forked from jhamman/DHSVM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAggregate.c
executable file
·297 lines (269 loc) · 10.4 KB
/
Aggregate.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/*
* SUMMARY: Aggregate.c - calculate basin-wide values
* USAGE: Part of DHSVM
*
* AUTHOR: Bart Nijssen
* ORG: University of Washington, Department of Civil Engineering
* E-MAIL: [email protected]
* ORIG-DATE: Apr-96
* DESCRIPTION: Calculate the average values for the different fluxes and
* state variables over the basin.
* DESCRIP-END.
* FUNCTIONS: Aggregate()
* COMMENTS:
* $Id: Aggregate.c,v 1.17 2004/08/18 01:01:25 colleen Exp $
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "settings.h"
#include "data.h"
#include "DHSVMerror.h"
#include "functions.h"
#include "constants.h"
/*****************************************************************************
Aggregate()
Calculate the average values for the different fluxes and state variables
over the basin. Only the runoff and some of the sediment variables (as
noted) are calculated as a totals (i.e. runoff is total volume) instead
of an average. In the current implementation the local radiation
elements are not stored for the entire area. Therefore these components
are aggregated in AggregateRadiation() inside MassEnergyBalance().
The aggregated values are set to zero in the function RestAggregate,
which is executed at the beginning of each time step.
*****************************************************************************/
void Aggregate(MAPSIZE *Map, OPTIONSTRUCT *Options, TOPOPIX **TopoMap,
LAYER *Soil, LAYER * Veg, VEGPIX **VegMap, EVAPPIX **Evap,
PRECIPPIX **Precip, RADCLASSPIX **RadMap, SNOWPIX **Snow,
SOILPIX **SoilMap, AGGREGATED *Total, VEGTABLE *VType,
ROADSTRUCT **Network, SEDPIX **SedMap, FINEPIX ***FineMap,
CHANNEL *ChannelData, float *roadarea)
{
int NPixels; /* Number of pixels in the basin */
int NPixelsfine; /* Number of pixels in the finemap */
int NSoilL; /* Number of soil layers for current pixel */
int NVegL; /* Number of vegetation layers for current pixel */
int i; /* counter */
int j; /* counter */
int x;
int y;
float DeepDepth; /* depth to bottom of lowest rooting zone */
int ii; /* FineMap counter */
int jj; /* FineMap counter */
int xx; /* x-coordinate on FineMap grid */
int yy; /* y-coordinate on FineMap grid */
NPixels = 0;
*roadarea = 0.;
NPixelsfine = 0;
for (y = 0; y < Map->NY; y++) {
for (x = 0; x < Map->NX; x++) {
if (INBASIN(TopoMap[y][x].Mask)) {
NPixels++;
NSoilL = Soil->NLayers[SoilMap[y][x].Soil - 1];
NVegL = Veg->NLayers[VegMap[y][x].Veg - 1];
/* aggregate the evaporation data */
Total->Evap.ETot += Evap[y][x].ETot;
for (i = 0; i < NVegL; i++) {
Total->Evap.EPot[i] += Evap[y][x].EPot[i];
Total->Evap.EAct[i] += Evap[y][x].EAct[i];
Total->Evap.EInt[i] += Evap[y][x].EInt[i];
}
Total->Evap.EPot[Veg->MaxLayers] += Evap[y][x].EPot[NVegL];
Total->Evap.EAct[Veg->MaxLayers] += Evap[y][x].EAct[NVegL];
for (i = 0; i < NVegL; i++) {
for (j = 0; j < NSoilL; j++) {
Total->Evap.ESoil[i][j] += Evap[y][x].ESoil[i][j];
}
}
Total->Evap.EvapSoil += Evap[y][x].EvapSoil;
/* aggregate precipitation data */
Total->Precip.Precip += Precip[y][x].Precip;
for (i = 0; i < NVegL; i++) {
Total->Precip.IntRain[i] += Precip[y][x].IntRain[i];
Total->Precip.IntSnow[i] += Precip[y][x].IntSnow[i];
Total->CanopyWater += Precip[y][x].IntRain[i] +
Precip[y][x].IntSnow[i];
}
/* aggregate radiation data */
if (Options->MM5 == TRUE) {
Total->RadClass.Beam = NOT_APPLICABLE;
Total->RadClass.Diffuse = NOT_APPLICABLE;
}
else {
Total->RadClass.Beam += RadMap[y][x].Beam;
Total->RadClass.Diffuse += RadMap[y][x].Diffuse;
}
/* aggregate snow data */
if (Snow[y][x].HasSnow)
Total->Snow.HasSnow = TRUE;
Total->Snow.Swq += Snow[y][x].Swq;
Total->Snow.Glacier += Snow[y][x].Glacier;
/* Total->Snow.Melt += Snow[y][x].Melt; */
Total->Snow.Melt += Snow[y][x].Outflow;
Total->Snow.PackWater += Snow[y][x].PackWater;
Total->Snow.TPack += Snow[y][x].TPack;
Total->Snow.SurfWater += Snow[y][x].SurfWater;
Total->Snow.TSurf += Snow[y][x].TSurf;
Total->Snow.ColdContent += Snow[y][x].ColdContent;
Total->Snow.Albedo += Snow[y][x].Albedo;
Total->Snow.Depth += Snow[y][x].Depth;
Total->Snow.VaporMassFlux += Snow[y][x].VaporMassFlux;
Total->Snow.CanopyVaporMassFlux += Snow[y][x].CanopyVaporMassFlux;
/* aggregate soil moisture data */
Total->Soil.Depth += SoilMap[y][x].Depth;
DeepDepth = 0.0;
for (i = 0; i < NSoilL; i++) {
Total->Soil.Moist[i] += SoilMap[y][x].Moist[i];
assert(SoilMap[y][x].Moist[i] >= 0.0);
Total->Soil.Perc[i] += SoilMap[y][x].Perc[i];
Total->Soil.Temp[i] += SoilMap[y][x].Temp[i];
Total->SoilWater += SoilMap[y][x].Moist[i] * VType[VegMap[y][x].Veg - 1].RootDepth[i] * Network[y][x].Adjust[i];
DeepDepth += VType[VegMap[y][x].Veg - 1].RootDepth[i];
}
Total->Soil.Moist[Soil->MaxLayers] += SoilMap[y][x].Moist[NSoilL];
Total->SoilWater += SoilMap[y][x].Moist[NSoilL] * (SoilMap[y][x].Depth - DeepDepth) * Network[y][x].Adjust[NSoilL];
Total->Soil.TableDepth += SoilMap[y][x].TableDepth;
if (SoilMap[y][x].TableDepth <= 0)
(Total->Saturated)++;
Total->Soil.WaterLevel += SoilMap[y][x].WaterLevel;
Total->Soil.SatFlow += SoilMap[y][x].SatFlow;
Total->Soil.TSurf += SoilMap[y][x].TSurf;
Total->Soil.Qnet += SoilMap[y][x].Qnet;
Total->Soil.Qs += SoilMap[y][x].Qs;
Total->Soil.Qe += SoilMap[y][x].Qe;
Total->Soil.Qg += SoilMap[y][x].Qg;
Total->Soil.Qst += SoilMap[y][x].Qst;
Total->Soil.IExcess += SoilMap[y][x].IExcess;
Total->Soil.DetentionStorage += SoilMap[y][x].DetentionStorage;
if(Options->RoadRouting){
if (Network[y][x].RoadArea > 0) {
for (i = 0; i < CELLFACTOR; i++)
Total->Road.IExcess += (Network[y][x].h[i]* Network[y][x].RoadArea)/((float)CELLFACTOR * (Map->DX*Map->DY));
}
}
if (Options->Infiltration == DYNAMIC)
Total->Soil.InfiltAcc += SoilMap[y][x].InfiltAcc;
Total->Runoff += SoilMap[y][x].Runoff;
Total->ChannelInt += SoilMap[y][x].ChannelInt;
SoilMap[y][x].ChannelInt = 0.0;
Total->RoadInt += SoilMap[y][x].RoadInt;
SoilMap[y][x].RoadInt = 0.0;
if(Options->Sediment){
if (Options->SurfaceErosion) {
Total->Sediment.Erosion += SedMap[y][x].Erosion;
Total->Sediment.SedFluxOut += SedMap[y][x].SedFluxOut;
}
*roadarea += Network[y][x].RoadArea;
Total->Road.Erosion += Network[y][x].Erosion;
Total->Sediment.RoadSed += SedMap[y][x].RoadSed;
for (ii=0; ii< Map->DY/Map->DMASS; ii++) {
for (jj=0; jj< Map->DX/Map->DMASS; jj++) {
yy = (int) y*Map->DY/Map->DMASS + ii;
xx = (int) x*Map->DX/Map->DMASS + jj;
Total->Fine.SatThickness += (*FineMap[yy][xx]).SatThickness;
Total->Fine.DeltaDepth += (*FineMap[yy][xx]).DeltaDepth;
Total->Fine.Probability += (*FineMap[yy][xx]).Probability;
Total->Fine.MassWasting += (*FineMap[yy][xx]).MassWasting;
Total->Fine.MassDeposition += (*FineMap[yy][xx]).MassDeposition;
Total->Fine.SedimentToChannel += (*FineMap[yy][xx]).SedimentToChannel;
}
}
}
}
}
}
/* divide road area by pixel area so it can be used to calculate depths
over the road surface in FinalMassBalancs */
*roadarea /= Map->DX * Map->DY * NPixels;
/* calculate average values for all quantities except the surface flow */
/* average evaporation data */
Total->Evap.ETot /= NPixels;
for (i = 0; i < Veg->MaxLayers + 1; i++) {
Total->Evap.EPot[i] /= NPixels;
Total->Evap.EAct[i] /= NPixels;
}
for (i = 0; i < Veg->MaxLayers; i++)
Total->Evap.EInt[i] /= NPixels;
for (i = 0; i < Veg->MaxLayers; i++) {
for (j = 0; j < Soil->MaxLayers; j++) {
Total->Evap.ESoil[i][j] /= NPixels;
}
}
Total->Evap.EvapSoil /= NPixels;;
/* average precipitation data */
Total->Precip.Precip /= NPixels;
for (i = 0; i < Veg->MaxLayers; i++) {
Total->Precip.IntRain[i] /= NPixels;
Total->Precip.IntSnow[i] /= NPixels;
}
Total->CanopyWater /= NPixels;
/* average radiation data */
for (i = 0; i < Veg->MaxLayers + 1; i++) {
Total->Rad.NetShort[i] /= NPixels;
Total->Rad.LongIn[i] /= NPixels;
Total->Rad.LongOut[i] /= NPixels;
}
Total->Rad.PixelNetShort /= NPixels;
Total->Rad.PixelLongIn /= NPixels;
Total->Rad.PixelLongOut /= NPixels;
Total->RadClass.Beam /= NPixels;
Total->RadClass.Diffuse /= NPixels;
/* average snow data */
Total->Snow.Swq /= NPixels;
Total->Snow.Melt /= NPixels;
Total->Snow.PackWater /= NPixels;
Total->Snow.TPack /= NPixels;
Total->Snow.SurfWater /= NPixels;
Total->Snow.TSurf /= NPixels;
Total->Snow.ColdContent /= NPixels;
Total->Snow.Albedo /= NPixels;
Total->Snow.Depth /= NPixels;
Total->Snow.VaporMassFlux /= NPixels;
Total->Snow.CanopyVaporMassFlux /= NPixels;
/* average soil moisture data */
Total->Soil.Depth /= NPixels;
for (i = 0; i < Soil->MaxLayers; i++) {
Total->Soil.Moist[i] /= NPixels;
Total->Soil.Perc[i] /= NPixels;
Total->Soil.Temp[i] /= NPixels;
}
Total->Soil.Moist[Soil->MaxLayers] /= NPixels;
Total->Soil.TableDepth /= NPixels;
Total->Soil.WaterLevel /= NPixels;
Total->Soil.SatFlow /= NPixels;
Total->Soil.TSurf /= NPixels;
Total->Soil.Qnet /= NPixels;
Total->Soil.Qs /= NPixels;
Total->Soil.Qe /= NPixels;
Total->Soil.Qg /= NPixels;
Total->Soil.Qst /= NPixels;
Total->Soil.IExcess /= NPixels;
Total->Soil.DetentionStorage /= NPixels;
Total->Road.IExcess /= NPixels;
if (Options->Infiltration == DYNAMIC)
Total->Soil.InfiltAcc /= NPixels;
Total->SoilWater /= NPixels;
Total->Runoff /= NPixels;
Total->ChannelInt /= NPixels;
Total->RoadInt /= NPixels;
Total->CulvertReturnFlow /= NPixels;
Total->CulvertToChannel /= NPixels;
Total->RunoffToChannel /= NPixels;
/* Average Sediment results */
if (Options->Sediment) {
if (Options->SurfaceErosion){
Total->Sediment.Erosion /= NPixels;
Total->Sediment.SedFluxOut /= NPixels;
}
Total->Road.Erosion /= NPixels;
Total->Sediment.RoadSed /= NPixels;
// FineMap quantities must be averaged over number of FineMap cells
// rather than over the number of coarse grid cells
Total->Fine.SatThickness /= (NPixels*Map->DMASS*Map->DMASS);
Total->Fine.DeltaDepth /= (NPixels*Map->DMASS*Map->DMASS);
Total->Fine.Probability /= (NPixels*Map->DMASS*Map->DMASS);
// (We don't divide SedimentToChannel, MassWasting, etc. by NPixels,
// since they are totals and not averages)
}
}