O3Eormi6XCxL3hnY3r5b+tGh56Xfa7R1R5ZEpIy+TauS7dpMbPs9yjdzQF3ieTf9l1Rc2+Z7njqoT12FD1fTVupDlH6osnd90JD9lsntmpBqlRKuH+HI1nVgHhhIo8FwiZzhUxSSS8Xtw7Vg1el82OpbJyWWQ7RpehQA8H1OrfmzuhSgZvg8+oa68hm1UULJsP74l7/zXGwzE4EfKLni/NWkTRY2lkZCwoOTKGZYe4dzwEVjXTN0LZPE9m0YuJ+0LcJXqczZyVzchsU9Sjdz47IK5LgvI9LU5ecLvyPUVmEW4XdFfXaVR1vU2jd6R+YkqdjfEz98vDHTIIXUrWnYU3leR0gl6fSpSe/mP0P0rm0aGoQWc1Cm0A5qC79Gb+4aeoqZ5vf7x0JkJPP/r0a9xh71b7Q1tgzVmsavlInqFJu3KaSL6/v//b6VNdMtq32U/P24lR36kWWZ37nCHufLWg6C4Fa4Pbu3dfquq7lF+ogqEujt27gOqLD3Vem8aa0VvB+Z6kzSx0Rm5BMilg06DgWUk3Mut9q56+tlF5S3QZ/04rUajyLr8NvgyOq7CyHp2I99qJ0h+InT7HldNGDZ/sc9SZtmdyypxCGH0KFD/dKZPmzdOJ64mokEmLKo+tSzFo6MwY/sr9bnWmBde8oAh6N8qnQu0dDlbVIFcZ1hZF4XbpTUEukHTnuvhrKJtehe/0rTNws02INxqJQVncOVn6qQ3yuBH7xtH9jL8PEm70LUFUKGQyldLebesknciaocz9jAWrjY9m1I33PIW6d0x+IADsqBiBdvSJVAk95Z4l8uat9pT2c9/YmXttmWWZKyso47cYe1hpZW+DT/n3KmhHn1RddBY8ZUFn1bux35rjQCuP4U3kmH55LOi7nzjagFRUoCdWR1Ov9hB3+RGgbUiiZdWbjjh+X5dvZc1mD4o7YIxU8los0rLYmv1Artw6iySLll2DiUX04Y+M3DFEjxqyhwB6/7T5zM/sCL6jLLNwx9NkbMl9o+Xtz79/PvJlQ9Gp01+Grj79sTH0HzeJVA7k3aUmHjXfPcaEZEg0+6KdiKRlAyR9aPQpHbJJQWpkPEKtdp+rWW7aMoqD048VFtm5KypfSka67vqFYMPX94Zko0KNVnD6pZG1qfFbAJK2OKz6hRI+9+mHpsvDQxfR5Bfdj4ZGRIj51k4/YjdFwbNflPozzR6RLo+m8STiYn9rp//PQ8Dq26x24Fpv14i39O4LZdYfaa0RtPmPAuVSEvUk3sxxO5VqGP2MaBXlsi7upRVFZeHe8XRvZSG62NuT4eiXsj/IlQGONfrXpZcKb2H8Zs/cMfxt9GsT/bKhcsILCP2k9dfoa1+gZQFNCa3uAyhj5LgnkHcyEtD0gUKGuci8QeDoBGf9Ro3/6J0+IpFGf9b+WwbwbjtIoPjid0HuP/qulwLV6FucwC3Y+o3cxoZog7/zWa9IJasduLR8QuNDpCfCyuB/vuc9JpHR78WAj/X8fAy/Vyw8enSVN8gvLaohpPSvynwhoJac1ZMiY/doeIJh42B58kCVp8S9Y/lCQPJvW9ssyyxybdq9AwLXVfKUHt8nr4YLgsH/fN7bfYcSvOK9btkZubNM1CaWaOVt8EDNjpd+XpNo2wW/03/bkbbBkUPd7besn4levJ60W2/NSfrAQaXKZnYla+VoMpFFX6l2Ibv9yMZ2wbUnn3I27sXRulBaMwNFz6nROo0vu/oRoVeinb5GTZgoUO8m7i9Uzr+dTvS8Nf8SOSeavyVRDVFGbla/Ytccr4mkGF2GeyppNVRvou1DVMgo+r3c9k7/pDdjU5/RZRltMDNDcZVWth/oiWZbcfrIWYBNI6GSzq7WoMUa5RhzaxuhUSZkt3opcv5MJ2c1ZfCsBZQBSpG8+39HlWpAMojXxb8st9jZWyaOmf4wei/ABh00g5MZxPXu4aqzGLdln02Nfi+oxgqNHw3Jpp+Vx2bNyvijvrAsONK904XKckJ1TWSbP84LjOLCyjZ+T1aRWojGX5vt5CyNz0Qyi4X/8IlCGP80/lSMBlnp09u/z9ZW1LqTyN977tBtkzXbO/0Kl2b3t/uoCKvFeLriNGtmeiKNckHTP4k9iPphlFPXsci9oxGWhOBm2cksnt2uayf6oP0IBupCsQpBRBivVj+QQwm9OXXsahe52gb/8+/ZThPa5R2ixk+pQ46GxSKWPFNjl2/JqUbvdEyjd2Zwj7en0guzyULrag5CjP7JRnyHXkzNG72WGi5pQjbf/I+j0kt951r9av5FIqtZSF0m+VtEuURn1d7hXOhG9/WJCgEqK8LcO4jsKCGi4iJy/90CCRGF0TSNQMbsUC6Ueam0blZjQZiTO2l2+lR6542JRYic9a7//vzWKz5ZIoXGvmmeVu6bHZTxi+rpbzWosNObPU86HM2a5UgTvQNiyKan68DqpeKx88usdx4ghIpHYWL0KSVdd/AwsNl+qCIbO/MUkfRjbRSsDX/r5Tunl7FQ9enf4+q9Y+y1JqqLWtmwqxtR/lBKmQ5k0PzIDQ5inz61JkqWxXJd6+JLmcZiAUculCQv9CSmD5rzbh0lotXXyGxwi3aptfIrr/E0F7lR9TkaOuNiyVSE64lZbSbt5yMyRlx5rQfLy8+uUupo9Ku/PRs8LOrVWMA9Ie08jwvqi6iRExKnz42v7pfFPtqL18IYWBmYrHqDavARXwQ7fcqqF1r82OlzfdhcgXPjYatNjnZ4KbU9zVOWhS96FYZ7GpR1YZmjYP18KWPfNDOSM1bD5UJy77wNhmsA3p6xaqc6fWH8kxNS4aVY3zdE8pbIp3kJq2l3xiS+8flPn5v1xxqoi9xqykvBOoLD0yiM7UQab6/yDFbtUHfblu1fV9xLRXL6414874yPGrXIfZ6HrP/69Csmi/Ru0a7G/P1eZnZHE1GDxcvg3//XAqqMLTlxIxaJh836a/SrTW5UktiMu7GkyBul3zO4R2nqd3f10ftU4zGP1dYml135ZVg/EYjdO+1/taPSYrd0F0TJadUu1dfbNDO01wzJ6O802MqdE+tL5Z1QXZQLMAoVM9Sbn2Tf5P4w+poXGprKXTFC4UOflNacGOFlPc4sEWOIa8N7zWrPiajKpmWZW43dncbCOcXIXFdXH9RAGsLslcuhbfQt+62ZrKa1njMHvmz79LkhVBxDrfW8DCn4VNotcCYZNh1Pa/be78hEr7e+jaDLWBOon0vcicU9gacLQcs2JJ85md3Y7NX3PUtpaJU1WN3HtC69Y/0CgjL6XE5RnLF0xYxdmXidnFD4hPKOfyRw5UNNtPKMdvKcY0v3MBfu3GdeC1AZuVZwfdXWftWd42WHB55Jljm07qfH5SnXlfZ2X7BybXkwG0vqnT4FNLcF8nEXZQd4ArNdPSfxCxm0tWfN/cW0e3LUvGR+ax/G6FtM/s4dAfXiBwnkFwki2j5tCzx2zk9/tNvQ+AzHgKK9KCUnB2mbb8+DCtnUfjPuPs/KvUPpj1bInORZJ+ARpx41J0gRP9Iw4J3vR5a98Aq5lSDy6VP8bIiDXmHV55W8JO12ktd/oBg9y9ITI7NIIARZPKERlKAtW1RZaSJ271B8kyNtnGy4H+tOUN430MbubfCf/j1qzXlFJKGQYQ2qRO9QdzTaESbarp0KoCoaGlXklEHPPU88CKCPUeTTZzXEcGtouYyibs+pnLIIokC457By562ebdWmJ5I7w+qykQATvXPnFOGfMs4PXrvSmTvD09Vh6Xbx/l5TB4jkrKcd7/2/e0dcA8TMSitQ+nEq3MCGk+wLpHvHq12vPljgEXKYEYSF7uFakLxUMumIht2Isj1ecDfF5Y3+qm2P9rWpNh5Noo2+lzGOjEW34i3GXfNupr0Gjj79yNCtSuUFTkttb/TJpvNjaQqriL9TcPXpr27ZLSekwmRzy0ogjRmtP00ePrqTQX8QIsZWhEbvzLIIm1qgKT4irf8/uUc3RSaYUclSAwsyZLNpTsSjOBfyy5dS+A3NgH6ghOd68nlJPr0s2+gHgaq8pzC7JERgXLRPC5hrwCMMPqp8q0CtCnz/uzb6AazqXTf7cML4UOeBs2vUrAipza5rBm3XjMjM9fWkE/e/CzX6s4SsLLQC4jFzEVhfCErdLhYx/uOYPXzllqGrGe2EJtK7g/CM3KwT+FQ87rrsI5CqJptZECWD3WzQnd3wPZSR+h3K8yTMjFLrpQ8zObd7JxmURdMLK56sc6Cx89fIyclWktmrXxqurzb6G2gtCosIDNRFgcaY8GPVBrUP1nB1FiFEUjMpqwoarq9w905GuMf3t2dEfr/5g7UcTy0cqLFG7s9q9CDX3vHyW2firVZIw6dlaVeoLXqDkhlqhq33XZsk8zedeyf6yHmnj577zJJHMssSST8/SOVJHRPi2HeZubd2Da6mXktcXySjj1IuAVGpMhuoCCi+YsR5ppCpZIAm2colrMhU1HDH/pCMfoV4+iYW7QQdNDT6q5lh63F6Wu2GxxfBLLs4I1lPqOSL3M/FTOTANC+HUHkbXxaFOpGIuHSKX1nzHm53LJRTXSXdfrNRSGNk+fQROo7Qh6xke2Fm6a9mTPmuflu7zHrd0UEPNe2QTSBWGZNc5aEUY9p9Jpoi76K107QMUVz1McvL8Y1onbKSn/V4dnW3jf7hcBRnLD2R1fBbuUGsXKCVDX40GeX3VAJGPXqnsUc7YsBCme+KxYlVlvRFcxwekUNZX4QzKo4pI9SL8+Vzruui5mc1xqwmbWdHTsXClzxmo+5gmczi1bYl1jtVj+QvbntaZHvBaySAfX19/dnpR+8gm6b5Q8a1qHVxmeEl+wHV4FOe8eu6bHeQDZ0upGZDJr3VqERJ+Z5FMbhMOirRiUzjvPPp92/EAVCiFaz6HV1jCHE+omhZ2HKyfHeirbJEF83s4/f3N1ac/pjFt/r3TDu40znZwJxI5VOCN9qyZEfvRF20aNxao5K9/1Q8XBcjKJFDViAbV2pbkqqVEiL0cSRCx1LE6VPDGTWTbDwWhzTeFgFu2vnn7zOUm/De4Fi3hyTbJyzLSKARufbJ9fQ9yBZCtQtlnBpj0QjxqkB0uOgb1HDXqOdZ8PRy48zPahy7GedemxDJ2tdazzA7/QxH6YqgGAMrUPXKohDZmBeBOLcSg//5vMW4EGW1A2Ucqhm5uwsMdWFmhxKWV5mT9ar63D5Rfb5nYbScEFuVnb7EP1V9oqJBWPwZ3A4jFv1C3X1HIdkkPsmRG4aZdT64Lq7xezDuHWsyXBxmYLdAm8bzvLD04/YmxxZqIMYYGo6mg5aI3TsWRbYaTKzm1OK5lpe3GUslnMRJBnwH8U6fG7IXwWzhae80Kc+bhS0iyW2E07foCzrOUX/H0FPCCU9M9W/mIKx9FffOTkqzNtbJPJJEk9VnNQwekptE21cbjbduI8qg0WVn7VM/+2SP799T8+l7JjWN7c7I4FeWhtrd/ZNtMHgg6E/U2jkZFJlzT5nUhLXZv6mGbKIZfO5nVm4ga3bqCs3cDqejFeJmyacPCH3JcqLRkhWCzGes7MBuCZrw6J1d1xD6hHGRXDwipasjvnR23WgnhP+dVPqg+cMRP5dIOQZRj/FWVFlgGncTVkgyXHc+i54cR8kK1nzeE5ZzkhnLCDEIo48w8VquogiQXAQa7B5bEZm5l6z4yG/8M35Guz3t545U0e9oQguucRXEuqur/rTS0dBe+NFyz6QXlOxn7R25RfhhVneZBtYnJoid/hP33avXpdvubXjzE8uM1gh67t+xSs6kRrW8nWQyY61vsEb/unqxNThEuGm0sTCMUXJ5Gkslw29JePQOGpkWMTIICXvaPOlGJjeEZE4444yUR6b5mKGdUX5HbPSrCLnRR+JDRiZzmKNFiLRmZrkU6wty7zYt2Db6T1li2Qbf6LBaDLOM42wvBPT+Rp6wTl3/Vi87ylzutLsVvWPSEYBdwiloylpDF7JEx3CMKUqfn+hkSD4IOqq1btk7fataJKcrlQdvNTzeQJgThD5cV3zVUE24pwHUcZyG1jxAR+80a3Zr9CBRITKmKhE+cjSis/W1Ye30EQemcYkWdRE3K3/K+a7VrtJrt2qR3JMdyzmlYjUH2e4DrXzrUbB2+mgD00gtj3qRSeKMK8UoWyX3aOLZl7GkgXa5hDcikiGpIOlCBY537yApNxVucS/JoukF56cjkS/AyFMd5e+j9bCSm4t9kVvtqHNd+fp7XbzYaEkYn+TZq+9WMmYSrIIjLJD2401f3hLfNNuWotl2ZK6HekYugmKeBIK8d/tgGVOezW9sjcaL5b7r1jT8FINP7WOzZsu9gxJtMbaXSRm4LpoI0PpDYeYHl/jIs4cgU/rDcRFqFVTj2hKPmj7RrqRdqAXotn3698ueyIuflfJYoaEYnvJDM0KRWC9qj6iXCqDpJDePRaOdCELr6WclU62VTEiP7l7hiJQomPHzGhftVDfIW1vcfu+2o01Fl45kLqjPfHtOV9lsYMiysGe1hO5///bf1iUw3vrEuURFAr1/2TAP2Yw+ylgQ5VJqMJgZcIpPWJKUJ2XXLZv5/iwT0gtySp5Fu3fAqHiU9cLTvcOJOOH0YzeckfLsprmuTs6CwioTs9HF0phSd+KU/ImmeYJk9NsI5aDnKI5d2XMT2ygheSfgVZ6iIsdc5FrclkdCTWfPODYKTy4WabIX+iWnJMqn+RePooWIkIx+dmFQL9ayjJNj2Cops1ZETLUM0M/LDr2fmmiM9b5JOEl25X36XAMZiVWyVvS4NOC8uGd+8J1LUem/e3CS0dLkRLmVjt7RiKbYadNSpF5lBJCwjsrRcJtIDD+nz6e47xo7Svj0NQ3t7rO6wJcNXGNa3c1ReWyND2ndO2MUQ2RUA/VStcGj56hlsENmmaXb6VNLxGq3gbDDkkamIIwBDWnEj/ZzGkye5hbVTqxItdNHXFSel3zSFG0p3vLXjn23RqtQljcZDFUk1sEg3vOfyugjckpm5N2N5gWS7DzquFcl89g8+u6t53+NPvouLrPiIFNVrpoRP9wcAKSXVTQRm4Vmzt+QTW+fL7e9SKWh9NPTv7cbiioNTYy4F4hwj1mMs1o2LUVGWX3edyqGSKeJ0/cy+uhx+p82rOGOwXLcKPciUlbjyLAUuYZ8N2sahSxGn7P+2qevDKJiWyYsPYXNatPZyRh0aDIeO+svXcimJYgG+4nxl5tWn9NelBG1jDRDIlHDV7Pvip/oUFY7Vi/hNx163OlXmyTKRV3WRTb+Ug7ll3MkROuG1tgixpHlDmsHyuajweCH0fc4qkfhbRwjQLtL0NQf7SgQC1lR1gyivmklp0n+vfHj93XNJ308KkS90XePiU99QrvMQyzQ9vnuvW9W7qIdpH2JcvEgyO669MpUN/+CLj/yRS5lF2Ot0FxhIhmp64q5CNPO4o3a7d9PaE9/v/s8TaqcHN/mbFayusmDevQOkuEf3VWRRL8wtdh98Ua0jQZKQqKkftWTi7QyFcdnEr1jfXQen/3W3tMRtuIkNjnguiiRdRW5bxas5k6z7hL1WW99WibNfX9/f6PHVu+AFk0QnZGpdR/CeZZ3hjeHKP2MNvrecuK6iijPi7YtGv2gzAPXq3F8clZG/yNy39DhyC5SztFz7CknSoAI9TlPkYXopVmkWG0QfnG/gEYWX3g2ZjqBqi+UfqH2vRqSewPOZ3r983msvfM5KkgFSnEPaB6RZu0hLHZtl9OWP88ojhxFxncQ+3QnsiCZpR5w0YgSe3sOItEuvkf3zlt4HAeqP1gSZy3tizeaLidu+Kf1cdjTSFBBmfc3UCNhUPrR2JDWp59VMTUWuuWR1+u4XDn7m0uELiPfeXlsBKNACNtNXXDt44JCUFQuHiUTdpPTLGW6utzLOJeWWEahocj6pHlHCNtd7vTRJwO9f9Eg7Zq0LvdO4ZRLzF7Dvri7d7TS6E+lykJvdGh9+MmOPLxlGG3zSEafG9u7+vznM9GDz0hWmXHjsk+Ge8dxurzu7KwPreghbazWOnmnTzXSCMJq/oA0F1mSp2YgyRMV1Lnj4FGva2ZPrTfE7Ivce2ci44ybObuXuM1PugQxH85lZXUZrspQ3NepW47GU3LW1oOUO41WOwcNak0TidGPqP2CMrdRERZo8yVlt/aONDnr8/2oZEPkl57aRS6K4ldof4VWTRMtokPQtImMpd6Vj4eB2uF+f8e5y+OORztAJIOe7gKXnBUd1ufhz5PAlY+1EdlJsEJODDoJpAQ5iasYTZ/QL+HV3DsaRNfbQL+j4Mpndf9C+R63P0jy2gHBvWK9DtBcD9QaWp/PouuYZJ16ALfTj4Jby6YqFaJssiN1bWQC3UDO0LIN3jbmfxVg9QU1sk2AAAAAAElFTkSuQmCC" id="image7cf49bc3c8" transform="scale(1 -1) translate(0 -274.32)" x="162" y="-81.083697" width="274.32" height="274.32"/> - - + - - + @@ -98,12 +98,12 @@ z - + - + @@ -191,22 +191,22 @@ z - - + - - + @@ -219,12 +219,12 @@ L 3.5 0 - + - + @@ -471,20 +471,20 @@ L 516.494118 355.403697 z " style="fill: none"/> - + +iVBORw0KGgoAAAANSUhEUgAAAX0AAAF9CAYAAADoebhRAABKrElEQVR4nO2debg8RXm2n0IQFREJIogBFQXRIOKOgishiKi44R5ZYghuiBqRSIgagiIGF0QlBFkUVwwoapAg7iiLC/nJRxQQRSIRkQASREGs749zaqamp5a39qruuq+rr9PT3dPdZ5a7n36ruodxzjkq4Vn4lPNzPosXJN1+zPUHcQBzf87Rlrf2AGZfhgBjh4PzQ4LXUwOMHR70/Jivwx3/9ybrMrf+yfpuK73W8XO0cQY9fH2wT0+sRkmLvNrjO0jhGOL/+2pGX9bAWsFriISP8GMzFHw1wgeiyDnVOsci/FBivw42oTsLv1aE5J/Ipyd81+2/mgXvSzHpH8MWd7ykYNl3l/cj9f6wbyZd/eg5hjHlMDZu/ZP1Z4PqsROuKT8ntcoeSCt8SnJXbT9gn4pIX3w5a/iSCuGz787HUwmffXM+qB5bcUnmKc4MKsH0uanhM5WK4GSfo1QzNmoUfiDVlHdqgD8y3bptYu/JnwZF6iHi9y3RjLbEdS2bDx03TFKn1uYj1PCHrB19jQRezTmOYQyvDmxDjpHI+SNXEn5K4UflaE5r1B0uM+Lk33FgY55E4MczhpfX0yfEyMXYCtvisjwbSyDtUFiLvXeqamAlQk3y/PGBG9IdEEYgfdcEHxoqqD15mkz5IeKXykTHK96TWuV/MbZammaVf2h5RSF974PO2HrvdCIIf+S4SDxU+IBd5pwf0qbwgV7fz8FA0Bdjq9mBRx73XZ8vRco7Kmwpv8V0nx1T2SdSn/ypIUt9TNcjAJiL/1rmVfZRpXwxfZj2z2YMuxQ8A9AJNlepJ8f22d0XH/Mb1MtVk/R1Uv8sXtCFT8Uk9S78YHTCP7v1HkOuwl9dVlfGkaefzdjs9ZHHc6MTa0nhU+fHpuqa/hhlr6rtq8o67M4Av8VjAxlq+qdh96Vpz8EXo63fBrW2H6PEo4IqrpLJVob8WaKKf1AakhO/EL7tNSrx2gzlSha+T11/tRRDFXqMg09zSR9YTPVjFD6wIngheXkcWPlyikH1uAZUwjdNTwFF5qWFX5qcnyUh+lobcAXb4rKZXLP13qmQqpJ+VDZkwPXu/9p78Arl9NfhQ6F7ZMT2ZfRK/QkwyZ2S9tkrAf7B8P2wpf0U0vcRfu5ES5W69vNkS/vEBuAak34QLmlfanB1Kd3kOhCNR/obWt4UywFAJ/shseXvmrxKyp+S5lXiZ6/UL+97ADBJv7aUn0twPile+XnSid+hx8/opC8wyV/TPZNCzjOPcUjfJnyBRvxU4Qtiij/aFzUTrknfJHxBTPGnEj4wIelHYLTSlyH0m69R+tV02SyFq/A7dCjCD0EIPsbV3a3jW6v37jDQIfWb3xaXZe+dY6OqhlwvqCnfddmOEl3dPmfvnSE5hB/SgEt97mb46dLQKrtwrk3zo0j5Erb3SW5AdpmXiskn/ZLU1CvHBSH407B7FNnHatxNRWiPHYrkdOLYDD/F1bhf0PZLsovUhXNssgfswpcRcs967x8F7Sd9VyKk/VglodZPq2Ol+zELn4JNHLb5LYSHMQofgNcBuXR30fLS/x+mHlLh0Y1ziK0hl20ZvIlOZwGT+FsPD63T2plYeenrUIifsSMK7AgNtuV8UD2eIjUneAoxUv5YE25R3hsnFMrf0Sl9X8tK3yHRC+Evid8luUdI+SpsH5SYH6TWUp1N/F4Hhkhfehs5hN1yY21W3svmg+qxI1OQu45y0qcIP2WZZ5XQPvehHx4XibcmfIFO7E7Cj/ylzwHloBGrNOD72aj+M0V5jyv+DNRIuYuzqEK/13z3GDsCnB+sX1bXSEtM+LYG2uEBwkf4/Ar9PFODXPVfzlRQv9AH8uXlD4zz0XYt87ieIVDTPuUA4dKoW/1nykfmxPfc9t01fU9bp0zSd0nw0rJG4QMrcheD/JiIKfWXvPdO9V/OVLh86VWJMFICrKEuH7uxsOhn6ui6k/mYhQ80lvRrI0fSn6zwgTjSjpT2BXJ/c9UZgO8BwpT2fYRfZYgYyv4Aw2sV8t4T3nPTd3fs0l+bsVMAAJy/tPCutIVvLZ9tqf9Q8VsWv6wpv5x74Tjl9JOxX7qNjgBZ6rtwHq0fvyz2GBdkNREWjmZm8SeEXzGNxlzV93xW3hHyzwYlwVec8n3TgO154staQvi2eZ1lxEHAdNsBE8fjL5emtdbv25tCwhfwK9TD2CnbZbNiqZeklPBdlklOhaUdHb6yF8JXiX/S9N44UdB9jxnw0aVPbC/10Ihd00+Nq8yLl3oS9t4ojUr0L8dHk2/3O6vlqMdW0DhtJHFNPydsE4Bfk297tu95vVfkNoCrwFs+dWSblN6D8aBL9qkT/3ek9ofvNPKzjy3DNpl/b+Tx0nTpZ6Jl4Qtq+dC2ji7Rp076crpPmfTZC5Otuhl035WY3yHf11l5a2XGTlkq8TCm7qfO+bR/hETIfOxdwHKens44kLtfnBWDBzDg8rwlghylHSB9WUeISPzln/Rckct7P3xeYWxij1HuCXmdlUmfKnzbvCkxbP2fUm+ApFC+xLG+6A9gK8NwPAEvx0dnos8l/NRET/iu72sFws9B6Ovcf0QlAV30kfFNfS7oBJ849acS/n/jHvhT/DrJunXwTxYs7YxU+CleT2vvHWqSb73M89+4BwA4fVFehXfjA3h9ql1KArUHT/GeOzmhJPrM5R5fxOdYkFv8wIqovMs6FN7LgiS//i2/xk13vod9QU8odXtKeYcifNXrbPuOL0lf1V3TJv7WhS9wSUevwrsBIJv073TDjfjd3TeIsi7bh6Jl4bO3qqdzzXQAo5Y+UEb8NbL+LcuvQwr5x5A+NeHrDq6m7/hCTX/q/fNdhT8cj82dbrhxNqge+2KS+hiFb5tHImF9PyVd+CuohG+aHoJN6Dk6RZi+xwtJXyf9qSR9F1InfarYY6X/2rGd6VClrkz8I076Xfo0scdO/Lq0TxV+aNIXqBI/Az7KKQm/d9nMg0+KH6v4Ta+F/D+7pvgl8TcsfcY+Dc6fX3o3qia39EOFD8STvsxeOA4nYz+sTS3pdLl3aiJmGwcu52bxVyh8xj69MD4m8X9Ic7XwKzyuMUhRvrHBr1kWf5HrXAaIkk+/IncEhNb4O9CLvULhd9SwHy9PS9lLp1V6P30i7I3q6fxdefdjKlAOZFHTPtAF3zj8gaX3YE5oshdlG1OZx7dbbE/6BHTCt83r+EOR+VjbMqaMrrRjm2fClvZbPBsIuQ6i3M8lNgJV6jESf2iZZmwStL0e4v8NbshtmLHV84G4NX2ZXP30a6dL34BPig+Vv6/4xyZ8gN57B/DrsqlyS/820GBfmo/zp8Zddyrpd1boNf3I9Np/PH539w3IB0H+Vrv4bcIX07tb7PCnrog/tvA76elJ30DMej1V+j3pq6E22lJvw2ArD/dvRWesdOlrSNVAa5N/6MVZ7L+kbT3IeVUk2N+vrv+fHJ50usGyz87/EZyy9G9df/mfv+NNI/6HOwv03jsaSpVjak/sQvjD8SBMB4QEUDqBjPXXBFXCN03vjI8u/QpxEX/ug4Sc7slJnyL1jOIfc4rvdGz0htxKGcqcWtNOVdJZ2IZLWacyXBK8WHYsBwlbmr91fdbLPAZSNvKz/1iexv8izbZGJX22I8DPLb0Xaai97KPFJcGfzorU92PwIpy08PgT2LvIfpi4403cKP4ufDVyUIgdBFSyl+c5i/9dDHijeedG1ZDLdlz5G1P8sRt0J9l1kyr+DML3qdXbviFD4Qtyif8+uFQ770psvfC4S98N0+cl1Jwm4S9sxyb+dxl2UnEAGF1NP3bSp0iav4u+XKcTi/vgUqPwxTKdEWMSvoZRJf0amMTFWS9mwMeJH5uKUj4wnqTvI3NV6hfp/u14Pd6c8FfgauE4xrCfg/JSde2lpvzZdlRp31X4q6m/S79D58WaD5nuAFCZ8IEu/SFvV/zyW7D8r9G8yJuUU81xijeeIv9U5Z1g6XskfMFa7Pvez+1MCZ3wbfMmgErutQlfhUr4pukkdMLPyFDwKuGbpteI60HCuC58b3684g8nPIG91zif8wOV03fGF5XTz8Hu9o0G8jx8DJ/BS5JvpxWONQhpf1VqpUpdTvypUv4hivUe7rYOl+96jefBvtKXkz5F7F6J3yT9REk/hrxNqT/FjfmKJn2XhW3Cpy6Ti+fhY3gePrY0PjZMEg9ZFoBbik+d+FXCN03XQP3C1ij8pklwFpAjrXM+/yzI48UIED7gIH0XmZcWv0nwYxL/sdh7JnF53LQ8ZZ3BuPbNp2ATu6P4WyWktOP63KAyj4rIST93eSam7F363y8ta+mHb2N0XTYpUm9d/CbBi3nD+a5nA8dib//k7lKyidmI6yB+kdhUKa6KNKdB1Rib6rk19+ZpqR6vgyL+FFflLki/9UZdF5m3Ln4Kwamd2i1zBGSV/DvaF5aWgj10WoT/hV7sqW7DsCB9SkNupyyuIo9SrvGBkuCpKX8spZt3sLnwC4vfluKDUv4mXD10tMjyNx0IZgSUeMi9d1zr9LpePCnxSe+5evW8G69amvZ6fMB5PTklPuvJ49N7R6Cr2cfotaPicI6tcPHS5Muwrdv2UqAS/d/5fXlj9dMXFL846xwG7Ex/LWKVd1wu1KoSj0bd0dX0XSgpfNN0HcVSewjP5nPBi/GEF2OphG+ang1dss+U+G31/OLCl/9monnhA16Jf9LS94E9pNy2lX3oc0Cp7duWyXHVrWN//azoEr1n0ndplA1p/M2CSPgOST+E/Tgfh/AFb+TzgcBM+r2eb4Y9ZC78kuKvkhwNvjah1yz8RFyJra1Cr174gkzCHz0E8Tvde4da1y9RzxdQ6/qupR2V6PkPac81lXFqresvnVXY6vq5e/ocwpSiN5VxktX1t2XAxQ7//zuYd8Jvgdfgn2fj78ffJtuOT11/VAnfhqbe71Teoci8pPABmsxjCN80vXWKlZFcqC3Zb+sgoIkIv1OYYdlnddy5pm+SemnhCz6Dl2jF7tN4q0v01KRfCxSZe997Z6o3XZNl7yL+kZIy2Q9xTe2TSvlDpLJPv7UykWGq9xX+u/EqY0mHbax/Lr92Pu5T4lEJ/VjsTUv2mco7jJ2unM75s2nP//kfwLdY+RXQrXBxnq6aruWdTjTYvwH8ufZSz6SFP4A9kn9z9mpciJ1K7ksTsIekS/gm4csI+buIP7hkk0H6OuELTOJnP//D8vJbjOonoDsD2L+t/OXPXZzu+kMpU4Gx/wTQu2w6U1r4MtXU3jMI37SMSvhium5eEb7J1EPHi6HsBVGF/8VxvD9C+MAg6Qt64o/D0/EZAMAX8Dzjcj7Cp5Z6khwYXH4ukQBF+DJy4qdKvXjqt8n98T2ZVoNN9Lu3817Jshf089/EpBC+eJ4Qvyx2co0+hEpuxFZViu94czRjOKCWcgwl2X+RZRF/qtelSz8hNuGnoJqST4u8dPULf0olAkoIY78A5/cuug9HS42v8nixA0AlpRzV6xLzNfGWPjsV4HtG249knKpo1d+zllTR8cY15cu9ejplOdrS0yaF6Ky4Cj9R2te9NjFTv1dDLjt18W9pVGK3TdfNawnf0tAYcBU4aflT+CRSPoDiKb+zjO1gGAtn6Q9FX1L8sryHIqdIvXXxy425nU4LuIgtlwSnxkL8sfXa0Qk+d6nHJOvWRT5WGPuIdh7nLyP34JF77vAt1m6nMffxXN+Dp/fcKUcldfxUcP5QAIu9eJzOkfmeavHrhM9OB4gXUnYmDGMfIYmfelVutUxc7lUl95HLfgjnD51fnHUhdoIYom+o8e9oDnxLNGMs7ZikrptHqdX3Blw/7omroq6vmm6ZlXIA59rXKMZrx/lDwflD3XvvDNO+T1nno3i+cvpf4tPuKwvkVMZ6b56K8EnzujJPl70fsuzviavwK2xecG+mhxB8qn762W+4phO+gCL+mHX7moTveu+dljDV9IGVun4NrH3tzcrpf9h4vcx7UgZduo8pfmqZJ9mZQYzSTiNX5ape6qz33rEJn7rMWLHJnF/bpvCnwoPxg9K7EIxK7j3pD2hE+DrWwjOm1aBRO0LsQu7Dx2PFdiZQGt0ZgMwleFiGPWkfSoKvNuU3LnwgY3nHNcHbyjymEo8o2djKQDWVdqZACyWe0uUd9jn9PL5Hll3IgqnEk7zB10X8jUte9TJnrelTxU9t0KXcYqHfhqF+RJfNWhiKP2c9v0t/haTin5D0gWXxN929QU70OpFTltFxCmN4aT9AJKcm4QPTabStleRJf3c+qX76w5cza0MuJcH7dNukyNxH+OLvKTVdVNLpdPIwgpSvIvsvZ5mkXqKfvg454ZdM+/vjfcW23emkoviFWrtzvdRN80ZA0+WdHJQQ/lD08uNj8drcu9PpJCHJRUgfYcDLHNYl5J7ph1Gc+ZGmyrCN/75mvzirs8z+eN9M5pRkn0r87J0Af1OSVXc68fkIsezqchCoDZ30AW/xd+knYNgEoHqFQ8s2zuK/TvPh2ai//Z0GoQpf0Kr4E0g/e01/7Cj7xQ6mxajTR6v16w4GY+XQif2/nRVcDxI1YBJ+AF36mekNs51OIC0K3IeAur2JyUr/5tvyt2EXE/7U0ryJwxo9ze90IjGp3jtD0cuP11unkV9gkpAbgI1sxLv4Ox3dGUKL9f6As4DJJH1bso+V/FWNtqmaynv3zU4o7+kXHtZdLtqGq4cAJpH0qUK/+ba1nRL/c/CJpWmn4UVJeusko/femRQqycvTXtc78zXDH29cfi/X2sD+/kVJ+vvh/TFWkwTXBE9dXiV80/TiqXwjrh46k4GS6nvybwOV8E3TZaJI/zi8JsZqmkEndur8GBQ/iHRGyyTFX3OJJzKTqemPiS78jiuuIq9a/CkaXhtqzKWkeROjlr5v42yMRl1V2i8h641uvzr7Nimwu5Xeg06nTSh1e+PzI+1Hlfh2w4zRffM0vEg5PZf4N7r96pnw5fEaEMJnd+vy72SioSSfmpV77xzDgFeP80XxSe026VNq9jrpC2L05lEdQChyv+4OmwVv2xeV5Plv8u9HdXyeAc9I9x30Kdc005PHVI9PIPtv4VHYCRdGX68rvr131sYxq08UfyPKn71BPZ0fFW0TRTgNLzKK3yZ8YFHY1XbnTAD/zUTT/Y4MOFfz3fo8m/9NKP7RIovd9dbKjnwLj0q2bleE4P94IyOXfBi7VVHeOSZOA45O+LlxLdVQl9eJnSL8IbFKPtQSTk2lnlGzI5sP8mOZz1sed9xIXMapIeEPcRE+ADD+fqifEZD4qcLPmfgpZZ5St2IISfryAcNF5iVLPDKMnQjO94m0rhsWHnN+9/CVXsqArT2+C0O5DzmXmwWfIPG7lHiilnbuNdju//SzmRII6Y+6IVfGJvSS997xTfq+wvdZPgWMnVh6F/RcylaG4XhMdGIvXOJpppbf8WIy0gdWxC4G1eOWcU3uNST9WAkfWE75QegEn0L8GaHIPLrwhylfN62TFJHygQTSd6nll6z75xI9e2CWzTRLLPEHl3JiCt1W2pGXGab6xCk/e4pXlXJ6eSc7nN9xNj6Zmn5OTKLnP9bPc6nt60pCtXfZTA1jN9APAL6ip9T4KeIH9D16Op3ImGv6I+2zXzvU2n6/DYOeKoTfycuevVzkwrL0IwifkuDHmvI7HQDVJ3jGvq4ciuzLDyOspBHxH1HwnkaixLNY3omc8Md6cZYN3/KOCvKvY2nY6ParR13O8cYn6bumfEqJJ+PBwVXqnD8x0Z7MGQqfPyT5JrNClfzBGdtaRn8bhhLElH5nBcY+DM7/Kt4KKdLfmvv30wealz6QVvy6hD8W8buk+pzSX7liqQu/0wDRxU+h1/CTwR8y3qTvWsY5grEg8TP2FeV0zp+yvCzn/UqMlLAH9nRfLaa0H1P2qsSfuebvW6/PVeIZi+yBsLq9j/h1whcMxV/FxVns84vDmOjCrxid2GOn+3P5XPLy+Ig50qEdakzCb4Hi0ldJfmzi71TM1nwueXk8BROQPTAXvov4O/koLn0dXfxleD3ejtfj7cm3w142H6qg1+47FZCjS2e10ufPKL0H4+LfHT5M78abE+7JsuirEX8nCgetXll+0IR+JyIWOXrxhP8Y7ARg7JfgfNPSu+GFLHsx/jTDByu18DvToAu/Xpykzy5ffMwfEL4DPdGnQ5fuTanfdEBohRfg5IXHn8JehfZE4tGGM60L0r/mnD+x2BW3Wgq/JmOB86c4ddnsSZ9Aqyl/igyFL6YVE79JbPIyU5Oc7XUR8yf0uoSUdlRy10Gu6Q9Tvm5aK7A/WRw6K7jU/n3hHzE/Hg0U4fssm4lkffQr/F+nBFn6qlJOjPJOJw055B2CEP1ohe+DowzfhoOdlneReDXCb+wA4dv7Jv9tGIh0ybfD0zj3Fv+/M5altj9q4VcqqxxX2GrxfU0aKn8dzPmC+IePVcsPeQS+PRv/Hh4Xdwcx4dswDEs6/H/L7EdKfKXfemNuFQ25voJrRG5ehBwIG3tddPfSsd1jRxa+ILb4J9uQO0bJxyRX2k9BTMmzvwL4h6OtruNLQ2kf0JdrcpZxdEw26U8NWeIuZwA+4v8sdsOzcKbz82qAEW7iaT0IhJZ2GpKbE7FLXiN8nXIk/S79iaITv9wW4CL8z2I37byWDgAU6QMJxT9Ckc1I0c4xsterSz8lGzHgumn+6xRcyjsm4QtaEX9r0mcHAvy9fpvKTqrG7cTiZ+zLC485//Ok2+sNubHZSPHBSyh/9lKAn5Js9UWhyH5IzfKnCh8oJ312oPnppQ8Aqv2b7VOD0h8KX5Ba/Cmp9oZrrcNeujIMxzsePLLO7o9GEojIJnzqMqnQbXs2vcFSjEruLQsfmJr0VSlfN30Xf9HoBD8m8fukfKfnPZLNB9XjyLikfJ/la4WxH8VZz4Fh8zv5mFaXzeu4ubwzFL38+Ow6Usofblrcx7XXr2O/okGRuljmu/H+d/7hyOUdVyKmYJc6P+fbRNsuCfF/xiz1ELpzso+v/OUvdl99SLK/Py6Zjf8ED/ZeT0ymlfSB5fp95Hq+Lc2HpP2h8HXTmsU1xdde9qGKvMGyh4Ad6JniY/7PhHXxF/sJPxQh+lqED7jccO2AlLuRGSH6BA24tkZbaqMuq/iWF76lnVjPT0WSi7Au4MvDcDoBV7GmLqd4y17G8TVolZqEDxDKO7LsxTg/OtXuZKTC7ppD0cuPeSV3NBUXXoWIW9mDxze1P5JFLfNQCD44eEiOv9dNsil68SQ5kFR6j6Ixs5z0947zJhxe+V0eU6JL86aUX3OyB1ZkL0Rfa1KPAf+wXuqmeWMlluiVB6Eu/CIs9tOXhX8SN5Z0TGl/KPxDWrkUwNRjx7Mhl9JPnyp8fnmZhtzYko+a9IGkSb+me+9QBRwj5cdM9cmFX3l5aHechi/iOaV3Y4axvMOPVtfyR1HeUXE2V4s/oOdO7Auz1l6f4w83sWy9dqoXfmJqEX4ukss+NpUKf3ecpn0c6wCwNdbgUmzn/LxF6Z/EV9L+SfMXUif+ErB/BPg/JN6Io+AvxX2U07fGlaTnu5R12ANW0n6r3TS1V+N+l1ct/lqQJWq88nUKNCJ70zI+8t8aa7SPqQcA8m0Y2AH0hJ+ivMP+cT5OFf/7sL9y+mtxbPD+AHrhC2KLP3djboravVb8lZZ3akKXwmPJPmvKH+EN6SjCH+Ii/qHwVVDET/+5RIeSjpD8IZxHq+cL0SdP+kRswqcuUzPU++S43E9nzI3AHSIh9fxHs/nQ8WKUN1zTJfwhvonfVeaUxG9L+6W6bLrcQdNF6NFq+xNJ+UDapJ+9ll9JQ+5OOGdp2rews/N6fFK+gJr2KUkfsKf96V2RWym19MMfYkvxPsLXLu8q8C586zwqk2oPWEUlfNP0FpCFrztIdOlXhE78pQ8IOvEXvU3yhIQPmKVck7CL7IvHWYNN7C2Lf2usmQlfHhdM64ZrDVBa8DqyCV7IXFXqmZjoBbl+KMXlql+xP977dgGvvi6/E87xKvWk4lJsZy3x6OaL6Zdiu570O+Ekuc3yd/lc8vJ4ArbH+cnWHYJ8f5tab00cdDCquCdOrfj0yx/Sk34nGN978ZDOHjLJXoxfhMck254LJsmXLudE3X6sxE+4vbKg5dINMBe/fHEWtZF3a6wZZ+8dQcp++tQePNS++q3T0k8nUpM99QBwuXRdygMCv045b7VAochv8PocBBzPGqjidynvpO6nb4IqfaA35HpDkflUhN8ZL6XPKjp2XIQPjLSffk5Cb8MQm1PxTOyJM4psO7iffgZc6veUpH+54m6yIWm/tqRfhEqSfur++jFvwtaTfka2xpWzQX5cglPxzNlfMZ6Tol04CzEUfGh5h0qtDbtRcG3g9WgQtgndt9cOVeQl77rZk/5IUEm+xsRf8sDg00vHpa4fQ/g96Q+wpf5IPYBM3TM/gJfjVTjee905bq3scrUuSfrs4QD/fvB+dRJhSvWlxC8Qv7RVC7HLO7Hp0h9gkn7v8jnDRfrW8g57ePD+dBKjE3tp4QMZk/3j677Qh8rYZf4N1wOp428L/yl+gj/FTwL3sj0o/ffFMtakL6Tfk379DBN/DdKvkdhdNlMxlnvmm0T/hEovjBsDuh9ZsSb9Lvt2EJLfE2d04Y8A/t655OVxFbdvMI4znVGxc9n3RJf+e0Nuy2zPgIv62+eDLe37pnzGLlRO5/xR82X2WJ32Oa9NzDCJ/g431vO5mFzSH8r+nHreC6BLvx22J6aGCg4C7MkA/2rpvaCzPc6PVsrRSR9YFH8o1GRfg/wnL32gKvH3e++MjQrSf0vCB8rX7l3ppZwKcCndVCR8oF+c5QVjR+bdIDXl+y7fsXIOdrIuY0r5sXAVfj9AJKBwrT6UXt4hYhI95wel23CIwCso9bSMSfQ741vK6anLOz4SL13iYe8A+N+tjH8Dj6m3pLMzM6dyH9knSvmM/Qyc39fruT3pdzoKKMl+1Dw5Tppl71j8W6Xwd2ZzocvjlcLYz4Ke36Xf6QygCN/1oFAq5Ts/78lsLnx53AMhet3jKtAJPpb4Ix9AZOH7yr9oQy77m+Vp/F/y70e1jKg2/208Qjvvcfhexj1Rcw520pZsXIjZQ2fIHW7kacs7OsE/mQFfdStT6AQvl3o67oiSTpPlHZXwTdNzkL2B1kaimvxbFbcDTolJ+GK+bZkUnIOdZoP82OX5HTU6sVclfFsKr7jM4yt8oJd3wNiRs0H1eGwI4b+VsSzyd5F5TvHHEHaMMwMSh2WQj62ME6nGXxWURla51u9LZQeP0ffTfwXegw/hdUvTKVJn7MhZzxzOD1I+J2nPncaJLfFPaG5P+yKPn6lrAln2hzHgUO5c4iGXdr7KzWJ3LO8AK6leLvNUlfJdCJV2Zf3025S+Lvkcuvzi+grftGxW0V/E/Wr7jXbX/DYeoazx64TvSqySTLaUL+Mo/tJdNYHKRV9ZAs/F5Ms7nU6V6IINsdTjJXxdmvdI+Z16mZz0m6zVu6Z2w/JvXb0W762cz8ZbJ9ZZAJUsKV9x1mqcvsodbuRhCf+rfC55eXxs5Er5lZV2gAjlnYfhO8rpP8Bjjc+Tu2ayv6m/q2bx2r0QuanUQzw45JB9SD1fV+LRQa3ph5R2ipRzhqwK31TauX0DFqessyr7++FHytk/xTbh2+gUoYqkX7vwq+IiPh9UjyshpO99qn77vuIuJvxD+TzZWxJ+CnTCt80rwZXYtPQuLFNhygcCpa9L+bZ5guOwV8jmnQkp7VRZFqpM9CkZbQ8dCpLwKQ24MW6yRpF6LeIXwq9G/OfwaoUPBN5wzSZ2XYlnKPv9cLLvLjjjK+/i5Z0G8S3xpLxC16fEU0VpR8Im9ZDyjo/Imyz1hNT0KxY6Be+kT0nyumVkyecUfqd+Ut+SwVXgtQm/0wnFW/q2hlrbMl32fvz29/q3zDSvM4cq8lqFb0ryNfTN79RNkfJOaXxKPCXKO6ESv8u6f3R/0iaK095rwkRCLfPkvvGaz/3yKZyJp2jn7YaveK83B751+smUeEJKOx9c3d4rC/++QeiPqPh22SyJq/RL1fNjJHey+FWyl0ko/jHdZdMkfEHN4p9MTV+Q62cPPzjYTkHxT1L6AF38LQsfIErfJnxBoPiLsPHgf7s27f9AkT5Qr/ijSP+7DHhkQ58VqvhDG3DHkvTHhHyDteB1XQHwLf2eG7s2bxU/VfpAW+IfCl+QQPxU2cvUKH5v6X/X8Blq6QAA2H82sXGqafk7OfM93lXEED67YmUQ452CqOSeOOmH4nPwiIlXqcYkfMr8Va5kbGEoxoiFD1Rwl01Z9mJ8rxGdfIQk/lj89vdr+TXqZuIKxrDliN5zV4ailx+XOBv4KbYhJ37yQcJS8lFJ/krGcJ8Jfy6GMHYtON84eD3Fkv7JjGnTvWlexx2j8F1KOz7LG7iCMVyx+j7L41G5li8OjVEq+VNk3mIDLvtg6T1wh7Frwdi1C+Pisdf6StT0qUKvJfGfgJcAAPbFx6zL6ko6Lml/CjV9m+BbS/455FxjGwC1dAPAOekDiJr0ZeHzV0ZbbVJMcvdN/WsBwA3r1Jmqa0n7++JjJOHrKFneqbGsQ0n0SVJ/Jz6NNNIOE36LiT8Wawnh37AOq1b+LVO6nh+VlnrudJpClehjpvxhsm8l6ZvwKfE8Bt8Au35tKF/Zu9+W5gseM73XUv5JQfarcRNfnCVwSfC9xLNIleUdgFbiqeSMgH2wLeHHLO88Bt9YWWdu6QNd/BR8pR9czklwG4YhVPG3Jn2gi19JJcJvkVjSF8IHKuqn31nEVd53WfePcYR/DZ9LXh6fOOzZ8dblK+5qhQ/oxd6FH0SMLppDtEkfaKPEIxhr4gfMqd9b9IVvvVB77x2b5PnptPWciacoZT2WK3g79SOnfMBwcVbK8k5OnoSz8DXsWno3gpDFHuVCK5cumiL9Z6R24YtlKOLvom6bt+DNyulvw9sz74k/5+MJC+IvUtMH4qf9YdJ/Es5aWqZ1+UfD5wKrBOJXpf0WhC9DTfwqXNN+P4DkQyf7Ia3IP6n0b1iH4e63cWP3T9W6T2YMe3EedDA4kX+JtNyk5e97Re1Eavs+tfsQ8QN2+XfZ54UqfJkW5C/ErywWhwhf/mtabriMSOq+tfkx1/RnnNqvoyCxxXhepy78EfOmMp/TpZq+EL5I7CnJsQ0Vzdb595zAgS0EWfZi/OcVvWbHMmD/5f2Rxa5r+O3kwSfleyGEL/6+M/3nVNT21xLSlWU/vEqXcqVuv5q3UxRdundI/TG7ZWo51rw/XfidlJyPJ8zLO9SSjG650JKQjGupZi/OlQ23JlyXb5JN2PIwRmxiJ4o/tDZvZX+uTPqdRLxwpJ/3QNaqNaFTxS+Wcy3XNFnecWGsgu90bLyQzYXvIP6Q0k62slAE+hW5Y6QLv9NxJqQHjvNzRQ3/nTxLPV/G65ezYp8d6Bp0h2lfdOsMZdQpvws/CH46vbafvBzUyUr2tJ5Z9oIqkj61PWAvzoHDu9Rq52C8rfQuBEGReRf++Gihr30MqpA+icPZXPga8Y86wZdkcGGWTuoH422zefJ4cmzdMj26bXapl+EIvC58JZ/kK4MYd2AK4jfecC0XpKSvEv0h9uc12yffl5jlHUn2JoEfgbdY52dF11unpj77nRkm0R+M92TckxVcyzytHSiKJ33vi7MIwgd6+rcibp88vJ2yw20XminnjOhKXSc+We//HSXZR8ZF4jGF/+ZM4ah40idLf5j0KdK/ggFbTizduSZ9otxDxZ4t7VPEPpXEr5L9C+v536nCL5H2BTnusqmS/dsTBqmi0k9yC4YrDF/6qRwAIt8rvxnhA/Q0X1j87E2Lj/k7I62Ymuqp8j9eWt/L475mLUg/JZRkn0L+Rco7d7+N5xc+Zf5YoMjcoXyTvSbfMIyphyY5npkfB+BS1qmxBBRKrlKOirVy3PBMSD6Z7F3o4k9ym2TdgaHKlF8Am/iHyT85hev8Lul9rEm/FGsDizdb61TKswfvzekKcT+bLU7PdA98IfbiZwQ/58XET0nzjAG6awujlXc6o+LNeEv0Es/CFblyCh9eJVv9AWEqCV4gBD88GMiPVQcGC+zf1dP508zdMjtuCMmzNxWo58vLF2zYPRjvsZZupp7ys9b0h2UY37JMtnJOyUbaowodcIbCT8wReMtCqpcfx+J362X4nyrqvRM14bsK3Lb8sOE2ckMu0KVeguL99Etzl99cH7YCIfyjWDr5+8rd8Xm6lD+cl7qMEyT+BFfn2nBpqG2uUVeIPoHwbfQDQhoY5+53MKOUeoo02FJKPKtnBDrZ//ZuG9K3p5L8GxL936Gp3lLqMQlfhj8tbDdsCOHf6eZIr+MWLEuyp8o8+a96xu6y2UmKqRdPqr76XknfJvRiPXRsJZ6YJSBdqk+Z+CdCNOEDVZVyOp0hOrEnvTjLJ+kPKfVbt1pUiV8SvqmkE5z0BbUlfkPSp6Z8wTDtH8YYDp3CD9NbsKX9bC8RJe33pF8dKXrqqIgi/RaJUt4B9OKPJf1hN8wE0gf8yjuHKSw3dfnrxJ/rZTmXMew43FjhXjpThP21fh7/13z7oWKyDbkquTsLH0ib6IXg5XGPbpidfHCuHlJzLmM4d/WII8bF45qEv8Hvf1V6F5JjEj5lfmpmSZ/958oE/tCSu5Ofu/zmej/ZpyJVN0zCwcKW9m0pX9B02j+bAbu0tf/nGt6LpdRfCJXsb1z3ngX2xB32YoB/nLisg9BLJf7JlneqpaD0AdPFWcvTRlPeOdvymld+EDBJHygrfkqyr13+VOn7JPgS4u/Sr4nCwvdhKP5U0mf3BvgvEqzYJnxBxeKfgvQ/g6cDAJ6HLwTvUwpCSja5xe/1w+iC92M/vAbHxdqXTgoStwEcynm23jvO4jcJvWKJu2ATvlimhPip9fsNfv8rq/hrlX2LeCX992O/pWld/oH4pHzVvXeG86cGNbn7UOmBIiTps4cC/D9j79EKLo22qUs831O8Ro+IeCCcTNLvRMQmcNXy8l9guXtnp2OhBuGL5VOIXyX74byY8veB/XVe8Tt32VSlfNP0Tka68DsDStXzXQVesjHXdGDIQe6k7yx9XRmnl3ciQJV2l7ualKWdyljqiy+xI+ezYcqUlnmtRLk4q3XhM3Z+6V3odMhQGm9rgJrea++yOTa8pP8aHDcTfcvCZ+z8mfDl8U5niUoacam9dTp58S3RlOinH5T0F4S/e1sfNJ3gi4v/dK4v35jmTZ0JlXZaoeQtF1xLO1MqBYVdnGUS/RfrlRNV7Jw/JvGedKLiK/5duPq5laR7gWuCL13TN0k/R0nHReS5u2+WvOmaf9JvLNl3OkZ24XPJy+MdZzb4/a+sKX/MN16zCb30XTb9kj5V+JWm/Z70R0pI0m8An1q98cIsFv8OoK4yL3FRlgpd0v8BHqyc/jBcQt6H3P3wbfSLszrjQVemmSgq4Q8dKD8uUQ1KdVFWCDrR65axHQB8hH/x6huzbYI3Je399HsJqFM7jaT8FqixZPMIzpNfcUs5SLiSQvaCtNKvtLzTGQFv0AQKF4k3JnyXhtnSjbi1YZN/jb13Uol/kjV9wFzX77X8StGJHgCOqvezZuPHGuE8UPPVDLrBmuGpoY7xTfq5yzumm6/5pnaXGn9p/JI+ReYVCx/Qi12eztZRD50CmIRPmV8hP2ZMK3zTfJPUSyX8kNJO7rJQ6Ruslca/IfeLvPmavRA8Y+cvHQRMcmfrAPy2lHvWGQVfZcCT1YIxyV617DD111a+uXHdezaT9IEV8X+PsUkeAMJ678hpfnfmle4ZO1M7j/PdfPbKmWG6pyCWU8mf7aDYxnkeO7bKTesyrP/7/B/O1+EI5fT34ODMe0LkDSx6mWdTXIlf4j5R1+mDSvw+yKtI0WWzJaYofCBmQ25k4Yv5tmVqQyV803QbN61b5mxKJ3zbvKIkqOsHCT9Cyk/JRJ03edL23jHgIvPWxB+TEgm/0/Ghtv72HTVFpD9lifvQxd/RUctZQ6cdmrkil7Ez1TX+/QYf+uP8BenTM6c36tJZ7/+uw8133cjvyaJ0o+ql01B3zRBJ654rT49R9w/BpUG3xjODh+GSJBdb1USx8k6N+Mi7C5/Gev933cJfb47ic8nL4wlhR8dbV2op15D8b1z3nlah1yh8X2x99HfFGZn2hEYzSZ/Mfiwo7XfScPNdNwpL+ioSp35Z9uxogB8QbdWTQBZ7jffYmXE5Ax4w/9y4pH2q8HfFGTgLz/Tfx4iE3U/fZ4OB9fylEk/E8g7gXuIxJX22Q1hXzdJU2WWTehFWBPmrEn4M8edI46XLPNVzueE9eMC4X7sk0v8pNsP9cLV+o57iN/bbj5TwY0q/o+CJDPi64/vke7VtgPhNJZ0WxN+lb8AkfGD00o9a0/8pNsNPsdnSeBYilXRcJN6F78AT2cowHLdR6PYKOrG3UuKpobbfqZPgmr5N7GK+KfnXhpC5LvVPXfYn4UXK6XvjE8sTTXIX83TJv7L76cQU/gM5TyrmaEn/lQz4YP7ky54B8M8nWLEt5YtlRpz2m+m9k+uWDAvbvE09dNQsHQyoaV5FBcLnB8xFnyLhP5Dzusswr2Tzv6/M936wZyz+jQpF5iMWPpBR+llLPZ0OEO3AkbqkI+QvD6HrCyaj5Dt5KZL0Od/NKbmXSPmj4edxv7y60k4QIWcEJhq6aEsmpOyTVPgVHggYu8z9SSNP8jYWavpfw2OVCz0J31FOd03vw149nO9WxV02s/HwwZfm+4k/fEL4P2fAFnG2tTc+EV/8w5p+BaWdktjq/br50UpFH+RqwReo7asYil5+zPlWYSsPOCCwEwG+T9jmc0BqyP0aHqsU//1wtZP4VY25sti1t1oYO2dpvuC71vEly85RfPLityEEH+uWyzXBP69uyKWkesYuo4lflntgwy07cXlcJX95uSE5DxZVXZHbhR+ZLXjUlG9jqffO13m60o2NDKWdk/EC7IVPJVk3Nc0nE75I9YV67/gIf7gsOfV7CN8kcMp83fI55D+r6etKO7Eo0WXzEtw/+zarI4Hw98YnZoP8WIntQizXC7UoZBK+/DcFcqNusZ4+lZR0poLrwcKHmfR1dftWEcK/BPevR/7f54uDjZRnAZHQyl5GJ3aT8H3FnanxViR8StLfG8cGbWts5RtXvBprA543doLLO651/Y4DY6rpC8H73IbBRqFeOjbhy7IX4ydh/6T71BkfpzGG50Q88JOk73MW0NIVuJ0552N75fTH4KI4G3ARvuke+sNlKsGW6rv82ydHCSYlC9L3kbsu5ce8/cLvbmG4053r+nJHY1feRBmnKLLYE/z4eY0k/8yfoPnM7VvXa1tjiYbvk1f8MVM+EHiXTWpZx0f8v7tFL0Lql+ES3B8Pxk+cty3zFJyJr2AavYp0KV8QLe2PGJf6vSrtDz/3ycQfWfovwQkLjz+Gfb3WoyJE/MMePOQunRZSSz9lLx7vmr5LHd92q2UZk+zlZShfhlDhA6hG+IxdBQDgfPPCe9LJSQtnuUPhi2lC/Ix9YWk+509Pvl8r214+YKimxTgQtEJVN1yjCN9n2dYRwh+Ox8SW8qnLTBnXXjrD5XWf6eifdV3Kt83ToEr1JuGbpnfS99WvSvquTEX8crq3JX3m+YOulNLNmMo77Be3KocQXBtnh8vrEn30pG8q4WSs6VPFnyOFu5aQWrjdgo6qrshNxZGWG1gdNGjWOBtPWHi8C74RdX/YU5en8S+Zn+MiezHOW/nFj46W2ks7gpg1fBWcb5W8Ude13j8Uv7j3jnwPnlI9fdYwhu00zbVNJ30KNuFTl4mFSvim6TkxJfkxpfwa0J0V3OnOfCb6VoSvg5Lkx1TmkXv1sBP9hB/jDGLNqs/WaLxWjfRTlGpcZC6WHaZ83bSa0JV0fEs9Y8dUxgkt8cQiufD35eohIpTGWsoyjF1GTvm1Nci6SDxWyUgkfF3Sr6rLpo/4TV8OnwR/EOfJyjuUNG8r82jXrRB8L+/o0cmd3/uO0bahatjNclHW5xiwRx1nCbYkb5O+TfYqyYeWgUIOHMN0X2PtP6imT7kFQ4tX5sau4Qv4l8zi9xU+sCL4nuxX+BU2wD1xY+ndmAl+bxybXvafY/rHlRwAhoQKXywTM93XdqaQguDyjk7q98PV2nlXY6PQzXYUiGTP+QGTTvk1CF8mu/BV823LJEIn9lz99HMjkj3fp86UD0TqvSPkbrsIS5a9GN8M13lvN3ZpZwxMWfYuxCzjFKWQzF0QgmfsC6OVvUytshcE1fRdMKX7ofhttX1qI5dvTT8X7KlhJZ2OGcZ+uDSN84dk3ofDtPM4PzRs5T7Cr7TUoyKk8danrj+F0g5QUe8dmda7qlGZmvAPxSFZtsPYD5XCt82Lvx964Yv5tmW0+Cb8Bs4MOmmpQvqqswDRX1nusyw/7rTHYTg8+TZyCd2Gt8w7UXBN7VNJ+UCl5Z2YUEs8Ocs6Mfi45v96cWP/R2xcpJ+q1OMjfOdST0hiH0mJhyrqGOuomXMYw84O3/vRSx9wvw1D7eiEL5iy+EtLPyThO4k/tExTofjPwK4Lj5+JswDEvStm7C6eLZKtvKMTe2rhA2apj0341GU6E6ZC4ZvgfKuZqOVx33VNnaw3XFMJfjtcOBtfg0cl23ZrclfhIvOPM1ZV4r8ed8GG+G3p3eg0yBnYFc/EWU0IW/aZIKXXfCjakDt8gVQvWGccdOHb6Y2/i5yBXWclH3m8VnT+qs1rVfTe6XQ6jjV93xJNxaWdZ+Ks2aCjVvHbxJ5d/D9ji4NEl34h2Bal92DazBpx96+z/YM9Xj/McBV4AeFfh/Wyb3NSnKf4/P7MPK1LvwBC+F388SH3yNmfzYVfmfgXxG6bHyDys/Ak7+dSEMK/Dus5yd+W5mtN+1k5j82FL48DwH0VnwlpWlHpDxs4amvwoLA50v6aT8cdzh+ilb9pXpxt+91aQTzPJnwlNvHvwReWOQtPmglfHo9JSMI3lXco80ePKt2bpg8o/nOJLYoeWJS9PH4V0vUweDHn5B48NfXcKUXu++zMt3uoU6Osj/DFsvybqxMIid8kdzFvV3yNvhMadMK/DuthI9wcvP4OAVXaX6WXdxqDIvMu/PIE30ytEDGSv07sLsLXpflaU3628GpL84S0n+2K3DFhKulQkz7bAuA/99+HfhuGSOzPgGPTvWYud9n0Ke3Mkr4FX5H7Jn9V2vdN+aKffu3YeuhEOzCYxL6D/bNcvLzTIldhq+BafojwgS73aCQUPrAodsYOa/YMwJWNcHO0njstCL8lyEmfvWs+zt+YanfaYij+lPX8sdNfy3RJP7RcE6PO3yqfVZxRP0uhTGo//KRpn5DygQZr+uyfSu/BHCGmq7DVJCUVwua4bGGQafm1fC2OLL0LS4RKm3rQuOn2kfwaGVZkrxK+mDeEIvOodf8d+Fzy8jgBkvTllK96nIuahC9oWVAlUEletUyLCOG/FkdWKf9U3HT7HWfCl8dbRSd712Wy4CB7AUn6w3JOL+90XKHIfrh8S8SQPLVRlrL8MJ2nKNGYBK86EKiGlhmKv5Xu5+TyjhB9SeHzvy+37Vwwdrty6NSLTvgp075K+KK75fDCqxgXX/muwyb21sU/RCf+mg4IvctmZegEz/kdIqz7LHBe5hJ23+TeSvlMJfj34SCvdVEadIfST31LBdWZQixhr3+HW6OsJxYupRtVo65gO1xYlewFvctmRZgSPWO3O4ufseWubsNprgcBxo5afd4bnJ5XK9cyho0j5J734aBoyX4odPZ4t1JOa4iDRyn5p6rPpxb+YTgIh3p85nrSrwhbGSeG9NXrpYlfCH/+PLr4a0r61xq+5KEHgNfiSO+E70Mu4adM+oIS0g8Vvinpp+IwxefLRf5d+pVArdtTxU8V/so66WnflPTZeQDfYfk5oY2yscRvkr1MjOSfixzS1zUCd+nnlb5K9kMo8meP5efwb+MpMfapE0ispO8i/Pm6/Wr97DzDOqUDQOmkTxW+TAvyL1HLHxJT/jnF35LwAZr0AYv438lWeu88Dl8hb5ix48jLdjodN76AXcjL1lLLX/8Ot85kLY/7rKcVahW+kXeuHOTWAgBq0u/CT4spycfovTNVfFJ+KZ6Os8nL+va93xVfsz6XssyQlqQdkvJL1PGj8KaV/V67xtIO2wfgJ/rPD+FE6cOwT4E3t8t9TivdNVtlyvfUeRbnzuIvJXvXlG/s1fMm7nbvHc73c9q4K2yflUGM2+arlunUSRf4tHBN/S2dJeTGtVumbXnnG66lFr+MLHWd4Mcgf/YPpfcgDy7iL9mAG+O5uXBN6znTPVXkquXYKbH3ZhmX5J4q5V+EbZKs10QTF2dRpB6r5LMP5ziRsSylHVn2Ypz/Y/LNRoXvoO7Bo+q6CcxlruvNU9MZQdbeO3sw4HNpt1d7OWcoevkxf2nefUmNLHsxvj1+lGXbVfXTD03sqer8saEk+xjyj31xVqv4Jvbk0t/DsF8eBwBTb55ahH/T7XdcSvYuqd4mf8Y+t7g834O0Xl19P3bCpyR7nfyjdNlERUm/9RJNq3ThF8IkfDHfUfyy2M/Ck6oRvUyI8MXyKVJ/sz1yBlDq/1F/ROUg6H8P1EQXfhpsQu/CHy81Cj81w5Q/Ng7FkVqpm+YNiZL0ZdmL8SNB+y3QLvy01CD2m++sl+96t9SZsJKUdjLU7VvCt7FWl/Y538NJ/Iz9BpzfzW8nCmKT+zNxqnL6GdgTQEXlndR8TZP6njSS07ps7MaAM2mvmUn28jK1iT+68OVSjq2s0wlCiN9Wy2fsNwt/W5S/L8HlHV1Jx7fU06mY3dIIi3JwcCVp4+3fOay7Sz471MbbqRKl945K8CXKO7reO7qUL4iZ9tmfA/zLxGUVvXha67Kpw0fksRN/1LtqmkT/Ds3zQ4Q/gTJQSF/80MZckfBn68uc9FW9eGJ12bSVd6I05FIFn5JY3TXZv6gH8n4QhQ+sCF5IXh734pR6EqVvck+R+KPgkuxjMAHhT53t8aOZ5OVxE8/HR0nrFnLXTYvaT/8gHOZ8AEjdN9+W8gUi7esEz//GZa/8uQybYytc5fYkWfgvLS+MEHnHTPuUpG9N+VThq9I+Nel/jk+ykbdk0gfaacjVyf7T+Euv9RW/OCtE+tR0Ty3v2BJ9avFfhs0XHpPkr0r4hcVfi/QFKvmTG2tTS78i0W942y9x/TqbZt2mj/jHdnWuDmqyd5V/1H76PviWZVq5+pbKUPhkhoJvWPip2JjzmeTlcSsuZZ3cJaBIbHjbL2eD6nFnfBSXfg5MDbXUlE9dxhfnkk6lhCb1lAcN566YugZa6rK2FF845dvE7ip+doH7Prim9p7yw5YFKpG+a2pPkfIppZtcdX1nRLqvoJ4fg5vvzKo8Y/BCJ/aEwv88Y8pBJmaSZxfMhe8jfipTEX5qitb0Xev5qUs6pWv6YyG2sItfvGUr3bicESRmKHeZZ6x+1X2Eb6r1q0TPH+28icV1JrrHTgu4JnfAra5fRdJXIQTPT5wPybdpkHoXPp3Yki6e+iuSem3okn1o4qcI/1N41sIwFnx75VCpVvrA+BprOw2jE39DBwTTWYAvukQfmvRtqCQ/JvGnpNryThd++8RM6MVLPBouxHZ4FNaU3o0ZtvJOSC1fV+IZpvrUwgfMgn8BPpt+BzKQqstm+A3XLmDAo+v8QnbKIkRdvDwTmQuxnfZxTQcAFdevs2n0mr6QPLsgj/BNJBX+dprP8Zq2/Odf3rmArQzD8c70WMPUwyrr3cJng+pxSwyFXxvPKHitZWnhF0N3MAiEkuB96v9+5R2b4D2Sf6zfuO3YYezb4PxxcVa2xvJZ2M7+WbCdCdRycHARfs2JP3bSnwQ2sWdI+8/HR6M08rpLn5roe8mnOhj7ttPypANDYum3KHzBWMQ/eeEDVUg/FlX33unYYf9KXM5R+DnRib0W4U+ZpMK/uJGSMKV8k6jEkwK3htwK6/a7SQ03Z3p22fo11p+N3wM3Be6RA+cOXs8d6ZKTZc/+FeB/HWmf5G3ELAMZUCX9qQuf3RfgP4u/3ioSvix7Mb5txe/3Gj7hpF9ZyWa3QUv98DEFWfhZGQpfN02BKt1TE39t6Eo7NfX4ydl4y+67MgzHY2ASvhD89etsOhtqIeZr0OnlnbzJPhKqVG9K+iGlnZrLQrnIVZvXyS2H9LLdVllX0tFMlw+ARUmZ5N+YN+C499N/NE/Se6ckLYufUtrh/HHe8raWd7bj+sZcSyNuljS/LwNOqPvzSBFaqnKPK9vgIvwI2/uvYFuuFryivDN8XYq/BjHFPxS9/PhdaT+v4RdnDWlM+K2TopbvDKGHjor1buHpxL8vWx6vXP4podTybWl/G1w0+xtV/AThy9NrOPi1jF95Ryf2zMIfNtz6NuQWQdVo69CQm4McjbjR2ZctCp86z4Jriae27pqU0g1F+LrHzgjRaxpwdWJPLXz24ZWhRf6LsYVBh39N/9F8Lnl5PDNC9LmFfw/8d/hKhOR35MmF36TAU+EpfiqphF+8rh2bynrsyLJPKv7MNfwhxX8jt0Vk4f8af1pwT8bFzXdmYV01XWQeUOox9eZRCX8NtsZ2uFT7HKrMVSmXfVWx3JPVz6f03tGhSvZBJR4HRlnSMYnfs6Y/TPcP0qg9fk2/0/Gklb75sth1d9lcg621j00HABdUwhfTVeLX3Wytpu6ZKkYn/MIk77LJ2BWpN5Edke57yp8mV0mJaij8Ndh6SfhDhvNzSk3ug+/SH3+Y6nOl/MkR0HPnQZwvDDp6eacyrmIMm/e3xI9M5R3de2STvYph6leVeqhlnaXnaco8nWkz+YuzakIkyKsYW0iTnbpIeVDmP5tLXh5fWs4i9C78jg6S9H/AGH7QJVQ9T8DZpXdhsvikfNPzdLJnX50PU4axz8Rb2UnTctt0GnJ3MLyx57VXTtEJfjj9G9glx+5kh30Z4H8+mHgCD+uO+RbFc99Wz2eDKvqe8onIsj+JAXvX816nZBo1fZPwZQrLf1jS0ZURXBP9WMTPvqyfNzsAUKSvquerhC8giN836QP03jw66fMn63vsdCwI8U9E+MAUavpU4bsumwAh+c05j1o3HkPZxyT8hfkncH0jrW6eSfiE+SHCj0UXvicTkr1g3EnfR+KBaZ/dFeD/F7QKI74Cbznt24Qvs1TyoWCTvsCQ+HMkfWA57XfZd1wZR01/BxavNOO5LnbX5fGU8p8KLsIXy3uJvxG65DuhtCv9YYqXH2euzcvCH07v4q8casofMewvAP4fpfeiLW69meGO67VZJGlP+pSSTWhtXvX8Cnr4hNTmn4Czmy7xJONtPIr4t8OlVdT2O2m49eblz4hqWgsHgrYacgs3tKrQpXzqfBdCpB1D+KoPeUpcSzuhzwvF9546pQ8WPeWbcfnc+3xHcl8C1Zb0K8RWvhlLeUd8mHOKv6rafOL++qXFnxLGvl96F7zJ8XnP3ZVmJn32oLwbxpmOL2aFKX8MsGNK70EanNK+TegOwt8Ol0a7i+YYEMJvWfxjY9Zlkz0I4P+VcctnMmA3h0NcSekT6vmqMk6qlO9T2/8GdiELnr9aPb1E41XMUg35zOEtLHqypyb5Vg4Y7FyA72hZRiF6zh+eaI/S4Jv0a67tt9NPP5f0K++nD/hJ/5vHuNX0deLXsiUDrkjzUSoi/gTYxN+C8Nm5y9NM8pfF35rwgYak/wsG3Ju2zV7Tj0yNNXyfRlxy2WdLtjIMxyMSU9SlGnnHgEr4pumdDPyCrQzDcQM96ctU0C3TFVPqF7L3rdtr0z5V7JGTf+uJ36WxtsbUb5I7Je33pB8Zm+A1yV/ZT/8axrBJI8cCEufx0d1lUyCn+Cx98RMkeReErEMPACWu3HXpy2/7Xd3aMNX4OX94b8itiIXyzjWM4ZrVTqPy+Cg4j88H1eMRUJ3wIx4ghORjpf0Uwv8lNsQvsaFxmRpFbttnCrZG3RZT/lhZG4BR7mKeSP6mZZOeHdjSuul5lGmZeDk+sDTteLwq2fZCumSyYwYlHlGuKZz2gfDEX+oePbX0xx+KXn68Ka7PvTujouaeO4BDQy4l+Sc/M3CV9eryR1VyxqISvml6DJx74dieWyjtC0EPRe0r7hTC3xTXj0KYuuSvLd9YUn6nLqL33qlJ/EcxNhN+afHbxJ5S/FFxbZyN2Jhb1RW6Hrim/FRnBZRyjkn8QvLy+FipPbX7kOSGa8kbgofi190OeSD6oxjDG8bUQN1pCtebstVY/xeMXfYy696Ng99u7snje3D4EPZdmvYKnEB78r25ugePpb8+45zzFOm8dO8fU7IvIX5qkk9V3/ep7dfWZdOEa22/1FlDaem7NtqGlqsOwaHK6YfjMK/1sXsB/H9C9igOoVenq2Q/hCx/oF+cBejFXnPST9mgO3ZcJF6yTFQ6vbtIPJXwbfOGsHvNB9XjEuQo+1AODDOIwgdWpV86lYewLb5XehdGibEBOGOCd4Ei89bbBVqBInXKMjaxlxR/qyivyBU1+dCyj+5gcrW03s0CDjhD4V+MRyiXq6WWbyrx+KR89mfL0/j/szzHUubx7u2T8N47vtT+04mqUk+uMwFbmcc35bskeIGq1OMj8xrKPhRcErxTiYeIsrwjZB1yBkARvuoxFZeEX4PwAb3YYwnfOP2YxLdR9hS+bn9jULPwgcXbMNd0S+YxdDvt6Gm2pq9L9bVzPF41k7w87oJNlCEizXV/ffZn8/2Ux6dICdnrxF6D8H1LNi2Uepzq9B7LU7DecM23xENN+kB4iafVA4AvVEGKUk/UnjuB2PbdVp6aGrvgC9p5Z+PpGfeEhk95B1gs8YTIu4UST5XlHZnaG3mnJnxXfJN7isRPOVhNOfEPMQmfMr8VfLtvdvzIXt4ZpvqQlD9FuhQ7MmMRfyx8zhLWuua38XfEQIr07gJJ+i5pfxPOrctvxvls6LjRavnD5WA19QPbLviCk8y7+Of4lHf+uMldlqbdiDtF2JswUh0cyEmfInMgw713OmRq+tFzl4NVrQc29vzSe1A/YyjVCOGnFP8rcIJW6qZ5MXC+944sfpXga28DmAohjbidOUPRy4/5p/PuSyscjsPIDbpjOEiYYEx9bQ7nK732hNw/hH2zlX2i/Vxi9JusvcxwxvCRfmDRlUCGKTlE+il68LTSe8cl1ceUf0ippqXePDbZh16cdTj+dnX7/+y+Iqyk/A3wO6/nAnrZDxHyz0mdv5FrEj6QXvrPZcC/1feyCFzEmUX62zDgR/TXy7T/NUjfp4xTWvxBwr+EAQ+u7/PuIn5VLf9w/K239EOpWfr1XZxlEz51GV+eyxb/VoZrt0fftO4kfPF3G9prphN7DcKfFJewlWE4XgD2yeVp1EZZ3XK1C9912VjUlfR9ZB4z9atEX1Hid+3V4pv4nYUv45D4aySksTZW2k+e9Klyz5T+h8LnLzQsW8mtlU24ijx32q8v6ZdCl+wrTfypcDozaFzwteJaqqmxlk9FlfBN1CT8x+JrUdaTO+3/f6zliIdSfegfAAAAAElFTkSuQmCC" id="image435dbc65e1" transform="scale(1 -1) translate(0 -274.32)" x="516.494118" y="-81.083697" width="274.32" height="274.32"/> - + - + @@ -497,12 +497,12 @@ iVBORw0KGgoAAAANSUhEUgAAAX0AAAF9CAYAAADoebhRAABHH0lEQVR4nO2df9AERXnnn+ZHxHgiJxXU - + - + @@ -525,12 +525,12 @@ iVBORw0KGgoAAAANSUhEUgAAAX0AAAF9CAYAAADoebhRAABHH0lEQVR4nO2df9AERXnnn+ZHxHgiJxXU - + - + @@ -543,12 +543,12 @@ iVBORw0KGgoAAAANSUhEUgAAAX0AAAF9CAYAAADoebhRAABHH0lEQVR4nO2df9AERXnnn+ZHxHgiJxXU - + - + @@ -569,463 +569,471 @@ iVBORw0KGgoAAAANSUhEUgAAAX0AAAF9CAYAAADoebhRAABHH0lEQVR4nO2df9AERXnnn+ZHxHgiJxXU - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -1199,20 +1207,20 @@ L 870.988235 355.403697 z " style="fill: none"/> - + +iVBORw0KGgoAAAANSUhEUgAAAX0AAAF9CAYAAADoebhRAABLLklEQVR4nO2debg0RX22n0IWFRH0VUEUXHlFgwR3VFwREXFX4i5LCMENUSOihAAhuKAoIiofQRDELagoimgUFwTjHkIMQVQQiSASBCS4gFjfH+fUTE1PLb/aq7rrvq653p6enp5+z5m5+5mnq/swzjlHJTwLn3B+zmfw/HgbsDdbnndCJT+e/RTbZuMYy7bvx+zLEGDsCHB+UPB6aoCxa4Kez/maSFsCrP+bG6zL3HTHjaKvM2T9Xnxj8N5+XCWfuSGv8vgMUjiW9v+9HHfBFvh18MutE7yGSPgIPzpDwdcifCCKnFOtcyzCDyWm8AG7cLMIOQdC8o/j0xM+kctxl9m/YtqXYtJn31+8HzWxu/JD6RcqRJ9a+D8s+yZqHfHmH97Gxk133Gh2U913wTXlZ6VW2QNphU9I+ar3dch7vYj0hfCH4i+CkO8P2Xw6lfDFawxfk7oDcEnmKb4ZVILpDT9G8QtCk/1ovhnkpELhh1JNvVMFD04oSpvYe/InQfkQhHxQfCua2NVOLaz/mxtmt44jJqkTe/wYHf6QdaOvkQB/6ErK5w8NW0+USujBfEW4KYUfk2M47aDucJkRJ/8OnZvuuFESgbNvAvwx0VebhB9hK2yDn+R5MaLcc8JaHL1TtP/3hZrkQ3c+uh3CCKTvmuBDUxJ1JE+LKT9E/HJNxL65/Hit8v8RtlqaZ5V/aL2jkD5j54LzHZxXNbrROx20822jEC5v+BgfDpvMOV/TpPCB3u9nYSB8xs4FY+cuTVOJVfUUqXdU2FJ+k+k+N6baJ9KY/KkhS52xa5qVvAoh/vV/c4NX7aNK+WL+MO2zTQB+nfs2xkKV8sX8HFWPTvC+qV+5rk0W7+t+3tUkfZ3UP4Pnd+FTMUm9Cz8YnfA/jV0zb0lcXIUvltXVOPJ8tslcRvJ0bnRiLyl86uOxqSbpqxiV7EV1o+r2FbUOeyrAv5B4mzxhT12el2tbt8CvySN4Uox8ANSSV817Ds5M8vqusNsA/PfmZVzEL1dD/DGLiV8I3yT30qlfQBL+sdyv11+tdnILnUJV0heSfxY+MS7hy8jyH8h+KFP5fi07AJXwxfyaxJ9T+DXCbqO/b9sBuCLEX+sBXIGQfNbROxVS1eidqNyBAde6/9c+gucp578YnwzdIiM6mQpqlz5A20b2CoC/P3w7SkjfR/i50/5Q9jp04relfeoBYFuNU0PSd8Il7UsHcF2Sfqxu38Z4pH8Hyy/FsgPQyX5IbPnbZD+kpPwp26raPvYKw/KeOwCT9GtL+bnETxW+jEr+OvG7jPgZnfQFJvlrhmdSyCV8YCzStwlfoBE/VfiCmOJ3lT5Qr/hdhT97XkTxpxI+MB3px2C00pd5FbOefFWj9KsZvVMKV+F36FCEH8IW+PVM8vL0FPERfsjzOiCdbZtT5lTalz415bsu21Gi+5ZR8ttHDtmHHMClPndzXLp0axV+nT7NjyLlS/wA2xgf53wHrfxNj6Wifek3jE+1UwP8C3PJy9O+pP5GEEroiB1KvaMTfMviBxblb9oRtIpN+DKy4EvIXjA96UdI+7EqoVpG5PgSa/tjjOZJRY4hmjax2x5voaIZm+wFD8GPnJ9TuvIpP07/So2E75ro+LLHMM4h1gO5V7J029+ZJJvjUlyBeykf479vQ/xjxUf8Jak36St2Boy9rcCGELmSzW+q+xOk5gRPIUbKr+Ws3FFxdJzPFLu3+jZ2ykrfQYhC+Evid0nuEVK+Etv/I6L4W6uEbOL32jE8IM+ONIewW+/ss3E0m99U9x2Zgtx1lJM+RYQZUnLwmPvAbXSReGvCF+jE7iT8B7D5TXW/Qig7DV1l44rvePtU4/SjQRF7pOQ/FcqdnEWV5V3lU5rfBs4P1C+rO0hLTPi2A7RLOwgf4Ru6/tBLHIwSqtQv5MvLXxjnre1a87h+Q6CmfcoOwqXbb0L4ruxP+53bkj6/xP2lW6FM0neRpbSsUfjAitzFTb5PxJT6S157pwufuOxw+UjfAmro5WN9IxAUFX7F386AcQsfaCzpV0eGpD9Z4QNx5BAp7Qs+jV1nO4GYl1M2pX0f4ZsSfzHhD3+fpt9NSGVDSPumpD926a/LnrsywT9VdkOaw7fLNwzn5F/Idznl3XG8cv7J2Cfdi44AWerPwZnRxvHLYjcNz6RSfXUDrOwEIu+UqfBLpnEwV/hdZh3Tg0mhJPiaU77vtlmeJ5/pmgqd8G2PdZYRO4Hn4EyvlH8CXro0L3aVUy2FhC/gl6hvY6fskM2apV6QUsJ3WSY5FVY7OnxlL4SvEv+k6aNxoqAL8gzPWe70e9VDJHKnnxpXmRevenzEXzg9UlGJfm98OPnr/htb+Zk+svYrqifu9HPCNgX4VRlfz9La1HtGbgu4CrzlbzZre/qKhS7Zp078QvjD6U4a2KYrt+F0abr0c9Gy8AVd/FHQJfrUSV9O9ymTPntBslU3g07wUcV/mN/nUSl95deDtUx9mzp35Xahj0H4F/OVW05cqpoLebxqx/PDFEKOagdYkX0O4bMXBMrft6KpoNqxiT2K+MV79DDm/H5VXmVzqdM3yX0tyy+DGpHF3q+yGY8Lub3bTyF7MX1Imt+jkPwJeGk24acmesLfn7t1+xUIPwuBoaT8pZXHSBd+XCjiD0X3QTqMJRM/kC7h/w/uhLvjf5OsWwf/eMFqZ6zCT/Ct0z56h1rhtJ7277n6//w5/f/xSrwL78PrEm1QGqgjeIqP3MkJ5YOVUPwx+R/caeF+bvEDK+LnH0/4AkezIMmzQwF+aLStWV4/ob4hjebxfF/aRu8sJf2laudibhd/68IHVmR/T/pe9ZV4V8KNWebW112PP2yycfB6TsY+VvG3LHx2qHp+yg95zZRK/EnxFL783hDT1b4vAhI+/5RZ/AsHcic/Pp+Y8mXhp5T/ra+7fnZT3ffFJPUxCt/2GIkCB3djUCLp14ju9x/8vlBgS/E5xuybXL5Q72gXnELSd0TIPlW9QxV7jPTfAi/FCfgw9tY+Tv3wKpNdr3dGDeW9ETvx6yoesvCpIcPyvlQl/nUBQsI3VTwTFD5QXvby8mMV/0txgva+vANwSWup+9zcDHeGXfLlCRZ+RGS3s+eu3F+XXOlMVO6dOrElfycO4eZkVWHKl3eAUX8WFfABzdnCL/c4vyBFfWODX7Us/hLCHyJc38/IHQGhHX8HerFXKPyOGvbj5Xlj+lYXiz5Onwh7g3o+f0fe7ZgKw2pHt0zUhNsF3zT8fqW3YE5wshfvxQTfQHvSJ6ATvu2xjj8UmY+p0uisoKt2bI+ZsKX9Jr8NBASUcn8usRGoUo+R+ENrmrEd0LWlfSF91962yQ+5hrH1+UDcTl9G9T4Z03uBSpe+AZ8UHyp/X/GPTfiAWfpD0fkM2VS5pX8aaLAvzqf5U+KuO5X0Oyv0Tj8yvfuPx4exN6nbB1ZkbhO/TfhifneLHf6UFfHHFn4nPT3pG4jZ11Ol35O+GmqNQb0Mg60e7p+Kzljp0teQ6gCtTf4+0peFz/5beq37O6+KBPv71fX/k8OTTjdY9tn534JTlv5NGy3/59e/YcT/4c4CffSOhlJ1TO2JXQh/OB2EaYeQAMogkLH+NUGV8E3zO+OjS79CXMSfeychp3ty0qdIPaP4x5ziOx0b/UBupQxlTr3GTqpKZ+E1XGqdynBJ8GLZsewkbGn+po1Yr3kMpDzIz/51eR5/cprXGpX02aMBfl7prUhD7bWPFpcEfzor0u/H4IX40ML9j2GPItthYv0buFH8Xfhq5KAQOwioZC8/5iz+dzDgDZYrb47pQC579Mq/McUf+4DuJIduUsWfQfg+Xb3tEzIUviCX+O+Bi7WPXYa1C/e79N0wvV9CzWkS/sLr2MT/DsNGKnYAo+v0Yyd9iqT5O+jLdTqxuAcuNgpfLNMZMSbhaxhV0q+BSZyc9SIGfJT4tqko5QPjSfo+MlelfpHu34LX4c2Z/wRoCY5nDPs4KC/V0F5qyp+9jirtuwp/NfV36XfovEjzJtPtACoTPtClP+Qtij8GFCz/qzQ/5E3LqeZ4xS+eIv9U9U6w9D0SvmCdkCd3JoRO+LbHJoBK7rUJX4VK+Kb5JHTCz8hQ8Crhm+bXiOtOwrgufiTm+yvLUV8AYOxo4+Oc76+cvyPOVM4/G7taXzOU5+Ej+CRenPx1WuE4g5D2VaVWqtTlxJ8q5R+kWO8Rbutw+azX+D3YV/py0qeI3Svxm6SfKOnHkLcp9ae4MF/ZpO+ATfjUZXLxPHwEz8NHlqbHhkniIcsCcEvxqRO/Svim+RqoH9gahd80Cb4F5EjrnM/fC/J0MQLbGbL0XWReWvwmwY9J/Mdhj5nE5WnT8pR1BuM6Np+CTeyO4m+VkGrH9blBNY+KyEk/dz0TU/Yu4++XliU0MiZGN2STIvXWxW8SvHhs+Ljrt4HjsId/cnepbGIexHUQv0hsqhRXRZrToDoYm+q5NY/maamP10ERf4qzchel3/hBXReZty5+CsGpnToscwRklfxb2/6cGSk4QqdF+JP1Yk91GYZF6Qd+beikx1XkUeoaHygJnpryx1LdvJXNhV9Y/LYUH5TyN+XqW0eLLH/TjmBGgKuzXXsnxygdV3KO6nkXXrk073V4X5bXDhL/R7nf6B1gReq6zt6l1jmCO4l/K/xoad5PsA399XLxVga8yf3DexnWRhm2KYu9+MlZZzNgx/w7BpcTtXLglO7fwL3amdF1+i6UFL5pvo5iqT2EZ/O54MV0wpOxVMI3zc+GLtlnSvy2Pr+48OV/M1Gb8L3wSPyTlr4P7IHlXls5hj4HlG7ftkyOs24dx+tnRZfoPZI+4HZQNuTgbxZEws+U9PfhfBzCF7yBz28E5tLvfb4R9sC58EuKv0pyHPC1Cb1m4SfiMqy1Cr164QsKVDujhHKCrcu1d6jj73Vn5eaAOirHtdpRiZ7/J+25phrHp9fPUfMsfauw9fq5R/ocxJSiN9U4yXr9bRjwI4f/v2eX3wqvxjtn0+/F3yV7HZ9hm6NK+DY0fb9TvUOReUnhAzSZxxC+aX7rFKuRXKgt2W/jIKCJCL9TmGHtszrt3OmbpF5a+IJP4sVasfscvNUlemrSrwWKzL2vvTPVi67JsncR/0hJmeyHuKb2SaX8IVLt0y+tTGSY6n2F/y680ljpsDvrn8uvnk/7VDwqoR+HPWjJPlO9w9jpyvmcP5v2/F/8CXzLlZHIW+FHeYZqutY7nWiwTwH8ufaqZ9LCH8Aeyr85+2l8DzuU3JYmYA9Ml/BNwpcR8ncRf3Blk0H6OuELTOJnv/jT8vJbjupPQHcGsE+t/Mufuzjf9Q+lTIWH4VwAfcimM6WFL1NN955B+KZlVMIX83WPFeGbTH3reDGUvSCq8M8cx+9HCB8YJH1BT/xxeBo+CQD4PJ5nXM5H+NSqJ8mOweXPJRKgCF9GTvxUqRdP/Ta5P6Yn02qwiX7Xdn5XsuwF/ftvYlIIXzxPiF8WO7mjD6GSC7FVleI73hzDGParpY6hJPszWRbxvxOvxt/hvdHX26WfEJvwU1BN5dMiL1n9wJ9aiYASwtgvwfndim7DMdLBV3m62A6gkirnnXj10nRM+Xt3+uy0aNuQlNMYW7p12sc15fdvBfVwDGMLknd9PAmuwk+0g5CFT5nvg5f0hfBrEb9O5Kb5Y5C/bzU0Blw7etLyp/JJpHwAxVN+Z5mYYjfhLP2h6EuKX5b3UOQUqbcufvlgbqfTAi4JPnvanwgL8cc2akcneHYawHeLtk1WTLJuXeRjhbFTtI9x/jLyCB555A7fct12apvHcP0Inj5ypxyV9PipEE6XR/E4fUfmu6nFrxM+Ox0gnkjZmTCMnUISP/Ws3GqZuNyrSu4jl/2Q72GHmfjXTTkmv/XPaA741eHj9McC5892vgwDJe0XH6PfKHfB5fg1toi2vv04r0v8lSFG6Ki6/Rijd4TrnT8Nw7TvU+t8GH+lnP9S/Iv7ygI5jTHsVssY4Y5XmteJv8vej7vg8oXpmOLv2JHln2KcfvYLrumEL6CIP2ZvX5PwXa+90xKmTh9Y6fVrYN2rb1TO/9OdN8y8JWWQhS8TU/zUtJ9svH6MaqeRs3JVP+qs196xCZ+6zFixyZxf3abwp8ID8O+lNyEYldx70h/QiPB1rNMrtroQYhdyH94fK7ZvAqXRfQOQuRAPyrAl7UNJ8NWm/MaFD2Ssd1wTvK3mMVU8orKx1UA1VTtToIWKp3S9wz6rf4w/M8smZMFU8SS/DIOL+BuXvOrHnLXTp4qfekBXJfWhyCnLdMoihmzWwlD8Ofv8Lv0Vkop/QtIHlsXf9PAGOdHrRE5ZRsepjOElfQeRnJqED0znoG2tJE/6u/JJjdMf/jizHsilJHifYZsUmfsIX/x7aj/w0elMjxGkfBXZ/3KWSeolxunrkBN+ybS/L95T7LU7nVQUv37+rlwvddNjI6DpeicHJYQ/FL18/zi8JvfmdDpJEOKP+kdUTmHAyxzWJeSe6Q+jOHORpmXY2n9bs5+c1VlmX7xnJnNKsk8lfvZ2gL8xyao7nficQqxdXXYCtaGTPuAt/i79BAwPAah+wqG1jbP4r9G8edb0X3+nQajCF7Qq/gTSz97pjx3luNjBvBg9fbSuX7czGCsHT+z/21nBdSdRAybhB9Cln5l+YLbTCaRFgfsQ0NubmKz0b7w5/zHsYsKfWpo3cXijX/M7nUhMavTOUPTy/Q3Xa+QvMEnIB4CNrOFd/J2O7htCi31/wLeAySR9W7KPlfxVB21THSrvwzc7oby7n3hYd120NVffAphE0qcK/cab13VK/M/Bx5bmfRovTDJaJxl99M6kUElenvfaPpivGf58/fLvcp2N7b+/KEl/nwR/3SUWrgmeurxK+Kb5xVP5Gq6+dSYDJdX35N8GKuGb5stEkf7xir/pOGZ0Yqc+HoPiO5HOaJmk+GuueCIzmU5/THThd1xxFXnV4k9x4LWhg7mUNG9i1NL3PTgb46CuKu2XkPWaW67I/poU2O1Lb0Gn0yaU3t74/EjbUSW+wzBjDN/8NF6onJ9L/GtuuWImfHm6BoTw2e27/DuZaCjJp2bl2jvHMuBV4/yh+KR2m/Qpnb1O+oIYo3lUOxCK3K+51ebBr+2LSvL8t/m3ozo+x4Cnp/sM+tQ1zYzkMfXxCWR/Lh6GHfC96Ot1xXf0zro4dvWJ4t+I8mevV8/nR0V7iSJ8Gi80it8mfGBR2NUO50wA/+1E0/2jGXCe5rP1OTb/N6H4R4ssdtdLKztyLh6WbN2uCMH/+XpGr3yOZYp659g4B3B0ws+Na1VDXV4ndorwh8SqfKgVTk1Vz6h5NJvf5Psyn7Pc77iRuMapIeEPcRE+ADD+XqifEZD4qcLPmfgpNU+pSzGEJH15h+Ei85IVjwxjJ4HzPSOt67qF+5xvEr7Sixmw1uOzMJT7kPO4WfAJEr9LxRO12rnr4HWv7N9mirAq/VEfyJWxCb3ktXd8k76v8H2WTwFjJ5XeBD0Xs5XbcDomOrEXrnia6fI7XkxG+sCK2MVNdb9lXJN7DUk/VsIHllN+EDrBpxB/Rigyjy78YcrXzeukRarto0vfpcsv2fvnEj27X5aXaZZY4g+ucmIK3VbtyMsMU33ilJ89xauqnF7v5Eeq6yfT6efEJHr+Y/1jLt2+rhKqfchmahi7jr4D8BU9peOniB/Qj+jpdGJj7PRHOma/dqjdfr8Mg54qhN/Jy269LnJhWfoRhE9J8GNN+Z0OgOoTPGPfUN6KbMt/RlhJI+J/W8lrGq26fbHeiZzwx3pylg3fekcF+a9jaVhzyxWjrnO88Un6rimfUvFk3Dm4Sp3zxyXakjlD4fMHJn/JrFAlf2DGYy2jvwxDCWJKv7MCYx8E538db4UU6a/l/uP0gealD6QVvy7hj0X8Lqk+p/RXzljqwu80QHTxU+gdfjL4A8eb9F1rnLcxFiR+xr6qnM/5E5eX5byfiZESdr+e7qvFlPZjyl6V+DN3/r59fa6KZyyyB8J6ex/x64QvGIq/ipOz2OcWb2OiC79idGKPne7P43PJy9Mj5kiH41BjEn4LFJe+SvJjE3+nYtbyueTl6RRMQPbAXPgu4u/ko7j0dXTxl+F1eAteh7ckfx32svmtCnp336mAHEM6q5U+f3rpLRgXX3B4M70Lb064Jcuir0b8nSgcsHpm+QET+jsRscgxiif8j8FOAMZ+Bc43K70ZXsiyF9NPNbyxUgu/Mw268OvFSfrsp4v3+X3DN6An+nTo0r0p9Zt2CK3wfJy8cP8T2L3Qlkg83PBN67vpf+acP67YGbc62Cn6x3j/9keG8yc6DdnsSZ9Aqyl/igyFL+YVE79J9vIyGcRfEybhy49PSf4h1Y5K7jrInf4w5evmtQK74+Kts4JL9+8LP8V8fzRQhO+zbCZSjdG3Cb+TFrL0VVVOjHqnk4Yc8g5BiH60wvfBUfyH4UCn5V0kXovwW9tB+I6+yX8ZBiJd8u3wVM69xf8FxrJ0+6MWfoXJHchzhq0OX4GzU9qpeQ7kfEH8w/uq5Yc8BN+aTf8Aj4q7gZjwZRiGlQ7/TZntSImv9Fs/mFvFgVxf6Y+42w9J7a1IX6C7lo7tGjuy8AWxxT/ZA7ljlHxMcqX9FMSUPPtrgH8w2uo6nrSU9gF9XZOzxtEx2aQ/NWSJu3wD8BH/Z7ALnoWznJ9XA4xwEU/rTiC02hlp2o/dz7e0E6CSI+l36U8UnfjlYwEuwv8MdtE+1tIOgCJ9IKH4Ryp8IM1B2bGJP4f0q70MQ3LW1HmgLRdP5Vx5E4+5YBI+5fGOP2z/0ltQlhyjexj7ysItJUPB9wO5MVDJ/pp0PwL2EoCfmmz1RfGRec2pn5rygXJJ3yZ5frTfy8biItxrad7WuBRAOkGnTPs6yXP+pHQvmpjpJv3EsJes3IbTHQ8e2uC3sgQ1DSXVl0z+KuHL81usYlRyb1n4wNSkr6t0VPN38heNTvBjEr9vZUN+3kPZ/Ka6HxmXlO+zfK0wdlGU9eiET328k49pDdm8hpvrnaHo5ftfrqMF+9MNi9u47kZ1bFc0KFIXy3w/3v+dfzByveNKxG8GbH96zcP51tFel/R6q2k/ZtVDGc7JPrr6+i9yX39Isr8PLpxN/wwP8F5PTKaV9IHl/j5yn29L8yFpfyh83bxmcU3xtdc+VJE3PGLnItzLK8XHrHoo6+Iv8hN+KEL0tQgfcLng2n4pNyMzQvQJDuDaDtpSD+qyii95EToap9bRPElOwvouX74N5xNw7epTd/u+spfhL5vfxkxNwgcI9Y4sezHNj0m1ORlJOGLHl6Ho5fu8kiuaihOvQsStHMHjm9ofyqLWPBSCdw4eyZ4f7SbyFKN4UvTyrV1QbQwsJ/094nxlPqLyqzymRJfmTSm/5mQPrMheiL7WpB4D/kG91E2PjZVYohfDNmW68MuwKH0h/NV/dZWOreoRwj+CscnKn586l7w8rYIifHZf9UHbHAdyxyx5HbLgW5N9jJQv1zehVc7Uhb8rPl16ExYw1jv8GLXgR1HvqPgyVw/VDBi5E/vErHU34vjTDSzbqJ3Ywo9a7WSgJdnHIGaFo5J9bGo9HjAUvXz/TDwnymusxQW4GNs6P29R+h/iKyn/Q3Oh6MRfAvaPAP+HxC/iKPiLcQ/l/LW4jPR8l1qH3Xel2291mKb2bNzv86rFXwtyglf1+6XPxs1JK7I3LeMj/7W4QHufugMgX4aB7UdP+MNK56AIV3pg/zifpor/PdhXOf81OC54ewC98AWxxZ/7YG6KWkcr/hDpZz6QWwrdgdxYss+Z8n3rnVplD/jVOC7iHwpfBUX89D+X6FDpCMkfxHkU4QNz0SdP+kRswqcuUzPU6+S4XE9niscHOouE9PnslPmt48coL7imS/hDfBO/q8wpid+W9ksN2aRIWkjfRejRuv2JpHwgbdLP3eXHlHZI+t8BZy/NOxc7Oq8n5GAtNe1Tkj5gT/vTOyO3UmoZhz/EluJ9hK9d3lXgXfjWx6jkOOhaGyrhm+a3gCx83U6iS78idOIvvUPQib/oZZInJHzAnOZrOoBbYufh863BJvaWxb8WF8yEL08LpnXBtQYoLXgd2QQvZK6qeiYmeoHLBdRC2BqXkmseIfeLcC8v0fOX1d/L74CzvaqeVFyMba0Vj+5xMf9ibNuTfiecJJdZ/j6fS16eTsB2+E6ydYfA9p9XN7X+hayQZF/zSJxa8RmXP6Qn/U4wvtfiIX17yCR7MX0+HpHs9VwwSb50nROzwomV+CmXVxa0XN0Ac/HLJ2dRD/KuxQXjHL0jSDlOnzqChzpWv3Va+tOJ1GRP3QH8VDov5b6BHydqos8lft/6JgSfnYDrtwaq+F3qndTj9E1QpQ/0A7neUGQ+FeF3xssUR/W0hovwgZGO089J6GUYYnManoHdcEaR1w4ep58Bl/6ekvR/qrigYEjary3pl6CWpJ96vH6slA/0pJ+VtbhsdpPvl+A0PGP2r5jOSdEhnIUYCj603qFS64HdGLgK3OeAsE3ovqN2qCKPKXxXetIfCSrJ15j4S+4YfEbpuPT6MYTfk/4ittQfawSQaXjm+7A3XokTvNe9Kz6dXPIuZ+uSpM8eDPAfBm9XJxGmVF9K/ALxl7ZqIXa9E5su/UVM0u9DPue4SN9a77AHB29PJzE6sZcWPpAx2T9mHJdmHrvMz3HckQ7/jq7t7+reHT/D3fGzwK1sD8r4fbGMNekL6fekXz/DxF+D9Gsk9pDNVIzlmvkm0T+20hPjxoDuj6xYk36XfTsIye+GM7rwRwA/ei55eVrFLRuP45vOqNix7O9El/77gdyW2Y4B5/dfnw+2tO+b8hn7nnI+5w+bL/PM1Xmf9XqJGSbR3+r6et4Xk0v6Q9mfXc/vAujSb4ftiKmhgp0AewLAv1Z6K+hsh+9Eq3J00gcWxR8KNdnXIP/JSx+oSvz92jtjo4L035LwgfLdvSu9yqkAl+qmIuED/eQsLxi7MO8LUlO+7/IdK2djB+syppQfC1fh9x1EAgp39aH0eoeISfScPyDdC4cIvIKqp2VMot8R5yrnp653fCReuuJhbwX4m1amz8Ej6q10dmTmVO4j+0Qpn7Gfg/N7ej23J/1ORwEl2Y+aJ8RJs+yti/9WKfwd2Vzo8nSlMPbzoOd36Xc6AyjCd90plEr5zs97ApsLX572QIhed78KdIKPJf7IOxBZ+L7yL3ogl/3t8jz+//JvR7WMqJv/Fh6ifexR+EHGLVFzNnbQVjYuxByhM+RW1/O09Y5O8E9gwNfcagqd4OWqp+OOqHRC6p1inb5K+IJS4mfsQm0/P6ZO/1DGcGjGX7tJ+DK55R+jwomxo3ChiPQBZ+kDavFXJXxKCpc7ed/U3kfv1AVjF85uqvtj49DV678fythsOiVU4bsuG0pTwj88wzc+W40TqeOvCoqM5a7fl8qOEYx+nP7L8W58AK9dmk+Rupz8OX+A8jlJU37jxJb4xzSXp32hx5+pawJZ9ocz4GDuXPGQU/7XePSkz9+0mParSvkuhEq7sqTfpPTZQ9Xz+feX5/kK37RsVtGfz/0qnkaHa34LD1HWPDrhuxJrVE7uWgeAs/hLD9UEKhd9ZQk8F5OvdzqdKtFVOsSqx0v4ujTvkfI79TI56TfZ1bumdsPy4gDuoZxnPZibkljfAqhkSfkHa343uvmr3Op6Hpbwv8bnkpenx0aulF9ZtQNEqHcehH9Tzv93PNL4PHmEDvvb+odqFu/uhchNVQ9x55BD9iF9vq7i0UHt9EOqnSJ1zpBV4ZuqnVs2ZnFqnVXZ3wsXKR++FFuHv0anCFUk/dqFXxXn8/lNdb8SQoZfphq66SvuYsI/mM+TvSXhp0AnfNtjJbgMm5XehGUqTPlAoPR1Kd/2mOB47B7y8s6EVDtV1kKViT4lox2hQ0ESPuUAboyLrFGkXov4hfCrEf/ZvFrhA4VG78iyPx67Yx+c7PR81Sgd0vM0wy6pz+2UZdLiX4Uyciek3nEV+b1wUfGq5x74Vd4XrFjoFLyTPiXJ65aRJe8q/M64SX1WrmtVU0WX3+lExFv6tgO1tmW67P343R/1vzLTY505VJHXKnxTkq9hbH6nboKuvWNL+5QdQwl8Kp4S9U6oxG+7wZ/dn7Spojq4KkwkLV57J0T4Z+GJ2sd2wVe915sD356+dMXjRe7r479/9fVeUfjvG4RecM13yGZJXKVfqs+PkdzJ4lfJXiah+Md0lU2T8AU1i99H+k0KX5Drzx6+f/A6BcU/SekDdPG3LHyAKH2b8AWB4i/CnQf/t6vT/h8o0gfqFX8U6X+fAQ9t6L1CFX/oAdyxJP0xYbq0svO6LgH4vf2eG7ubt4qfKn2gLfEPhS9IIH6q7GVqFL+39L9veA+1tAMA7H82sXGqOfJ3cobL/NqIIXx2ycpNTHcKopJ74qQfis/OIyZeVY1J+JTHV7mMsYVbMUYsfKCCq2zKshfTu4/oy0dI4o/F7/64jt9B3UxcwhjuPaLfuStD0cv3S3wbuBRbkxM/eSdhqXxUkr+MMdxjwu+LIYxdDc7vHLyeYkn/ZMa06d70WMcdo/Bdqh2f5Q1cwhguWf09y9NRuZov3hqjVPKnyLzFA7js/aW3wB3GrgZjVy9Mi/te6yvR6VOFXkviPxEvBgDshY9Yl9VVOi5pfwqdvk3wrSX/HHKu8RgAtboB4Jz0AURN+rLw+SuirTYpJrn7pv51AOC69epM1bWk/b3wEZLwdZSsd2qsdSiJPknq78SnkYO0w4TfYuKPxTpC+Netx6qVf8uU7vOj0tLInU5TqBJ9zJQ/TPatJH0TPhXPdesxsGvXhfInu8nNaT7gMdN7LfVPCrKfjZv45CyBS4LvFc8iVdY7AK3iqeQbAXt/W8KPWe+IUJ9d+kAXPwVf6QfXOQkuwzCEKv7WpA908SupRPgtEkv6cotTzTj9ziKu8r7tBn+OI/yr+Fzy8vTEYc+Oty5fcVcrfEAv9i78IGIM0RyiTfpAGxWPYKyJHzCnfm/RF770Qu2jd2yS56fT1nMWnqiU9VjO4O3Uz/BYrfbkrJT1Tk4ejy/h69i59GYEIYs9yolWLkM0RfrPSO3CF8tQxN9F3TaH4M3K+YfhLZm3xJ9NbuYL4i/S6QPx0/4w6T8eX1papnX5R8PnBKsE4lel/RaEL0NN/Cpc037fgeRDJ/shrcg/qfSvW48t7Vko6z6ZMezOedDO4CT+RdJyk5a/7xm1E+n2fbr7EPEDdvl32eeFKnyZFuQvnKwsi0OEL/9rWm64jEjqvt38mDv9Gaf18yhIbDmen1MX/oh5Y5n36VKnL4QvEntKcryGimZ7/t0msGMLQZa9mP5FRT+z4xiw7/L2yGLXHfjt5MEn5XshhC/+fXv696loYNYR0pVlPzxLl3Kmbj+bt1MUXbp3SP0xh2VqOc68PV34nZRscjOf1zvUSka3XGglJONa1ezOufLArQnX5ZtkU7Z8GyM2sRPFH9rNW9mXK5N+JxEvGOn7PZB1ak3oVPGL5VzrmibrHRfGKvhOx8YL2Fz4DuIPqXay1UIR6GfkjpEu/E7HmZAROM7PFR3+23mWPl/G6y9nxf52oDugO0z7YlhnKKNO+V34QfDT6d1+8jqok5XsaT2z7AVVJH3q8YDdOQeO6FKrnQNxWOlNCIIi8y788dHCWPsYVCF9EkewufA14h91gi/J4MQsndQPxGGzx+Tp5NiGZXoM2+xSL8Pb8NrwlXycr9zEtANTEL/xgmu5ICV9legPsj+v2TH5vsSsdyTZmwT+NhxifTwrutE6NY3Z78wwif5AvDvjlqzgWvO0tqMonvS9T84iCB/o6d+KuHzy8HLKDpddaKbOGdGZuk58vN7/d5RkHxkXiccU/pszhaPiSZ8s/WHSp0j/Egbce2LpzjXpE+UeKvZsaZ8i9qkkfpXsX1DP/50q/BJpX5DjKpsq2b8lYZAqKv0kl2C4xPChn8oOIPK18psRPkBP84XFz964eJ+/PdKKqameKv8TpPXtHfdn1oL0U0JJ9inkX6Te2eRmnl/4lMfHAkXmDvVN9k6+YRhT35rkBGa+H4BLrVNjBRRKripHxTo5LngmJJ9M9i508Se5TLJux1Blyi+ATfzD5J+cwj2/S3ofa9IvxbrA4sXWOpXy7MHv5nSFuJ/NFudnuga+EHvxbwS/4MXET0nzjAG6cwuj1TudUfFmHBK94lk4I1dO4cOzZKvfIUwlwQuE4Ic7A/m+asdggX1BPZ8/1Twss+OGkDx7Y4E+X16+4IHdA/Fua3Uz9ZSftdMf1jC+tUy2OqfkQdqjCu1whsJPzNtwyEKql+/H4g8bZvg/VTR6J2rCdxW4bfnhgdvIB3KBLvUSFB+nX5rb/vbasBUI4R/F0snfV+6Oz9Ol/OFjqWucIPEnODvXhsuB2uYO6grRJxC+jb5DSAPj3P0KZpSqp8gBW0rFs/qNQCf7393+DvTXU0n+9Yn+36Gp3lL1mIQvw58athk2hPBvfWOkn+OWLEuyp8o8+V/1jD1ks5MU0yieVGP1vZK+TejFRujYKp6YFZAu1adM/BMhmvCBqqqcTmeITuxJT87ySfpDSv2tWy2qxC8J31TpBCd9QW2J35D0qSlfMEz7hzOGg6fwh+kt2NJ+th8RJe33pF8dKUbqqIgi/RaJUu8AevHHkv5wGGYC6QN+9c7hCstNXf468ef6sZzHGB49fLHCo3SmCPsb/WP8n/Nth4rJHshVyd1Z+EDaRC8EL097DMPs5INz9S015zGG81b3OGJa3K9J+Bv/8delNyE5JuFTHk/NLOmz/1iZwf+y5Obk57a/vdZP9qlINQyTsLOwpX1byhc0nfa/zICd2tr+8wy/i6XUXwiV7K/f4C4FtsQd9iKAf5S4rIPQSyX+ydY71VJQ+oDp5KzleaOpd75s+ZlXvhMwSR8oK35Ksq9d/lTp+yT4EuLv0q+JwsL3YSj+VNJndwP4LxOs2CZ8QcXin4L0P4mnAQCeh88Hb1MKQiqb3OL3+sPogvdiH7wax8falk4KEh8DOJjzbKN3nMVvEnrFEnfBJnyxTAnxU/v7jf/4a6v4a5V9i3gl/fdin6V5Xf6B+KR81bV3ho9PDWpy96HSHUVI0md/CfD/iL1FK7gctE1d8fxA8TN6SMQd4WSSficiNoGrlpf/BZaHd3Y6FmoQvlg+hfhVsh8+FlP+PrC/ySt+5yGbqpRvmt/JSBd+Z0CpPt9V4CUP5pp2DDnInfSdpa+rcXq9EwGqtLvc1aSsdipjaSy+xKM5n92mTGmZ10qUk7NaFz5j3ym9CZ0OGcrB2xqgpvfah2yODS/pvxrHz0TfsvAZ+85M+PJ0p7NEJQdxqaN1OnnxrWhKjNMPSvoLwt+1rTeaTvDFxX8619c3psemzoSqnVYoeckF12pnSlVQ2MlZJtGfWa+cqGLn/BGJt6QTFV/x78TVz60k3QtcE3zpTt8k/RyVjovIcw/fLHnRNf+k31iy73SM7MTnkpenO85s/MdfW1P+mC+8ZhN66ats+iV9qvArTfs96Y+UkKTfAD5dvfHELBb/CqCuMi9xUpYKXdL/dzxAOf9BuJC8DbnH4dvoJ2d1xoOuppkoKuEPHSjfL9EGpTopKwSd6HXL2HYAPsIXv5cUv5O019PvFVCndhpJ+S1QY2XzEM6Tn3FL2Um4knKT00q/0nqnMwJerwkULhJvTPguB2ZLH8StDZv8axy9k+pXOMlOHzD3+r3LrxSd6AHgqHrfazZ+rBHO/TQfzaALrBmeGioZ36Sfu94xXXzNN7W7dPyl8Uv6FJlXLHxAL3Z5PltPfesUwCR8yuMV8mPGtMI3PW6SeqmEH1Lt5K6FSl9grTT+B3LP5M139kLwjH1naSdgkjtbD+A3p9yyzij4GgOeoBaMSfaqZYepv7b65voN7tJM0gdWxP8Dxia5AwgbvSOn+V2ZV7pn7CztY5zv4rNVzgzTPQWxnEr+bHvFa3zbY8NWuWEDho3+mP/N+Vq8TTn/3Tgw85YQeT2LXvNshsvwK9wj6jp9UInfB3kVKYZstsQUhQ/EPJAbWfjicdsytaESvmm+jRs2KPNtSid822NFSdDrBwk/QspPyUSdN3nSjt4x4CLz1sQfkxIJv9Pxobbx9h01RaQ/ZYn70MXf0VHLt4ZOOzRzRi5jZ6k7/n0Gb/rj/QXpMzKnH9Sls+H/XYMbb7fG78miulGN0mlouGaIpHXPlefH6P1DcDmgW+M3gwfhwiQnW9VEsXqnRnzk3YVPY8P/u2bhX2+O4nPJy9MJYcfEW1dqKdeQ/K/f4C5WodcofF9sY/R3xhmZtoRGM0mfzD4sKO130nDj7daEJX0ViVO/LHt2DMD3i7bqSSCLvcZr7Mz4KQPuO3/fuKR9qvB3xhn4Ep7hv40RCbuevs8LBvb5SxVPxHoHcK94TEmfbR82VLM0VQ7ZpJ6EFUH+qoQfQ/w50njpmqd6fmr4Hdx33D+7JNK/FJvjXrhC/6Ke4jeO24+U8GNKv7OM7b2hxPds2wDxmyqdFsTfpW/AJHxg9NKP2ulfis1xKTZfms5CpErHReJd+HS83xuFLq+gE3srFU8N3X6nToI7fduHVzzunO4KImSuS/1Tl/2H8ELl/D3wsaV5pveH9b1R2fV0Ygr/fpwnFXO0pP8KBrw/f/JlTwf45xKs2JbyxTIjTvvNjN7JdUmGhde8WX3rqBnuDIK+6VUgfL7fXPQpEv79OK+7hnkFm//7iny/D/b0xX+jQpH5iIUPZJR+1qqn0wGi7ThSVzpC/vItdH3BZJR8Jy9Fkj7nuzgl9xIpfzT8Iu6HV1fthJAsEDR00pZMSO2TVPgV7ggY+4n7k0ae5G0sdPpfxyOVCz0e/6ac7/phHY7c4HyXKq6ymY0HDz40P0z85hPC/wUDtozzWnvgY9HFv9TpV1DtlMTW9+sej1YVvZ+rBV+g21cxFL18n/OtwlYesENgJwF8z7CXzwHpQO7X8Uil+O+FK5zErzpgJ4tde6mFsfMlzQd85zo+ZNk5ik9e/DaE4GNdcrkm+OfUB3IpqZ6xn9DEL8s98MAtO2l5WiV/ebkhOXcWVZ2R24UfmS151JRvYzh6xzUURCVDtXMyno/d8Ykk66am+WTCF6m+0OgdH+EPlyWnfg/hmwROeVy3fA75zzp9XbUTixJDNi/EfbK/ZnUkEP4e+NjsJt9XYfu9J3lfZBK+/G8K5IO6xUb6VFLpTAXXnYUPM+nrevtWEcK/EPepR/4/5Is3Gym/BURCJ3sZndiNwvcVd6aDtyLhU5L+Hjgu6LXGVt+44nWwNuB5Yye43in6FX7sjKjTF4L3ugyDjUKjdGzCl2Uvpj+EfZNuU2d8fJoxPCfijp8kfZ9vAS2dgduZ8x1sp5z/CJwfZf1O7wvTNfSHy1SCLdV3+bdPjgomJQvS95G7LuVHvfzCiQzYq64PdzR25k3UOEWRxZ7gj5/XCDsK4K9P+AInat5zlX3Oaqxo+J55xR8z5QOBV9mk1jpe4te9KQHyG/NC3AcPwM/cX1viiTgLX8U0RhXpUr4gVtofMy79vSrts6MW7ycTf2TpvxgnLtz/CPbyWo+KEPEPR/CQh3RaSC39lKN4vDt9lx7fqcc1yV5ehvDmDBU+gGqEz9jlAADOtyi8JZ2cJE/8ERgKX8wT4mfs80uPc/605Nu18trLOwzVvBg7glao64JrFOH7LNs4QvjD6ZjYUj51mSnjOkpnuPww5dvme2P67Hh8rlSp3iR80/xO+rH6dUnflYmIX073tqTPPP+gK6W6GVO9w355k/IWguvB2eHyukQfPembviVn7PSp4s+Rwl0rpBYut6CjqjNyU3Gk5QJWBwwOa3wZj124vxPOibo97CnL8/gXzc9xkb2Y5q38xY+OltqrHUHMDl8F51slP6jr2vcPxS+uvSNfg6fYSJ9PMeC56h1420mfgE341GVioRK+aX5OTEl+TCm/BnTfCvjr56JvRfg6KEl+TDWPPKqHneQn/CjfID7FFv8dUI/0E1Q1LjIXyw5Tvm5eTegqHd+qZ+yYapzQiicWyYW/F1ffIkI5WEtZhrGfkFN+bQdkXSQerTISCV+T9OsasukjfsMb1SfBH8B5snqHkuZtNY923QrB93pHj07u/G7rR3sN1YHdLCdlfZYBz6xjvL0tydukb5O9SvKhNVDIjmOY7mvs/oM6fcolGFo8Mzd2hy/gXzSL31f4wIrge7Jf4dfYGHfB9aU3Yyb4PXBcetl/lunvV7IDGBIqfLFMzHRf2zeFFATXO6aLaekeuwJrQl+2o0Ake873m3TKr0H4MtmFr3rctkwidGLPNU4/NyLZ8z3rTPlApNE71ItpybIX05vjGv8XjlztjIEpy96FmDVOUQrJ3AUheMY+P1rZy9Qqe0FQp++CKd0vid/W7RMPOPl2+rlgTwmrdDpmVO+5oJDhAWOHax/j/OCwlfsIv9KqR0XIwVufXn8K1Q5Q0+gdmcou+pSKqQn/YByU5XWuwBptyDA9FhuT8MXjtmW0+Cb8Br4ZdNJSxclZV2DNcgKTxT/mq2xOiMNxRPLXqOV4kbfMO1FwPZlrKikfqLXeiQi14slZ68Tgo5r/14sa+3/ExkX6qd53PsJ3rnpCEvtIKh6qqGOso2bOZgw7OnzuRy99wP0yDLWjE75gyuIvLf2QhO8k/tCapkLxn4GdF+4/A18CEPeqmLGHeLZItk5f9wHLcWDNJPWxCZ+6TGfCVCh8E5xvNRO1PO27rqmTtdNXCX5bfG82fQEeluy1W5O7CheZf5SxqhL/tbgt7oDfld6MToOcgZ3xDHypCWF/UfEZfUpFn0Og8OgdWfiq+53x0IVvpx/8XeQM7DyrfOTpWlEJ3zS/FHUO2ex0JohTp+9b0VRc7TwDX5rddNQqfpvYs4v/52zxJtGlXwi2ZektmDazqnHfulKYgD1Gf5vhKvACwr8GG2Z/zUnxbcX79+fmeV36BRDC7+KPD3lgwL5sLvzKxL8gdtvjASI/J3H6FMK/Bhs6yd+W5mtN+1n5NpsLX54GgHsq3hPSvKLSHx64TXkgNxVbIO1f8+m4szmuMY4WSzlizPfSCuJ5NuErsYn/mXxhmXMYmwlfno5JSMI31TuUx0ePKt2b5g8ofkZui6IHFmUvT1+OdCMMXsQ5eQRPTSN3SpH7OjsCzg92OijrI3yxLP/m6gxC4jfJXTz22AjvG53wr8GGWIMbg9ffIaBK+6v0eqcxKDLvwi9P8MXUChEj+evE7iJ8XZqvNeVnG5ZpS/OEtJ/tjNwxYap0qEmfbQnwX/hvQ78MQyT2ZcBx6X5mLlfZ9Kl2Zknfgq/IfZO/Ku37pnwxTr92bCN0ou0YTGLf3v4axeudFrkcWwV3+SHCB7rco5FQ+MCi2Bk7vNlvAK6swY3RRu60IPyWICd99o75NH9Dqs1pi6H4U/b5o2f/QXo5eno7tVRJP7SuidHzt8pnFD+7Zyl+HtRx+EnTPiHlAw12+uyfSm/BHCH5y7FVF74r+7PFm0zDwn8Njiy9CUuESpu607jhlpH8NTKsyF4lfPHYEIrMo/b+2/O55OVpAiTpyylfdT8XNQlf0GXviEryqmUaRAj/NTiySvmn4oZb1p8JX55uFZ3sXZfJgoPsBSTpD+ucXu90nKHIfrh8Q8SQPPWgLGX5YTpPUdGYBK/aEahuLTMUf20XVtNBrneE6EsKn/99udfOBWO3KG+detEJP2XaVwlfDLccnngV4+Qr33XYxN66+IfoxF/TDsGp068h4U9B/KlgrLFREI2k/ffgAKf5JlzTvsAm5X4wNx9P4XwmeXm6FvqQzYowJXrGbgHnt3Jc37Lkh/M4d7uOCWNHrT7v9U7Pq5WrGcOdI3wo34MDoiX7ofjZY9yqnNYQaX+jW91U5PVT9fOpZX84DsDBHu+5fnJWRdhqnBjSV6+XJn4h/PnzHMTvm9oTjOS52vAhD90BvAZHeiV8X3IJX5X0Y1czJaQfKnzV8M3UHK54f7nIv0u/Eqi9PVX8LlWOS9o3JX32bYBvr3hSaE0TSfwm2cvESP65yCF9XbXTpZ9X+irZD6HInz2Sn82/hSfG2KZOILGSvk9371rzzF7r24Z1yjuAwkmfKnyZFuSfWvqULj+m/HOKvyXhAzTpA2bxPwpfXTmQ+yh8lf7Kb2+7P+x0aubz2Im8bC1d/ka3umkma3naZz2tUKvwTQjPrwMA5KTfhZ8UU5J37fM7c3xSfimehi+Tl/UdUfNYzq3PpSwzpCVph6T8Ej1+DITn162x2mF7Avwk/8dDOEl6M+xZ4Jfb5S7R8OUYWmDKwzCfxbmz+EvJ3jXlm0b1fAtPdLz2zhvT/qfZnis3MW17XLVMp1K6wCeFa+pv6VtCblyHZdqWd7/gWmLxy8hS1wl+DPJn/1B6CzLhIv6CB3BjPDcXrmk9Z7qnily1HDs19tYs45LcU6X887F1kvWaaOLkLIrUY1U+e3KOkxjLUu3IshfT/B+Tv2xU+PbqETzKoZvAXOa60TwVfSPIOnrnmQz4bNrXq73OGYpevs9fkndbUiPLXkxvh4uyvHZV4/RDE3uqnj82lGQfQ/6xT85qFd/Enlz6zzRsl8cOwDSapxbh33DL+kvJ3iXV2+TP2GcXl+fPJK1X1+/HTviUZK+Tf4whm0BFSb/1iqZVuvALYRK+eNxR/LLYz2GsGtHLhAhfLJ8i9bc6ImcIpf+P+kdUDoD+74Ga6MJPg03oXfjjpUbhp2aY8sfGwThSK3XTY0OiJH1Z9mL6SND+FmgXflpqEPuNt9HLd8Pf1ymnJNVOht6+JXwP1urSPufPdBI/Y78F57f324iC2OT+DJymnH8GdgNQUb2Tmq9rUt/jJ5iIgtiFAWfRfmYm2cvL1Cb+6MKXqxxbrdMJQojf1uUz9tuFf1uUvy/B9Y6u0vGtejoVs0saYVF2Dq4kPXj7Jod1d8lnh3rwdqpEGb2jEnyJekc3ekeX8gUx0z57EsC/QlxWMYqntSGbOnxEHjvxR72qpkn0b9U8P0T4E6iBQsbihx7MFQl/tr7MSV81iifWkM0s9c6ROLh4so82XFP34dZ9sIfbQRQ+MBc8+4cIsj+VAS+pQxS+yb3GqgeAW7KPwQSEP3WE4M/H1mTZ/xU+jH/BS63LnYHdlsQvhA9EHqd/AA4nJ/zZBiQem29L+YJZ2g+Ufig/wRbYCpe7PelUaZsrEH9IXRNT+pSkb035VOGr3h/UpP9ZPsmDvCWTPtDOgdy/woeV8yk7ABXFT84KkT413ZPrHdsHPLH4f4ItFu6T5H+qYpsLi78W6QtU8icfrE0t/YpEf4ebf4Vr19ss62v6iH9sZ+fq0Ml+iKv8o47T98G3lmnl7FsqQ+GTGQq+YeGn4s6czyQvT1txqXVyV0CRuMPNv5rdVPc746O49HNgOlBLTvnUZTxxrnQqJTSpp9xpOA/FdPlmp1rWluILp3yb2F3Fz77rvg2uqb2n/LBlgUqk75rak6R8ygc8U6/vjEj3FfT5MbjxNqzKbwxe6MSeUPifY0x5k4mZ5Nl358L3ET+VqQg/NUU7fdc+P3mlU7jTHwuxhV18RE9D74uh3GWevvpR9xG+qetXiZ4/3PklFteZ6Bo7LeCa3AG3Xr+KpK9CCJ6fNL8lx/ThreiDXTuxJV089fffvRZdsg9N/BThfwLPWriNBd9ROVSqlT4wvoO1nYbRib+hHYLpW4AvukQfmvRtqCQ/JvGnpNp6pwu/fWIm9OIVj4bvYVs8DBeU3owZtnonpMvXVTzDVJ9a+IBZ8M/HZ9JvQAZSDdkMPyP3uwx4eJ0fyE5ZhKiL1zOR+R621d6vaQeg4tr1Nove6QvJs+/mEb6JpMLfVvM+vqAt//nXO99lK7fhdGd6XMDUt1U2/D2f3VT3W2Io/Np4esFzLUsLvxi6nUEglATv0//71Ts2wXsk/1h/47Zjh7FvgfNHxVnZBZb3wrb294Ltm0AtOwcX4dec+GMn/UlgE3uGtE+99o4Nd+lTE32vfKqDsW85LU/aMSSWfovCF4xF/JMXPlCF9GNR9eidjh32z8TlHIWfE53YaxH+lEkq/B81UglT6ptEFU8K3A7k1tjby2+cbfwk8b/YaDZ9J9wQukV0zhv8PB9N335Z9uyfAf43kbZJfo2YNZABVdKfuvDZPQH+8/jrrSLhy59ZMe352c3CBXzCSb+2ymaYFDySgyz8rAyFr5unQJXuqYm/NnTVTk0jfnIevGX3XLkNp2NgEr4Q/LXrbTa71QL7RuktGBeTr3eyJvtIqFK9KemHVDs110K5yNXN6wQfU/w6sl1WWRfMNPOF8IuLP2WSf0PegFPN6B0vVG+Umr8myuhSvUPFA9CrHV95Bx3MtRzEzTJqZy8GnBi+npQHcqlSD617bNUORfpb43xchO3CNoT4uVWJnj8u7KWrwST6d6R1WJQ/l7hAbRXQyEnR5TtDGKGjYsPf83Q1zl5seTqC/FuF0uXb0v7WOH/2b5D4t+HWY3G6ZM++MSLxF8Kv3tGJPbfwh2+WVlI+oE70jik/NTkO4kZnL7YofOpjFlwrntqGa1JSPEX4uvvOiM+q5jOrE3tq4bMPrtxa5L8ZW7jp8O/0H87nkpenc2N586TiTvif8JUIyT+aJxd+kwJPhaf4qaQSfo5uPyuVhTRZ9knFn7nDH1L8b+S2iCz8/8XdC27JuLjxNiysx3eReUDVY+r3VcK/AGuxLS7WPiek02dfUyz3BPXzKaN3dKiSfXC3T2SUlU6CTn+Y7u+vUXv8Tr/T8aSVsfmy2HVX2bwAa7X3TTsAF1TCF/NV4tddbK2m4ZkqRif8wiQfssnYJalfIjsi3feUP00ulxLVUPgXYO2S8IcMH09xEpYOeQy+y3j8YarPlfInR8DInftzvnDT0eudymBX/gH8rrcuvRltkqneuZwxbKH42Nhkr2KY+lVVD7XWWXqepubpTJvJn5xVE+zKP8z+FdOd+lAJPxb853PJy9NLy1mE3oXf0UGSfpdQGzwWXy69CZPFJ+WbnqeTPfva/DZlGPtkvJV9qJ5LfuRgOgdytzf8Yr/dXsOlE/xw/jnYKcfmZId9BeBPGsw8kYcNxzxE8dzD6nlvUEXfUz4RWfYfYsAe9fyuUzKNTt8kfJnC8h9+m9J1+66JfiziZ1/RPzbbAVCkr+rzVcIXEMTvm/QB+mgenfT5E/QjdjoWhPgnInxgCp0+VfiuyyZASJ7f9dZRD+aOofYxCX/h8RO5/iCt7jGT8AmPhwg/Fl34nkxI9oJxJ30fiQemfXY7gP9f0CqM+Aq85bRvE77MUuVDwSZ9gSHx50j6wHLa77LvuDKOTn97Fq+a8VwXu93ydEr5TwUX4YvlvcTfCF3ynVDalf4wxcv3M3fzsvCH87v4K4ea8kcMezLA/7X0VrTFTTcyrL9hmyVJe9KnVDah3bzq+RWM8Anp5h+LLzdd8STjMB5F/Nvi4iq6/U4abrpx+T2imtfCjqCtA7mFD7Sq0KV86uMuhEg7hvANV2tNgmu1E/q8UHyvqVN6Z9FTvhmV3GMsK8j9uWpL+hViq2/GUu+IN2bON2hV3Xzi8fqlxZ8Sxn5YehO88ZG4K7mH0sykz+6f94VxluMPs8KUPwr2G+fP1Snt24TuIPxtcXG0q2iOASH8lsU/NmZDNtn9Af7fGV/5LAbs4rCLKyl9Qp+vqnFSpXyfbv8c7EQX/DHq/y9j+VNJzKqG/M3hEBY92VOTfCs7DHYswF9lWUYhes4fnGiL0uCb9Gvu9tsZp59L+pWP0wc8pb/fk92eoBG/lnsz4JI0b6Ui4k+ATfwtCJ8duzzPJH9Z/K0JH2hI+r9kwN1or9k7/cjU2OF7HcSlfiu4N1u5DacjElPUpQ7yjgGV8E3zOxn4JVu5DacNtDdkMyUVDMukIEvclPpny8Xu7W1iF49HTP78SfGEXesJXCn+ulZpOH9w7/NToRO8mK9J/sqkf1XuMUSpscn827wZ4Q85BzvNbqr70UmQ5F3gT4oj7BKJ30XkrY3mMaX9FmudMbMg/asYmwlfnh4FQuxC7sP7IyD5yVeuwo+4gxCSjiXrFEn/V7gDfoU7GJepMsGfH/57sh3U7eKvh3UBc7IXj226erzXtOymKY8Jf5vHu4BaQdHvjfctzTsBr0z3giHVzn5s8YCuqGsKp31gLu2QE7hKVDzVJPih6OX7240nCJWg5pE7gMOBXEryT/7NwFXWq8sfVck3FpXwTfOj4DoKx/bcQmlfCHooal9xpxD+ZrgWm+Ha+CvOjSb569K8LeV36iL66J2axH8UYzPhlxa/TexJxR8T14OzkQ/mtoxryk/2rYBS5xjELyQvT4+V2lO7D0lG71zFWPqqR0Z3OeSB6I9iDK9v5LSEzvhwvShblf3/KmOXvcwGt+fgt5jH7PvuHD6AvZbmvRwn0p58N64ewWMZr8845zxFOk8qfQKmZF9C/NQkn6zf9+n2ddUQtbJJdLKWCtduv9S3huLSdz1oG9jvH4SDlfOPwOFe62N3BfiVIVsUh9BLK6tkP4Qsf6CfnAXoxV5z0k96QHfkuEi8ZE1UPL27SDyR8G2PDWF3nd9U90uQo/ah7BhmEIUPrEq/dCoPYRv8oPQmjBPTAeCMCd4FisxbPy7QChSpU5axib2k+FtFee0d0cmH1j66nckV0no3D9jhDIX/IzxEuVwtXb6p4vFK+arKxjZax1bz+I72SXjtHV9qPfNWoKp6sn0TsNU8ninfJcELVFWPj8xrqH0ouCR4p4qHiLLeEbIO+QZAEb7qPhWXhF+D8AG92KMJ3zY/5WWUPYXP/iLydkjULHxg8TLMVV2SuY/THzXNdvq6VF87J+CVM8nL007Y5B16QlYG2F/MhS9PT5EisteJvQLh+1Y2LVQ9Tj29x/IUrJdW9q14qEkfCK94Wt0BeON6XfyYI3cCscmd/1eSl22W9X9zg/axm+64UcYtoeFT7wCLFU+IvFuoeKqsd2RqP8g7OeG74pvcEyR+SpqfcuIfYhI+5fFW8B2+2fEje70zTPUhKX+SjPTPG3b8GIv4Y+HzLWGdq34Xf0MMpEjvLpCk75L2N+XcuvzmnM9uHUcS1S6pcUnwU0/76//mBieZd/HP8al3/rzpbZfmXY9bR9iaMFLtHMhJnyJzYITX4m+Zir4VuHT1tfb6jF1TehOqZwxVjRB+SvG/HCdqpW56LAZBfyNXJfjajwGMAorMQw7iDtcRCWqCr0n6JtFzvibJa/ok99oO6lIP6MYaoy+IcSBXlv3G+EPYyl6l+fwdu/jZ+gD2ylb7RPvD6LEvsvYsfEL72Gfw/Giv0yw6mQ9FXZH0gXZG77ik+pjyD6lqahM/4H/tndCTs47A362+/jvdV4QV8QcJXyf7IcfmD8nRrrKZS/hZ2JsBJ1T8jcUk8uEfPskAY0eA84NIy/L/qr+zd61xGLsmmvhvuuNG2ZP++r+5IdkOw7fu4Ve6iX+Y8A/CO2fi9yE44VdMtKQfC6rwk6X9vSWh1ih+1zH6Ls/RPd8AY0cs3KfKXyX+FlO+oHTa95G26nWKfVv4BgMet/yeo4i/urH51JQvyJz2q5K+T8KPKv+9Fb+smsTvKm9f8XsKH6BLv1ZCDtbGEn9q6VPXn20H8I3Be1Mhf0Etl1Y2Urn0m70MQ3RUwjfNHysO1VDrgq8VV9nW2OWTGQrfQlXCd5V76vUQ+f8y+2HcoUNVqAAAAABJRU5ErkJggg==" id="image44146bc9ef" transform="scale(1 -1) translate(0 -274.32)" x="870.988235" y="-81.083697" width="274.32" height="274.32"/> - + - + @@ -1225,12 +1233,12 @@ iVBORw0KGgoAAAANSUhEUgAAAX0AAAF9CAYAAADoebhRAABGsklEQVR4nO2de/BtRXXnV/NQCAGNlK8h - + - + @@ -1253,12 +1261,12 @@ iVBORw0KGgoAAAANSUhEUgAAAX0AAAF9CAYAAADoebhRAABGsklEQVR4nO2de/BtRXXnV/NQCAGNlK8h - + - + @@ -1271,12 +1279,12 @@ iVBORw0KGgoAAAANSUhEUgAAAX0AAAF9CAYAAADoebhRAABGsklEQVR4nO2de/BtRXXnV/NQCAGNlK8h - + - + @@ -1296,430 +1304,445 @@ iVBORw0KGgoAAAANSUhEUgAAAX0AAAF9CAYAAADoebhRAABGsklEQVR4nO2de/BtRXXnV/NQCAGNlK8h - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -1743,20 +1766,19 @@ L 1145.47563 80.916303 " style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/> - - + + - + + + - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + @@ -1880,20 +1964,20 @@ L 457.411765 355.403697 L 457.411765 218.16 L 443.687395 218.16 L 443.687395 355.403697 -" clip-path="url(#pc5cf229964)"/> +" clip-path="url(#p383aa282b7)" style="fill: #ffffff"/> +" clip-path="url(#p383aa282b7)"/> - + @@ -1906,7 +1990,7 @@ L 443.687395 218.16 - + @@ -1961,7 +2045,7 @@ z " style="fill: none"/> +iVBORw0KGgoAAAANSUhEUgAAABMAAAF+CAYAAABgTSH8AAAGXklEQVR4nM2d+2/PZxiG78c+dapSRs2ssSCdMUSINFZDFoeNHUQaYSPLMjMTsiwbsV+YTTYTEdvCDDOxWWYHM8PWOnRM6tDVFNPGYU1HHarWlZa2unv/xPWD/gFXnud97ufwvt/38zZsW9Bf8qaWUCwlZ9Ubg4VfEuem2lIoKaQlmGUhVXNuplSnUCwljc3tOZhOYyxFhTO4NfsxrlIshYrA3HQExVIS9ZhhipPuTWbAARCWzgUg8sSVoNCToGVqA8JWeBYn2gyB6eSOYAC6+TwHK3I/DuZKUmc9yRLUwJWg8ArQTT9MjgevUCgppvtTMJqTwERf5+c5WCFaHDNI0XYARSutBkX7NpkBvUDYBXcGLesBWjbbyzlYWn0Vp7PGhpYUS0lu+jcYLKSvuTVbhSZ6GZjoWkuhpJBIy3ZRKClxBVnPTpNufkGhpGhsB+rsnLuDos0jR3dUZ8MolBQ9XAb2gGXkfFZMoaTwZVBna9DiWIzqbAUXgE98nGIp/Ba4ZpP8JSja90DLlns2aNkeUmf9QZ3N8TLQzUdINzuDbg4xeUpV0QQWxyMJxVLiruje6Q/OzQk+S7EUfg7U2UqwBySNnkOxFNJFULRb0O60EYR9D1q2ybkcLMMVd+fkGH4KzIC+Lgbd3EZGk5zPXErOtEcoFC6Na6CbsQ783elmU8JZtjblDsVSst+bMVg014CineEPwdxMI3X2EamzvzidJR4JTkEHPITsAY1gCVIdxVK4Gzm6awMIy0IHl1tkALgmEM4lA1ACrtlh9JBEXEdJpJ4US6Ht4Jot9VxwzaaDlu1go3kZhJ0B3ZxscoeykSxBncgmvBmM5iLP52CDfZCDbfU4UrT5YACukzuUe8mRaho4UukaxlLiUvBmnNIxlkIq5aLZdAOURk+fAjNgLlnPepOXPx4FR/clZKvLcgkHK3MPMACLwWiu9EwOluPdnDRuKI1iKc6gU9AIMABb/DS3ZlfVhWIpuvsc2OpywADs91ByPDjKwe50ADv6PYMplJToOgcL6SswAKPQDT/YN3c7B8yAMeSwNxI8p5XKwQDMBKN50IO5NcuP3ymWkixPxGDhd8DiOMvcTZIY5EIuADXg7B7lvo+zLE9jKJZC5c1cAOobWnBuHmqZTbEU7gqKdpdHgZW2C7lHP0qW7U5g2S4nLzL8SpEkhXQVbCirwIay3lM5WE0C6myo94NrNhFcs4VewOmsQCMolsJbyETPJGGrybsHBRRKSjSAg8V8L+Lc7KgaiqXQbPKUajh4SrXAC0GdnSe70xp0U0FenF9AoeDj6NAOsNLeaguWoDa1/3Cwxej52QxwzX4jLWt/+wqYm/mgZTv8OBiAKWAAvvUELtEr1Y1iKYpQ0Q5ET6kOgTobD7pZ7L536RXYk+jd0NdBWBm5EVvt9ymWwvvQyx87QVg2KI3alqQ0XgZhqTe594JCK8E1G+tt4JqdJQPwGAjb4CmgZa+S0zb3rYGiwNmgmxVo1TgDWvYLGYBKMAAbPZmzbJ9GUSzFd2R3esADKZbCn4E6u30LhE31em7NLul+iqWQuLKRSCUUS/EBe9EU/Awiz8NBy8aBTfg4OtP+AMKuuD2ns2Zx37yGdILMgK0US7GZrLSpHkuxFHtInfU3eGHmZzQDyskSlENu+DPJ4+jx4AFmtVM5y04F94lSUm/wp6JMk2Poa+QYyj19o0QNGEsx10vBPXpzCjke3CF7wB6Kpahiz4LmUSyFCsF6Nsx7wXRaCpbt7R7NBaAq8imWQi+Qv4hlUigpURYHCz+D7gO4U6pkHvgsUlKqPhgs6lqja1YL5uYT5EUG7vBASTwI9k23A0eqXG/iAnDGmRwsvekSWGnJVlfnZymWkl46h8HCA8gdymEynVpTKCmJw+BpqE+AazbOWzlYldPAaB4k9wHcI2NK/BP5yWU1xlL0MffKWGg9ONN29gXQsr2gZSXOIscD8LOuv8keAH5zrBjuPM6yA1FLsRT+nGwo2eTkuJs88kq9W1/ObaxDp23STR2jWAr1IR+e2Em2Ou5feyjRIIyl8AVQGpfJ4minUyyFj4FuVrcA3dzwH4WSkrZ+kYNdVHcMFmoB5mY/F3GwSvRn3H5kQ2kFwkZ7Owf7161AN3PRi6Yfgz1gGiiNd/0GaNlD5Ej1J9nquFdEFIUexLmZ7QIM9j93LSY1eRZHiQAAAABJRU5ErkJggg==" id="imaged4d832f975" transform="scale(1 -1) translate(0 -275.04)" x="798.48" y="-80.64" width="13.68" height="275.04"/> @@ -1988,7 +2072,7 @@ z " style="fill: none"/> +iVBORw0KGgoAAAANSUhEUgAAABMAAAF+CAYAAABgTSH8AAAGXklEQVR4nM2d+2/PZxiG78c+dapSRs2ssSCdMUSINFZDFoeNHUQaYSPLMjMTsiwbsV+YTTYTEdvCDDOxWWYHM8PWOnRM6tDVFNPGYU1HHarWlZa2unv/xPWD/gFXnud97ufwvt/38zZsW9Bf8qaWUCwlZ9Ubg4VfEuem2lIoKaQlmGUhVXNuplSnUCwljc3tOZhOYyxFhTO4NfsxrlIshYrA3HQExVIS9ZhhipPuTWbAARCWzgUg8sSVoNCToGVqA8JWeBYn2gyB6eSOYAC6+TwHK3I/DuZKUmc9yRLUwJWg8ArQTT9MjgevUCgppvtTMJqTwERf5+c5WCFaHDNI0XYARSutBkX7NpkBvUDYBXcGLesBWjbbyzlYWn0Vp7PGhpYUS0lu+jcYLKSvuTVbhSZ6GZjoWkuhpJBIy3ZRKClxBVnPTpNufkGhpGhsB+rsnLuDos0jR3dUZ8MolBQ9XAb2gGXkfFZMoaTwZVBna9DiWIzqbAUXgE98nGIp/Ba4ZpP8JSja90DLlns2aNkeUmf9QZ3N8TLQzUdINzuDbg4xeUpV0QQWxyMJxVLiruje6Q/OzQk+S7EUfg7U2UqwBySNnkOxFNJFULRb0O60EYR9D1q2ybkcLMMVd+fkGH4KzIC+Lgbd3EZGk5zPXErOtEcoFC6Na6CbsQ783elmU8JZtjblDsVSst+bMVg014CineEPwdxMI3X2EamzvzidJR4JTkEHPITsAY1gCVIdxVK4Gzm6awMIy0IHl1tkALgmEM4lA1ACrtlh9JBEXEdJpJ4US6Ht4Jot9VxwzaaDlu1go3kZhJ0B3ZxscoeykSxBncgmvBmM5iLP52CDfZCDbfU4UrT5YACukzuUe8mRaho4UukaxlLiUvBmnNIxlkIq5aLZdAOURk+fAjNgLlnPepOXPx4FR/clZKvLcgkHK3MPMACLwWiu9EwOluPdnDRuKI1iKc6gU9AIMABb/DS3ZlfVhWIpuvsc2OpywADs91ByPDjKwe50ADv6PYMplJToOgcL6SswAKPQDT/YN3c7B8yAMeSwNxI8p5XKwQDMBKN50IO5NcuP3ymWkixPxGDhd8DiOMvcTZIY5EIuADXg7B7lvo+zLE9jKJZC5c1cAOobWnBuHmqZTbEU7gqKdpdHgZW2C7lHP0qW7U5g2S4nLzL8SpEkhXQVbCirwIay3lM5WE0C6myo94NrNhFcs4VewOmsQCMolsJbyETPJGGrybsHBRRKSjSAg8V8L+Lc7KgaiqXQbPKUajh4SrXAC0GdnSe70xp0U0FenF9AoeDj6NAOsNLeaguWoDa1/3Cwxej52QxwzX4jLWt/+wqYm/mgZTv8OBiAKWAAvvUELtEr1Y1iKYpQ0Q5ET6kOgTobD7pZ7L536RXYk+jd0NdBWBm5EVvt9ymWwvvQyx87QVg2KI3alqQ0XgZhqTe594JCK8E1G+tt4JqdJQPwGAjb4CmgZa+S0zb3rYGiwNmgmxVo1TgDWvYLGYBKMAAbPZmzbJ9GUSzFd2R3esADKZbCn4E6u30LhE31em7NLul+iqWQuLKRSCUUS/EBe9EU/Awiz8NBy8aBTfg4OtP+AMKuuD2ns2Zx37yGdILMgK0US7GZrLSpHkuxFHtInfU3eGHmZzQDyskSlENu+DPJ4+jx4AFmtVM5y04F94lSUm/wp6JMk2Poa+QYyj19o0QNGEsx10vBPXpzCjke3CF7wB6Kpahiz4LmUSyFCsF6Nsx7wXRaCpbt7R7NBaAq8imWQi+Qv4hlUigpURYHCz+D7gO4U6pkHvgsUlKqPhgs6lqja1YL5uYT5EUG7vBASTwI9k23A0eqXG/iAnDGmRwsvekSWGnJVlfnZymWkl46h8HCA8gdymEynVpTKCmJw+BpqE+AazbOWzlYldPAaB4k9wHcI2NK/BP5yWU1xlL0MffKWGg9ONN29gXQsr2gZSXOIscD8LOuv8keAH5zrBjuPM6yA1FLsRT+nGwo2eTkuJs88kq9W1/ObaxDp23STR2jWAr1IR+e2Em2Ou5feyjRIIyl8AVQGpfJ4minUyyFj4FuVrcA3dzwH4WSkrZ+kYNdVHcMFmoB5mY/F3GwSvRn3H5kQ2kFwkZ7Owf7161AN3PRi6Yfgz1gGiiNd/0GaNlD5Ej1J9nquFdEFIUexLmZ7QIM9j93LSY1eRZHiQAAAABJRU5ErkJggg==" id="imagedfb8f98d4c" transform="scale(1 -1) translate(0 -275.04)" x="1152.72" y="-80.64" width="13.68" height="275.04"/> @@ -2006,16 +2090,16 @@ z - + - + - + - + diff --git a/docs/examples/clusters_dilate.cpp b/docs/examples/clusters_dilate.cpp index 1ee10bca..9d67cd30 100644 --- a/docs/examples/clusters_dilate.cpp +++ b/docs/examples/clusters_dilate.cpp @@ -21,7 +21,7 @@ int main() I(15, 16) = 1; // clusters - auto C = GooseEYE::Clusters(I).labels(); + auto C = GooseEYE::clusters(I); // dilate auto CD = GooseEYE::dilate(C); diff --git a/docs/examples/clusters_dilate.py b/docs/examples/clusters_dilate.py index 97f7313d..b2c71412 100644 --- a/docs/examples/clusters_dilate.py +++ b/docs/examples/clusters_dilate.py @@ -12,7 +12,7 @@ img[15, 16] = True # clusters -C = GooseEYE.Clusters(img).labels() +C = GooseEYE.clusters(img) # dilate CD = GooseEYE.dilate(C) diff --git a/docs/examples/clusters_dilate_periodic.py b/docs/examples/clusters_dilate_periodic.py index d0929702..513f4794 100644 --- a/docs/examples/clusters_dilate_periodic.py +++ b/docs/examples/clusters_dilate_periodic.py @@ -12,7 +12,7 @@ img[19, 20] = True # clusters -C = GooseEYE.Clusters(img).labels() +C = GooseEYE.clusters(img) # dilate CD = GooseEYE.dilate(C) diff --git a/docs/examples/pixel_path.py b/docs/examples/pixel_path.py index ef1c1e59..475ce055 100644 --- a/docs/examples/pixel_path.py +++ b/docs/examples/pixel_path.py @@ -24,7 +24,8 @@ # plot the paths img = np.zeros((19, 19), dtype="int") for i, path in enumerate(paths): - img = GooseEYE.pos2img(img, path + 9, (i + 1) * np.ones(path.shape[0])) + index = np.ravel_multi_index(9 + path.T, img.shape) + img.flat[index] = (i + 1) * np.ones(path.shape[0]) images[mode] = img diff --git a/environment.yaml b/environment.yaml index 1b15132a..77f894fb 100644 --- a/environment.yaml +++ b/environment.yaml @@ -14,6 +14,7 @@ dependencies: - pybind11 - pytest - python +- python-cppcolormap - python-prrng - scikit-build - scipy diff --git a/include/GooseEYE/GooseEYE.h b/include/GooseEYE/GooseEYE.h index d47c36b3..0fea880c 100644 --- a/include/GooseEYE/GooseEYE.h +++ b/include/GooseEYE/GooseEYE.h @@ -232,27 +232,6 @@ inline T dilate(const T& f, const S& kernel, size_t iterations = 1, bool periodi template ::value, int> = 0> inline T dilate(const T& f, size_t iterations = 1, bool periodic = true); -/** - * Find map to relabel from `a` to `b`. - * @param a Image. - * @param b Image. - * @return List of length `max(a) + 1` with per label in `a` the corresponding label in `b`. - */ -template -[[deprecated]] array_type::tensor relabel_map(const T& a, const S& b) -{ - GOOSEEYE_WARNING_PYTHON("relabel_map is deprecated, use labels_map instead (new API) instead"); - GOOSEEYE_ASSERT(xt::has_shape(a, b.shape()), std::out_of_range); - - array_type::tensor ret = xt::zeros({static_cast(xt::amax(a)() + 1)}); - - for (size_t i = 0; i < a.size(); ++i) { - ret(a.flat(i)) = b.flat(i); - } - - return ret; -} - /** * @brief Get a map to relabel from `a` to `b`. * @param a Image with labels. @@ -1003,319 +982,6 @@ class ClusterLabeller { } }; -/** - * Compute clusters and obtain certain characteristic about them. - */ -class [[deprecated]] Clusters { -public: - Clusters() = default; - - /** - * Constructor. Use default kernel::nearest(). - * - * @param f Image. - * @param periodic Interpret image as periodic. - */ - template - Clusters(const T& f, bool periodic = true) - : Clusters(f, kernel::nearest(f.dimension()), periodic) - { - } - - /** - * Constructor. - * - * @param f Image. - * @param kernel Kernel. - * @param periodic Interpret image as periodic. - */ - template - Clusters(const T& f, const S& kernel, bool periodic = true) : m_periodic(periodic) - { - GOOSEEYE_WARNING_PYTHON("Clusters is deprecated, use ClusterLabeller (new API) instead " - "(please open a PR for missing functions)"); - - static_assert(std::is_integral::value, "Integral labels required."); - static_assert(std::is_integral::value, "Integral kernel required."); - - GOOSEEYE_ASSERT(xt::all(xt::equal(f, 0) || xt::equal(f, 1)), std::out_of_range); - GOOSEEYE_ASSERT(xt::all(xt::equal(kernel, 0) || xt::equal(kernel, 1)), std::out_of_range); - GOOSEEYE_ASSERT(f.dimension() == kernel.dimension(), std::out_of_range); - - m_shape = detail::shape(f); - m_kernel = xt::atleast_3d(kernel); - m_pad = detail::pad_width(m_kernel); - m_l = xt::atleast_3d(f); - - // note that "m_l" contains the labels, but also the image: - // 0: background, 1: unlabelled, >= 2: labels - this->compute(); - - // connect labels periodically - if (m_periodic) { - m_l_np = m_l; - this->compute(); - } - - // rename labels to lowest possible label starting from 1 - array_type::tensor labels = xt::unique(m_l); - array_type::tensor renum = xt::empty({m_l.size()}); - xt::view(renum, xt::keep(labels)) = xt::arange(static_cast(labels.size())); - for (auto& i : m_l) { - i = renum(i); - } - } - - /** - * Return labels (1..n). - * @return 'Image'. - */ - array_type::array labels() const - { - return xt::adapt(m_l.data(), m_shape); - } - - /** - * Return label only in the center of gravity (1..n). - * @return 'Image'. - */ - array_type::array centers() const - { - array_type::tensor x = xt::floor(this->center_positions(true)); - array_type::array c = xt::zeros(m_l.shape()); - - for (int l = 1; l < static_cast(x.shape(0)); ++l) { - c(x(l, 0), x(l, 1), x(l, 2)) = l; - } - - c.reshape(m_shape); - return c; - } - - /** - * Return positions of the centers of gravity (in the original rank, or as 3-d). - * @return List of positions. - */ - array_type::tensor center_positions(bool as3d = false) const - { - array_type::tensor x; - - if (m_periodic) { - x = this->average_position_periodic(); - } - else { - x = this->average_position(m_l); - } - - if (as3d) { - return x; - } - - array_type::tensor axes = detail::atleast_3d_axes(m_shape.size()); - return xt::view(x, xt::all(), xt::keep(axes)); - } - - /** - * Return size per cluster - * @return List. - */ - [[deprecated]] array_type::tensor sizes() const - { - GOOSEEYE_WARNING_PYTHON("Clusters.sizes() is deprecated, use labels_sizes() (new API)"); - array_type::tensor ret = xt::zeros({xt::amax(m_l)() + size_t(1)}); - - for (size_t h = 0; h < m_l.shape(0); ++h) { - for (size_t i = 0; i < m_l.shape(1); ++i) { - for (size_t j = 0; j < m_l.shape(2); ++j) { - ret(m_l(h, i, j))++; - } - } - } - - return ret; - } - -private: - void compute() - { - xt::pad_mode pad_mode = xt::pad_mode::constant; - int pad_value = 0; - - if (m_periodic) { - pad_mode = xt::pad_mode::periodic; - } - - m_l = xt::pad(m_l, m_pad, pad_mode, pad_value); - - // first new label (start at 2 to distinguish: 0 = background, 1 = unlabelled) - int ilab = 2; - - // list to renumber: used to link clusters to each other - // N.B. By default the algorithm simply loops over the image, consequently it will miss that - // clusters may touch further down in the image, labelling one cluster with several labels. - // Using "renum" these touching clusters will glued and assigned one single label. - array_type::tensor renum = xt::arange(static_cast(m_l.size())); - - for (size_t h = m_pad[0][0]; h < m_l.shape(0) - m_pad[0][1]; ++h) { - for (size_t i = m_pad[1][0]; i < m_l.shape(1) - m_pad[1][1]; ++i) { - for (size_t j = m_pad[2][0]; j < m_l.shape(2) - m_pad[2][1]; ++j) { - // - skip background voxels - if (!m_l(h, i, j)) { - continue; - } - // - get current labels in the ROI - auto Li = xt::view( - m_l, - xt::range(h - m_pad[0][0], h + m_pad[0][1] + 1), - xt::range(i - m_pad[1][0], i + m_pad[1][1] + 1), - xt::range(j - m_pad[2][0], j + m_pad[2][1] + 1)); - // - apply kernel to the labels in the ROI - auto Ni = Li * m_kernel; - // - extract label to apply - int l = xt::amax(Ni)(); - // - draw a new label, only if there is no previous label (>= 2) - if (l == 1) { - l = ilab; - ++ilab; - } - // - apply label to all unlabelled voxels - Li = xt::where(xt::equal(Ni, 1), l, Li); - // - check if clusters have to be merged, if not: continue to the next voxel - if (xt::all(xt::equal(Li, l) || xt::equal(Li, 0) || xt::equal(Li, 1))) { - continue; - } - // - get the labels to be merged - // (discard 0 and 1 by settings them to "l" in this copy) - array_type::array merge = xt::where(xt::less_equal(Li, 1), l, Li); - merge = xt::unique(merge); - // - merge labels (apply merge to other labels in cluster) - int linkto = xt::amin(xt::view(renum, xt::keep(merge)))[0]; - for (auto& a : merge) { - renum = xt::where(xt::equal(renum, renum(a)), linkto, renum); - } - } - } - } - - // remove padding - m_l = xt::view( - m_l, - xt::range(m_pad[0][0], m_l.shape(0) - m_pad[0][1]), - xt::range(m_pad[1][0], m_l.shape(1) - m_pad[1][1]), - xt::range(m_pad[2][0], m_l.shape(2) - m_pad[2][1])); - - // apply renumbering: merges clusters - for (auto& i : m_l) { - i = renum(i); - } - } - - template - array_type::tensor average_position(const T& lab) const - { - // number of labels - size_t N = xt::amax(lab)() + 1; - - // allocate average position - array_type::tensor x = xt::zeros({N, size_t(3)}); - array_type::tensor n = xt::zeros({N}); - - for (size_t h = 0; h < lab.shape(0); ++h) { - for (size_t i = 0; i < lab.shape(1); ++i) { - for (size_t j = 0; j < lab.shape(2); ++j) { - // get label - int l = lab(h, i, j); - // update average position - if (l) { - x(l, 0) += (double)h; - x(l, 1) += (double)i; - x(l, 2) += (double)j; - n(l) += 1.0; - } - } - } - } - - // avoid zero division - n = xt::where(xt::equal(n, 0), 1, n); - - // normalise - for (size_t i = 0; i < x.shape(1); ++i) { - auto xi = xt::view(x, xt::all(), i); - xi = xi / n; - } - - return x; - } - - array_type::tensor average_position_periodic() const - { - // get relabelling "m_l_np" -> "m_l" - auto relabel = relabel_map(m_l_np, m_l); - - // compute average position for the non-periodic labels - auto x_np = this->average_position(m_l_np); - - // get half size - auto mid = detail::half_shape(m_shape); - - // initialise shift to apply - array_type::tensor shift = xt::zeros({x_np.shape(0), size_t(3)}); - - // check to apply shift - for (size_t i = 0; i < shift.shape(0); ++i) { - for (size_t j = 0; j < shift.shape(1); ++j) { - if (x_np(i, j) > mid[j]) { - shift(i, j) = -(double)m_shape[j]; - } - } - } - - // number of labels - size_t N = xt::amax(m_l)() + 1; - - // allocate average position - array_type::tensor x = xt::zeros({N, size_t(3)}); - array_type::tensor n = xt::zeros({N}); - - for (size_t h = 0; h < m_l.shape(0); ++h) { - for (size_t i = 0; i < m_l.shape(1); ++i) { - for (size_t j = 0; j < m_l.shape(2); ++j) { - // get label - int l = m_l_np(h, i, j); - // update average position - if (l) { - x(relabel(l), 0) += (double)h + shift(l, 0); - x(relabel(l), 1) += (double)i + shift(l, 1); - x(relabel(l), 2) += (double)j + shift(l, 2); - n(relabel(l)) += 1.0; - } - } - } - } - - // avoid zero division - n = xt::where(xt::equal(n, 0), 1, n); - - // normalise - for (size_t i = 0; i < x.shape(1); ++i) { - auto xi = xt::view(x, xt::all(), i); - xi = xi / n; - xi = xt::where(xi < 0, xi + m_shape[i], xi); - } - - return x; - } - - static const size_t MAX_DIM = 3; - std::vector m_shape; // shape of the input image - std::vector> m_pad; - array_type::tensor m_kernel; - bool m_periodic; - array_type::tensor m_l; // labels (>= 1, 0 = background), 3-d - array_type::tensor m_l_np; // labels before applying periodicity -}; - namespace detail { template @@ -1369,46 +1035,6 @@ inline array_type::array clusters(const T& f, bool periodic = true) throw std::runtime_error("Please use ClusterLabeller directly for dimensions > 3."); } -/** - * Convert positions to an image. - * @param img The image. - * @param positions The position. - * @param labels The label to apply for each image. - * @return The image, with labels inserted (overwritten) at the positions. - */ -template -[[deprecated("Will not be supported in the future. See Python warning for new API.")]] inline T -pos2img(const T& img, const U& positions, const V& labels) -{ - GOOSEEYE_WARNING_PYTHON("pos2img(img, positions, labels) deprecated, use: " - "i = ravel_multi_index(positions.T, img.shape); img.flat[i] = labels") - GOOSEEYE_ASSERT(img.dimension() > 0, std::out_of_range); - GOOSEEYE_ASSERT(img.dimension() <= 3, std::out_of_range); - GOOSEEYE_ASSERT(img.dimension() == positions.shape(1), std::out_of_range); - GOOSEEYE_ASSERT(positions.shape(0) == labels.size(), std::out_of_range); - GOOSEEYE_ASSERT(labels.dimension() == 1, std::out_of_range); - - using value_type = typename T::value_type; - T res = img; - - if (res.dimension() == 1) { - xt::view(res, xt::keep(positions)) = labels; - } - else if (res.dimension() == 2) { - for (size_t i = 0; i < positions.shape(0); ++i) { - res(positions(i, 0), positions(i, 1)) = static_cast(labels(i)); - } - } - else { - for (size_t i = 0; i < positions.shape(0); ++i) { - res(positions(i, 0), positions(i, 1), positions(i, 2)) = - static_cast(labels(i)); - } - } - - return res; -} - /** * @brief Return the geometric center of a list of positions. * diff --git a/python/main.cpp b/python/main.cpp index 24bbc8cd..dc8bca6c 100644 --- a/python/main.cpp +++ b/python/main.cpp @@ -154,31 +154,6 @@ PYBIND11_MODULE(_GooseEYE, m) static_for<1, 4>( [&](auto i) { allocate_ClusterLabeller>(m); }); - py::class_(m, "Clusters") - - .def( - py::init&, bool>(), - "Clusters", - py::arg("f"), - py::arg("periodic") = true) - - .def( - py::init&, const xt::pyarray&, bool>(), - "Clusters", - py::arg("f"), - py::arg("kernel"), - py::arg("periodic") = true) - - .def("labels", &GooseEYE::Clusters::labels) - - .def("centers", &GooseEYE::Clusters::centers) - - .def("center_positions", &GooseEYE::Clusters::center_positions, py::arg("as3d") = false) - - .def("sizes", &GooseEYE::Clusters::sizes) - - .def("__repr__", [](const GooseEYE::Clusters&) { return ""; }); - m.def( "clusters", &GooseEYE::clusters>, @@ -214,19 +189,6 @@ PYBIND11_MODULE(_GooseEYE, m) py::arg("labels"), py::arg("names")); - m.def( - "relabel_map", - &GooseEYE::relabel_map, xt::pyarray>, - py::arg("a"), - py::arg("b")); - - m.def( - "pos2img", - &GooseEYE::pos2img, xt::pytensor, xt::pytensor>, - py::arg("img"), - py::arg("positions"), - py::arg("labels")); - m.def( "center", &GooseEYE::center, diff --git a/tests/test_clusters_example.py b/tests/test_clusters_example.py index 4af8925b..dc01e7bc 100644 --- a/tests/test_clusters_example.py +++ b/tests/test_clusters_example.py @@ -262,5 +262,10 @@ def test_main(): np.equal(eye.dilate(labels_periodic, iterations=1, periodic=True), labels_periodic_dilate) ) - assert np.all(np.equal(eye.Clusters(img, periodic=False).centers(), centers)) - assert np.all(np.equal(eye.Clusters(img, periodic=True).centers(), centers_periodic)) + names = np.unique(labels)[1:] + c = eye.labels_centers(labels, names) + assert np.all(np.equal(np.argwhere(centers), np.floor(c + 0.01))) + + names = np.unique(labels_periodic)[1:] + c = eye.labels_centers(labels_periodic, names) + assert np.all(np.equal(np.argwhere(centers_periodic), np.floor(c + 0.01))) diff --git a/tests/test_historic.py b/tests/test_historic.py index 4f7b3fe1..986571d7 100644 --- a/tests/test_historic.py +++ b/tests/test_historic.py @@ -5,31 +5,31 @@ def test_clusters(): img = eye.dummy_circles([30, 30], [0, 15], [0, 15], [10, 5]) - centers = np.array( - [ - [0.0, 0.0], - [3.60274, 3.60274], - [3.460317, 25.825397], - [15.0, 15.0], - [25.825397, 3.460317], - [25.962963, 25.962963], - ] - ) - centers_periodic = np.array([[0.0, 0.0], [0.0, 0.0], [15.0, 15.0]]) - centers_img = {1: [3, 3], 2: [3, 25], 3: [15, 15], 4: [25, 3], 5: [25, 25]} - centers_img_periodic = {1: [0, 0], 2: [15, 15]} - sizes = [598, 73, 63, 49, 63, 54] - sizes_periodic = [598, 253, 49] - assert np.allclose(eye.Clusters(img, periodic=False).sizes(), sizes) - assert np.allclose(eye.Clusters(img, periodic=True).sizes(), sizes_periodic) - assert np.allclose(eye.Clusters(img, periodic=False).center_positions(), centers) - assert np.allclose(eye.Clusters(img, periodic=True).center_positions(), centers_periodic) - - for cpos, periodic in zip([centers_img, centers_img_periodic], [False, True]): - cim = np.zeros(img.shape, dtype=int) - for name, (row, col) in cpos.items(): - cim[row, col] = name - assert np.allclose(eye.Clusters(img, periodic=periodic).centers(), cim) + data = { + "centers": np.array( + [ + [0.0, 0.0], + [3.6, 3.6], + [3.4, 25.8], + [15.0, 15.0], + [25.8, 3.4], + [25.9, 25.9], + ] + ), + "sizes": [598, 73, 63, 49, 63, 54], + } + data_periodic = { + "centers": np.array([[0.0, 0.0], [0.0, 0.0], [15.0, 15.0]]), + "sizes": [598, 253, 49], + } + + for datum, periodic in zip([data, data_periodic], [False, True]): + labels = eye.clusters(img, periodic=periodic) + names = np.unique(labels)[1:] + centers = eye.labels_centers(labels, names) + assert np.allclose(centers, datum["centers"][1:, :], atol=1e-1) + assert np.all(np.equal(eye.labels_sizes(labels)[:, 1], datum["sizes"])) + assert np.all(np.equal(eye.labels_sizes(labels, names), datum["sizes"][1:])) def test_C2(): @@ -114,7 +114,13 @@ def test_W2(): img = eye.dummy_circles([30, 30], [0, 15], [0, 15], [10, 5]) w = eye.dummy_circles([30, 30], [15], [20], [5]) labels = eye.clusters(w) - centers = eye.Clusters(w).centers() + + names = np.unique(labels)[1:] + pos = eye.labels_centers(labels, names) + index = np.ravel_multi_index(np.rint(pos).astype(int).T, labels.shape) + centers = np.zeros_like(labels) + centers.flat[index] = names + assert np.allclose(eye.W2([8, 8], w, img, w), wi) assert np.allclose(eye.W2c([8, 8], labels, centers, img, w), wic)