-
Spatial data object of tidal creeks in Impaired Waters Rule, Run 64
+
Spatial data object of tidal creeks in Impaired Waters Rule, Run 65
diff --git a/search.json b/search.json
index d5364f48..24d7065b 100644
--- a/search.json
+++ b/search.json
@@ -1 +1 @@
-[{"path":"https://tbep-tech.github.io/tbeptools/CONTRIBUTING.html","id":null,"dir":"","previous_headings":"","what":"Contributing to tbeptools","title":"Contributing to tbeptools","text":"outlines propose change tbeptools. detailed info contributing , please see development contributing guide.","code":""},{"path":"https://tbep-tech.github.io/tbeptools/CONTRIBUTING.html","id":"fixing-typos","dir":"","previous_headings":"","what":"Fixing typos","title":"Contributing to tbeptools","text":"Small typos grammatical errors documentation may edited directly using GitHub web interface, long changes made source file. YES: edit roxygen comment .R file R/. : edit .Rd file man/.","code":""},{"path":"https://tbep-tech.github.io/tbeptools/CONTRIBUTING.html","id":"prerequisites","dir":"","previous_headings":"","what":"Prerequisites","title":"Contributing to tbeptools","text":"make substantial pull request, always file issue make sure someone team agrees ’s problem. ’ve found bug, create associated issue illustrate bug minimal reprex.","code":""},{"path":"https://tbep-tech.github.io/tbeptools/CONTRIBUTING.html","id":"pull-request-process","dir":"","previous_headings":"","what":"Pull request process","title":"Contributing to tbeptools","text":"recommend create Git branch pull request (PR). Look Travis AppVeyor build status making changes. README contain badges continuous integration services used package. New code follow tidyverse style guide. can use styler package apply styles, please don’t restyle code nothing PR. use roxygen2, Markdown syntax, documentation. use testthat. Contributions test cases included easier accept. user-facing changes, add bullet top NEWS.md current development version header describing changes made followed GitHub username, links relevant issue(s)/PR(s).","code":""},{"path":"https://tbep-tech.github.io/tbeptools/CONTRIBUTING.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Contributing to tbeptools","text":"Please note tbeptools project released Contributor Code Conduct. contributing project agree abide terms.","code":""},{"path":"https://tbep-tech.github.io/tbeptools/CONTRIBUTING.html","id":"see-tidyverse-development-contributing-guide","dir":"","previous_headings":"","what":"See tidyverse development contributing guide","title":"Contributing to tbeptools","text":"details.","code":""},{"path":"https://tbep-tech.github.io/tbeptools/ISSUE_TEMPLATE.html","id":null,"dir":"","previous_headings":"","what":"Issues reporting guide","title":"Issues reporting guide","text":"Please briefly describe problem output expect. question, please don’t use form. Instead, ask https://stackoverflow.com/ https://community.rstudio.com/. Please include minimal reproducible example (AKA reprex). ’ve never heard reprex , start reading https://www.tidyverse.org/help/#reprex. Brief description problem","code":"# insert reprex here"},{"path":"https://tbep-tech.github.io/tbeptools/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"MIT License","title":"MIT License","text":"Copyright (c) 2024 tbeptools authors Permission hereby granted, free charge, person obtaining copy software associated documentation files (“Software”), deal Software without restriction, including without limitation rights use, copy, modify, merge, publish, distribute, sublicense, /sell copies Software, permit persons Software furnished , subject following conditions: copyright notice permission notice shall included copies substantial portions Software. SOFTWARE PROVIDED “”, WITHOUT WARRANTY KIND, EXPRESS IMPLIED, INCLUDING LIMITED WARRANTIES MERCHANTABILITY, FITNESS PARTICULAR PURPOSE NONINFRINGEMENT. EVENT SHALL AUTHORS COPYRIGHT HOLDERS LIABLE CLAIM, DAMAGES LIABILITY, WHETHER ACTION CONTRACT, TORT OTHERWISE, ARISING , CONNECTION SOFTWARE USE DEALINGS SOFTWARE.","code":""},{"path":"https://tbep-tech.github.io/tbeptools/articles/fib.html","id":"background","dir":"Articles","previous_headings":"","what":"Background","title":"Fecal Indicator Bacteria","text":"Fecal Indicator Bacteria (FIB) used track concentrations pathogens surface waters may detrimental human health environment. commonly measured select indicators present human gut can enter environment wastewater discharges illicit sources. Common indicators include concentrations E. coli, Enterococcus, Fecal Coliform number colony forming units (CFU) per 100 mL water. Many monitoring programs routinely measure FIB concentrations select locations. Environmental Protection Commission (EPC) Hillsborough County tracking FIB indicators several decades part long-term monitoring. Functions tbeptools can used download EPC FIB data, analyze results, create summary maps plots. vignette describes use functions. functions focused reporting Hillsborough River fecal coliform impairment associated Basin Management Action Plan (BMAP). tools can used track long-term changes FIBs basin assess progress reducing fecal coliform levels. Data collected monitoring program processed maintained spreadsheet titled RWMDataSpreadsheet_ThroughCurrentReportMonth.xlsx https://epcbocc.sharepoint.com/:x:/s/Share/EWKgPirIkoxMp9Hm_wVEICsBk6avI9iSRjFiOxX58wXzIQ?e=kAWZXl&download=1 (viewable ). data include observations stations parameters throughout period record. FIB data collected stations additional water quality data collected. dataset used reporting water quality indicators Tampa Bay (see water quality data vignette).","code":""},{"path":"https://tbep-tech.github.io/tbeptools/articles/fib.html","id":"read","dir":"Articles","previous_headings":"","what":"Read","title":"Fecal Indicator Bacteria","text":"main function importing FIB data read_importfib(). function downloads latest file one already available location specified xlsx input argument. function operates similarly read_importwq() importing water quality data. Please refer see water quality data vignette additional details import function. FIB data can downloaded follows: data object called fibdata also provided package, although may contain current data available EPC. View help file download date. fibdata object includes monthly samples FIB data select stations Hillsborough River basin. stations include samples beginning 1972. default output read_importwq() returns stations FIB data EPC. = F read_importfib(), stations AreaName source data Hillsborough River, Hillsborough River Tributary, Alafia River, Alafia River Tributary, Lake Thonotosassa, Lake Thonotosassa Tributary, Lake Roberta. Values returned E. coli (ecoli), Enterococcus (ecocci), Fecal Coliform (fcolif), Total Coliform (totcol). Values shown # colonies per 100 mL water (#/100mL). Qualifier columns also returned _q suffix. Qualifier codes can interpreted source spreadsheet. Concentrations noted < > raw data reported , numeric value shown. Samples notation can determined qualifier columns. fibdata object can used remaining FIB functions.","code":"fibdata <- read_importfib('vignettes/current_data.xlsx', download_latest = T) fibdata #> # A tibble: 74,872 × 18 #> area epchc_station class SampleTime yr mo Latitude Longitude #> #> 1 Hills… 2 3M 2023-05-10 13:48:00 2023 5 27.9 -82.5 #> 2 Hills… 6 3M 2023-05-16 09:32:00 2023 5 27.9 -82.5 #> 3 Hills… 7 3M 2023-05-16 09:41:00 2023 5 27.9 -82.5 #> 4 Hills… 8 3M 2023-05-16 11:50:00 2023 5 27.9 -82.4 #> 5 Middl… 9 2 2023-05-16 11:12:00 2023 5 27.8 -82.4 #> 6 Middl… 11 2 2023-05-16 09:55:00 2023 5 27.8 -82.5 #> 7 Middl… 13 2 2023-05-16 10:07:00 2023 5 27.8 -82.5 #> 8 Middl… 14 2 2023-05-16 10:49:00 2023 5 27.8 -82.5 #> 9 Middl… 16 2 2023-05-23 10:19:00 2023 5 27.7 -82.5 #> 10 Middl… 19 2 2023-05-23 10:36:00 2023 5 27.7 -82.6 #> # ℹ 74,862 more rows #> # ℹ 10 more variables: Total_Depth_m , Sample_Depth_m , ecoli , #> # ecoli_q , ecocci , ecocci_q , fcolif , fcolif_q , #> # totcol , totcol_q "},{"path":"https://tbep-tech.github.io/tbeptools/articles/fib.html","id":"retrieving-additional-fib-data","dir":"Articles","previous_headings":"Read","what":"Retrieving additional FIB data","title":"Fecal Indicator Bacteria","text":"FIB functions tbeptools developed work long-term monitoring data Environmental Protection Commission Hillsborough County. Additional monitoring programs Tampa Bay can also used develop complete description FIB data. read_importwqp() function can used retrieve data USEPA Water Quality Portal data monitoring organizations around Tampa Bay watershed. function retrieves additional FIB data using type = 'fib' specified organization identified. data can retrieved follows typically take less one minute download.","code":"# get Manatee County data mancodata <- read_importwqp(org = '21FLMANA_WQX', type = 'fib', trace = T) # get Pinellas County data pincodata <- read_importwqp(org = '21FLPDEM_WQX', type = 'fib', trace = T)"},{"path":"https://tbep-tech.github.io/tbeptools/articles/fib.html","id":"analyze","dir":"Articles","previous_headings":"","what":"Analyze","title":"Fecal Indicator Bacteria","text":"anlz_fibmap() function assigns categories observation fibdata selected month year. results mapped using anlz_fibmap() (see ). categories specific E. coli Enterococcus assigned based station class freshwater (class 1 3F) marine (class 2 3M), respectively. station categorized one four ranges defined thresholds noted cat column output, corresponding colors appropriate range noted col column output. thresholds EPC follows E. coli Enterococcus. yrsel mosel arguments can used filter results year month. specifying arguments return results entire period record. areasel argument can indicate either \"Alafia\" \"Hillsborough\" select data corresponding river basins, rows fibdata filtered based selection. stations returned argument set NULL (default). Alafia River basin includes values area column fibdata \"Alafia River\" \"Alafia River Tributary\". Hillsborough River basin includes values area column fibdat \"Hillsborough River\", \"Hillsborough River Tributary\", \"Lake Thonotosassa\", \"Lake Thonotosassa Tributary\", \"Lake Roberta\". areas may present based selection yrsel mosel. valid options areasel include \"Alafia River\", \"Hillsborough River\", \"Big Bend\", \"Cockroach Bay\", \"East Lake Outfall\", \"Hillsborough Bay\", \"Little Manatee\", \"Lower Tampa Bay\", \"McKay Bay\", \"Middle Tampa Bay\", \"Old Tampa Bay\", \"Palm River\", \"Tampa Bypass Canal\", \"Valrico Lake\". anlz_fibmatrix() function creates summary FIB categories station year output show_fibmatrix() function described . function assigns Microbial Water Quality Assessment (MWQA) letter categories station year based likelihood fecal coliform concentrations exceed 400 CFU / 100 mL given year. default, results year based right-centered window uses previous two years current year calculate probabilities monthly samples (lagyr = 3). columns station year include estimated geometric mean fecal coliform concentrations (gmean) category indicating letter outcome based likelihood exceedences (cat).","code":"anlz_fibmap(fibdata) #> # A tibble: 74,872 × 12 #> area epchc_station class yr mo Latitude Longitude ecoli ecocci ind #> #> 1 Hillsb… 2 3M 2023 5 27.9 -82.5 NA 4 Ente… #> 2 Hillsb… 6 3M 2023 5 27.9 -82.5 NA 2 Ente… #> 3 Hillsb… 7 3M 2023 5 27.9 -82.5 NA 2 Ente… #> 4 Hillsb… 8 3M 2023 5 27.9 -82.4 NA 2 Ente… #> 5 Middle… 9 2 2023 5 27.8 -82.4 NA 2 Ente… #> 6 Middle… 11 2 2023 5 27.8 -82.5 NA 2 Ente… #> 7 Middle… 13 2 2023 5 27.8 -82.5 NA 2 Ente… #> 8 Middle… 14 2 2023 5 27.8 -82.5 NA 2 Ente… #> 9 Middle… 16 2 2023 5 27.7 -82.5 NA 2 Ente… #> 10 Middle… 19 2 2023 5 27.7 -82.6 NA 2 Ente… #> # ℹ 74,862 more rows #> # ℹ 2 more variables: cat , col anlz_fibmap(fibdata, yrsel = 2022, mosel = 7) #> # A tibble: 195 × 12 #> area epchc_station class yr mo Latitude Longitude ecoli ecocci ind #> #> 1 Hillsb… 2 3M 2022 7 27.9 -82.5 NA 20 Ente… #> 2 Hillsb… 6 3M 2022 7 27.9 -82.5 NA 2 Ente… #> 3 Hillsb… 7 3M 2022 7 27.9 -82.5 NA 2 Ente… #> 4 Hillsb… 8 3M 2022 7 27.9 -82.4 NA 2 Ente… #> 5 Middle… 9 2 2022 7 27.8 -82.4 NA 2 Ente… #> 6 Middle… 11 2 2022 7 27.8 -82.5 NA 2 Ente… #> 7 Middle… 13 2 2022 7 27.8 -82.5 NA 2 Ente… #> 8 Middle… 14 2 2022 7 27.8 -82.5 NA 2 Ente… #> 9 Middle… 16 2 2022 7 27.7 -82.5 NA 2 Ente… #> 10 Middle… 19 2 2022 7 27.7 -82.6 NA 2 Ente… #> # ℹ 185 more rows #> # ℹ 2 more variables: cat , col anlz_fibmap(fibdata, yrsel = 2022, mosel = 7, areasel = 'Hillsborough River') #> # A tibble: 38 × 12 #> area epchc_station class yr mo Latitude Longitude ecoli ecocci ind #> #> 1 Hillsb… 2 3M 2022 7 27.9 -82.5 NA 20 Ente… #> 2 Hillsb… 105 3M 2022 7 28.0 -82.4 NA 7 Ente… #> 3 Hillsb… 106 1 2022 7 28.1 -82.4 73 80 E. c… #> 4 Lake T… 107 3F 2022 7 28.0 -82.3 240 700 E. c… #> 5 Hillsb… 108 3F 2022 7 28.1 -82.2 60 210 E. c… #> 6 Lake T… 118 3F 2022 7 28.1 -82.3 7 10 E. c… #> 7 Hillsb… 120 3F 2022 7 28.1 -82.4 220 300 E. c… #> 8 Lake T… 135 3F 2022 7 28.1 -82.3 7 7 E. c… #> 9 Hillsb… 137 3M 2022 7 28.0 -82.5 NA 40 Ente… #> 10 Hillsb… 143 3F 2022 7 28.1 -82.1 327 1240 E. c… #> # ℹ 28 more rows #> # ℹ 2 more variables: cat , col anlz_fibmatrix(fibdata) #> # A tibble: 8,541 × 4 #> yr epchc_station gmean cat #> #> 1 1985 2 52.4 B #> 2 1985 6 7.21 A #> 3 1985 7 4.64 A #> 4 1985 8 9.49 A #> 5 1985 9 6.32 A #> 6 1985 11 5.18 A #> 7 1985 13 4 A #> 8 1985 14 6.35 A #> 9 1985 16 4 A #> 10 1985 19 4 A #> # ℹ 8,531 more rows"},{"path":"https://tbep-tech.github.io/tbeptools/articles/fib.html","id":"show","dir":"Articles","previous_headings":"","what":"Show","title":"Fecal Indicator Bacteria","text":"show_fibmap() function creates map FIB sites thresholds based output anlz_fibmap(). arguments apply anlz_fibmap() also apply show_fibmap() freshwater marine stations categorized relevant thresholds plotted selected year, month, area. Unlike anlz_fibmap(), yrsel mosel arguments required. Sites Hillsborough Alafia river basins can shown using areasel argument. Additional information site can seen placing cursor location. map inset can also seen clicking arrow button left. show_fibmatrix() function creates stoplight graphic summarized FIB data selected stations year available data [1]. matrix colors based likelihood fecal indicator bacteria concentrations exceed 400 CFU / 100 mL given year (using Fecal Coliform, fcolif fibdata). likelihoods categorized , B, C, D, E (Microbial Water Quality Assessment MWQA categories) corresponding colors, breakpoints category <10%, 10-30%, 30-50%, 50-75%, >75% (right-closed). Methods rationale categorization scheme provided Florida Department Environmental Protection, Figure 8 [2] [1]. default, results year based right-centered window uses previous two years current year calculate probabilities monthly samples (lagyr = 3). example shows results using monthly observations year. default stations used TBEP report #05-13 [3] Hillsborough River Basin Management Action Plan (BMAP) subbasins. include Blackwater Creek (WBID 1482, EPC stations 143, 108), Baker Creek (WBID 1522C, EPC station 107), Lake Thonotosassa (WBID 1522B, EPC stations 135, 118), Flint Creek (WBID 1522A, EPC station 148), Lower Hillsborough River (WBID 1443E, EPC stations 105, 152, 137). stations fibdata can plotted using stas argument. yrrng argument can also used select year range, default 1985 current year data fibdata. preferred, matrix can also returned HTML table can sorted scrolled. first ten rows shown default. default number rows (10) can changed nrows argument. Use sufficiently large number show rows. plotly (interactive, dynamic plot) can returned setting plotly argument TRUE. plots, can view locations general trends FIB data Hillsborough Alafia river basins. Additional functions may added future evaluate FIB data locations.","code":"show_fibmap(fibdata, yrsel = 2022, mosel = 7, areasel = NULL) show_fibmap(fibdata, yrsel = 2022, mosel = 7, areasel = 'Hillsborough River') show_fibmap(fibdata, yrsel = 2021, mosel = 6, areasel = 'Alafia River') show_fibmatrix(fibdata) show_fibmatrix(fibdata, lagyr = 1) show_fibmatrix(fibdata, stas = c(115, 116)) show_fibmatrix(fibdata, yrrng = c(1990, 2020)) show_fibmatrix(fibdata, asreact = TRUE) show_fibmatrix(fibdata, plotly = TRUE)"},{"path":[]},{"path":"https://tbep-tech.github.io/tbeptools/articles/habitatmasterplan.html","id":"background","dir":"Articles","previous_headings":"","what":"Background","title":"Habitat Master Plan","text":"Dashboard: https://shiny.tbep.org/landuse-change/ habitats Tampa Bay provide food, shelter, important services support birds, fish, mammals, invertebrates. Significant habitat alteration loss occurred development activities. address challenges, Habitat Master Plan (2020 Update) [1] provides set targets goals , achieved, provide healthy balanced coverage native habitats Tampa Bay watershed. update builds previous Habitat Master Plan [2] several ways. target goal setting approach informed past changes forty years habitat restoration experience region. approach also identifies possible today rather replicating past ecological conditions accounts potential future effects sea-level rise, climate change, development. Habitat Master Plan defines 10-year (2030) habitat protection restoration targets 30-year (2050) goals. Maps habitat protection restoration opportunity areas targets goals can attained additional products available new plan. Please visit https://tbep.org/habitat-master-plan-update/ additional information.","code":""},{"path":"https://tbep-tech.github.io/tbeptools/articles/habitatmasterplan.html","id":"datasets","dir":"Articles","previous_headings":"","what":"Datasets","title":"Habitat Master Plan","text":"Three internal datasets tbeptools provide necessary information create Habitat Master Plan report card. Summary annual acreage estimates major habitat type intertidal supratidal strata. Summary annual acreage estimates major habitat type subtidal stratam. table targets goals major habitat type, developed Habitat Master Plan 2020 update [1] (select columns shown). datasets created repository https://github.com/tbep-tech/hmpu-workflow require updates land use cover datasets produced every two three years Southwest Florida Water Management District.","code":"acres #> # A tibble: 90 × 3 #> # Groups: name [9] #> name HMPU_TARGETS Acres #> #> 1 1990 Coastal Uplands 5078. #> 2 1990 Developed 372438. #> 3 1990 Forested Freshwater Wetlands 159561. #> 4 1990 Mangrove Forests 13522. #> 5 1990 Native Uplands 229990. #> 6 1990 Non-Forested Freshwater Wetlands 54454. #> 7 1990 Open Water 38357. #> 8 1990 Restorable 571513. #> 9 1990 Salt Barrens 468 #> 10 1990 Salt Marshes 4482. #> # ℹ 80 more rows subtacres #> # A tibble: 65 × 3 #> name HMPU_TARGETS Acres #> #> 1 1988 Open Water 197802. #> 2 1988 Restorable 72.9 #> 3 1988 Seagrasses 23279. #> 4 1988 Tidal Flats 21686. #> 5 1990 Open Water 197058. #> 6 1990 Restorable 67.0 #> 7 1990 Seagrasses 25218. #> 8 1990 Tidal Flats 20433. #> 9 1992 Open Water 195908. #> 10 1992 Restorable 86.0 #> # ℹ 55 more rows hmptrgs[, c(\"Category\", \"HMPU_TARGETS\", \"Target2030\", \"Goal2050\")] #> Category HMPU_TARGETS Target2030 Goal2050 #> 1 Subtidal Hard Bottom 423.0 423.0 #> 2 Subtidal Artificial Reefs 166.0 166.0 #> 3 Subtidal Tidal Flats 16220.0 16220.0 #> 4 Subtidal Seagrasses 40000.0 40000.0 #> 5 Subtidal Oyster Bars 221.0 471.0 #> 6 Intertidal Living Shorelines 21.3 56.3 #> 7 Intertidal Total Intertidal 21353.0 23803.0 #> 8 Intertidal Mangrove Forests 15300.0 15300.0 #> 9 Intertidal Salt Barrens 546.0 796.0 #> 10 Intertidal Salt Marshes 4807.0 5457.0 #> 11 Intertidal Tidal Tributaries 4.0 18.0 #> 12 Supratidal Coastal Uplands 3769.0 4219.0 #> 13 Supratidal Non-Forested Freshwater Wetlands 68937.0 71787.0 #> 14 Supratidal Forested Freshwater Wetlands 152282.0 152732.0 #> 15 Supratidal Native Uplands 141050.0 142100.0"},{"path":"https://tbep-tech.github.io/tbeptools/articles/habitatmasterplan.html","id":"report-card-summary","dir":"Articles","previous_headings":"","what":"Report card summary","title":"Habitat Master Plan","text":"important reporting product Habitat Master Plan report card summarizes attainment targets goals evaluates prior trends identify coverages trending targets goals. Two functions provided tbeptools create report card. anlz_hmpreport() summarizes datasets provide necessary information creating report card. show_hmpreport() generates plot report card. latter can used former provided need view data behind report card. Using anlz_hmpreport() function summarizes acreage coverage estimates habitat type, compares targets goals year data, assesses coverage trend year pairs determine changes trending targets goals. columns follows: year: Year assessment metric: Habitat type assessed Acres: Coverage estimate year lacres: Coverage estimate previous set available data lyr: Year previous set available data category: Strata habitat type Target: 2030 target habitat type Habitat Master Plan Goal: 2050 goal habitat type Habitat Master Plan acresdiff: Difference acres current year previous set available data yeardiff: Difference years current year previous set available data changerate: Acreage change per year current year relative previous set available data targetrate: Annual rate required achieve 2030 target goalrate: Annual rate required achieve 2050 goal targetprop: Proportion target met current year goalprop: Proportion goal met current year targeteval: number indicating target status current year report card goaleval: number indicating goal status current year report card important columns output targetprop, goalprop, targeteval, goaleval. targetprop goalprop columns indicate proportion target goal met habitat type current assessment year. targeteval goaleval columns one four values, -1, 0, 0.5, 1, habitat type year. numbers define habitat status assessment year: -1: target goal met, trending 0: target goal met, trending 0.5: target goal met, trending 1: target goal met, trending ","code":"anlz_hmpreport(acres = acres, subtacres = subtacres, hmptrgs = hmptrgs) #> # A tibble: 150 × 17 #> year metric Acres lacres lyr category Target Goal acresdiff yeardiff #> #> 1 1990 Seagrasses 25218. 23279. 1988 Subtidal 40000 40000 1939. 2 #> 2 1990 Tidal Fla… 20433. 21686. 1988 Subtidal 16220 16220 -1253. 2 #> 3 1992 Seagrasses 25746. 25218. 1990 Subtidal 40000 40000 528. 2 #> 4 1992 Tidal Fla… 20594. 20433. 1990 Subtidal 16220 16220 161. 2 #> 5 1994 Seagrasses 26524. 25746. 1992 Subtidal 40000 40000 778. 2 #> 6 1994 Tidal Fla… 20244. 20594. 1992 Subtidal 16220 16220 -349. 2 #> 7 1996 Seagrasses 26924. 26524. 1994 Subtidal 40000 40000 400. 2 #> 8 1996 Tidal Fla… 20443. 20244. 1994 Subtidal 16220 16220 199. 2 #> 9 1999 Seagrasses 24840. 26924. 1996 Subtidal 40000 40000 -2083. 3 #> 10 1999 Tidal Fla… 27085. 20443. 1996 Subtidal 16220 16220 6642. 3 #> # ℹ 140 more rows #> # ℹ 7 more variables: changerate , targetrate , goalrate , #> # targetprop , goalprop , targeteval , goaleval "},{"path":"https://tbep-tech.github.io/tbeptools/articles/habitatmasterplan.html","id":"report-card-plot","dir":"Articles","previous_headings":"","what":"Report card plot","title":"Habitat Master Plan","text":"show_hmpreport() can used create Habitat Master Plan report card. anlz_hmpreport() function used internally need used separately. input files . plot shows report card 2030 targets, using typ = \"targets\". colors cell correspond numbers targeteval column (goaleval typ = \"goals\") returned anlz_hmpreport(). numbers cell indicate proportion target targetprop (goal goalprop typ = \"goals\") met habitat type assessment year. Note creation datasets generate summaries continuous year varies subtidal inter/supratidal habitat. 2050 goals report card can shown using typ = \"goals\". subtidal data subtacres inter/supratidal data acres provided different datasets Southwest Florida Water Management District. years dataset typically match dataset collected approximate 2 3 year intervals. default, year y-axis shown continuous variable, gaps shown years dataset unavailable. Use ycollapse = TRUE remove years without data. Different strata can also selected using strata argument. Note use ycollapse = T remove years without data. strata can combined single plot collapsed years using patchwork library. Finally, text showing proportion target goal met year can suppressed using text = NULL. size text can changed entering numeric value (default text = 2.5). report card provides information artificial reefs, living shorelines, hard bottom habitats. habitats assessed routine data products Southwest Florida Water Management District, although targets goals provided Habitat Master Plan.","code":"show_hmpreport(acres = acres, subtacres = subtacres, hmptrgs = hmptrgs, typ = 'targets') show_hmpreport(acres = acres, subtacres = subtacres, hmptrgs = hmptrgs, typ = 'goals') show_hmpreport(acres = acres, subtacres = subtacres, hmptrgs = hmptrgs, typ = 'targets', ycollapse = T) show_hmpreport(acres = acres, subtacres = subtacres, hmptrgs = hmptrgs, typ = 'targets', strata = c('Intertidal', 'Supratidal'), ycollapse = T) library(patchwork) library(ggplot2) p1 <- show_hmpreport(acres = acres, subtacres = subtacres, hmptrgs = hmptrgs, typ = 'targets', strata = 'Subtidal', ycollapse = T) p2 <- show_hmpreport(acres = acres, subtacres = subtacres, hmptrgs = hmptrgs, typ = 'targets', strata = c('Intertidal', 'Supratidal'), ycollapse = T) + labs(title = NULL) p1 + p2 + plot_layout(ncol = 2, guides = 'collect') show_hmpreport(acres = acres, subtacres = subtacres, hmptrgs = hmptrgs, typ = 'targets', text = NULL)"},{"path":[]},{"path":"https://tbep-tech.github.io/tbeptools/articles/intro.html","id":"background","dir":"Articles","previous_headings":"","what":"Background","title":"Water Quality Data","text":"Dashboard: https://shiny.tbep.org/wq-dash vignette provides overview functions tbeptools can used work water quality data Tampa Bay. View vignettes topical introductions reporting products (e.g., seagrasess, tidal creeks, etc.). environmental recovery Tampa Bay exceptional success story coastal water quality management. Nitrogen loads mid 1970s estimated 8.2 million kg/yr, approximately 5.5 million kg/yr entering upper Bay alone [2]. Reduced water clarity associated phytoplankton biomass contributed dramatic reduction areal coverage seagrass [3] development hypoxic events, causing decline benthic faunal production [4]. Extensive efforts reduce nutrient loads Bay occurred late 1970s, notable improvements infrastructure wastewater treatment 1979. Improvements water clarity decreases chlorophyll concentrations observed Bay-wide 1980s, conditions generally remaining constant present day [5]. Tracking changes environmental condition past present day possible without long-term monitoring dataset. Data collected monthly Environmental Protection Commission Hillsborough County since 1974 [6,7]. Samples taken forty-five stations water collection monitoring sonde bottom, mid- surface depths, depending parameter. locations monitoring stations fixed cover entire Bay uppermost mesohaline sections lowermost euhaline portions direct interaction Gulf Mexico. 515 observations available different parameters station, e.g., nitrogen, chlorophyll-, secchi depth. Data collected monitoring program processed maintained spreadsheet titled RWMDataSpreadsheet_ThroughCurrentReportMonth.xlsx https://epcbocc.sharepoint.com/:x:/s/Share/EWKgPirIkoxMp9Hm_wVEICsBk6avI9iSRjFiOxX58wXzIQ?e=kAWZXl&download=1 (viewable ). data include observations stations parameters throughout period record. date, systematic tools importing, analyzing, reporting information data. tbeptools package provides developed address need. Locations long-term monitoring stations Tampa Bay. Bay separated four segments defined chemical, physical, geopolitical boundaries.","code":""},{"path":"https://tbep-tech.github.io/tbeptools/articles/intro.html","id":"read","dir":"Articles","previous_headings":"","what":"Read","title":"Water Quality Data","text":"main function importing water quality data read_importwq(). function downloads latest file one already available location specified xlsx input argument. First, create character path location file. one exist, specify desired location name downloaded file. , want put file vignettes folder name current_results.xls. Note file path relative root working directly current R session. can view working directory getwd(). Now pass xlsx object read_importwq() function. get error message function indicating file found. makes sense file doesn’t exist yet, need tell function download latest file. done changing download_latest argument TRUE (default FALSE). Now get message, indication file server downloaded. ’ll data downloaded saved epcdata object finishes downloading. try run function downloading data server, get following message. check done make sure data unnecessarily downloaded current file matches file server. Every time tbeptools used work monitoring data, read_importwq() used import data. always receive message File current... local file matches one server. However, new data regularly collected posted server. download_latest = TRUE local file date, receive following message: argument na indicates fields downloaded spreadsheet treated blank values assigned NA. number strings can added function replace fields NA values. data successfully imported, can view assigned object: data include bay segment name, station number, sample time, year, month, latitude, longitude, station depth, sample depth, total nitrogen, secchi depth, chlorophyll, salinity, water temperature, turbidity, water color. parameters can included setting = TRUE read_importwq(). import function also available download format phytoplankton cell count data. read_importphyto() function works similarly import function water quality data. Start specifying path data downloaded set download_latest TRUE. function download summarize data file PlanktonDataList_ThroughCurrentReportMonth.xlsx EPC website. phytoplankton data successfully imported, can view assigned object: data highly summarized raw data file available online. Cell counts (number cells per 0.1mL) selected taxa summed station quarters (.e., Jan/Feb/Mar, Apr/May/Jun, etc.). quarter indicated yrqrt column specified starting date quarter (e.g., 1975-07-01 quarter Jul/Aug/Sep 1975). data primarily used support analyses water quality dashboard: https://shiny.tbep.org/wq-dash/","code":"xlsx <- 'vignettes/current_results.xlsx' epcdata <- read_importwq(xlsx) epcdata <- read_importwq(xlsx, download_latest = TRUE) #> File vignettes/current_results.xlsx does not exist, replacing with downloaded file... #> trying URL 'https://epcbocc.sharepoint.com/:x:/s/Share/EYXZ5t16UlFGk1rzIU91VogBa8U37lh8z_Hftf2KJISSHg?e=8r1SUL&download=1' length 24562051 bytes (23.4 MB) epcdata <- read_importwq(xlsx, download_latest = TRUE) #> File is current... #> Replacing local file with current... epcdata #> # A tibble: 27,961 × 26 #> bay_segment epchc_station SampleTime yr mo Latitude Longitude #> #> 1 HB 6 2023-12-19 10:01:00 2023 12 27.9 -82.5 #> 2 HB 7 2023-12-19 10:12:00 2023 12 27.9 -82.5 #> 3 HB 8 2023-12-19 12:39:00 2023 12 27.9 -82.4 #> 4 MTB 9 2023-12-19 11:54:00 2023 12 27.8 -82.4 #> 5 MTB 11 2023-12-19 10:25:00 2023 12 27.8 -82.5 #> 6 MTB 13 2023-12-19 10:38:00 2023 12 27.8 -82.5 #> 7 MTB 14 2023-12-19 11:24:00 2023 12 27.8 -82.5 #> 8 MTB 16 2023-12-20 09:35:00 2023 12 27.7 -82.5 #> 9 MTB 19 2023-12-20 09:49:00 2023 12 27.7 -82.6 #> 10 LTB 23 2023-12-20 13:16:00 2023 12 27.7 -82.6 #> # ℹ 27,951 more rows #> # ℹ 19 more variables: Total_Depth_m , Sample_Depth_m , tn , #> # tn_q , sd_m , sd_raw_m , sd_q , chla , #> # chla_q , Sal_Top_ppth , Sal_Mid_ppth , #> # Sal_Bottom_ppth , Temp_Water_Top_degC , #> # Temp_Water_Mid_degC , Temp_Water_Bottom_degC , #> # `Turbidity_JTU-NTU` , Turbidity_Q , Color_345_F45_PCU , … xlsx <- 'phyto_data.xlsx' phytodata <- read_importphyto(xlsx, download_latest = T) #> File vignettes/phyto_data.xlsx does not exist, replacing with downloaded file... #> trying URL 'https://epcbocc.sharepoint.com/:x:/s/Share/ETAfRQ5drmRHntDd1O8s3FQB180Fumed4nQ99w-OIVDxrA?e=eSmtxD&download=1' length 12319508 bytes (11.7 MB) phytodata #> # A tibble: 23,848 × 8 #> epchc_station Date name units count yrqrt yr mo #> #> 1 11 1975-07-23 Cyanobacteria /0.1mL 0 1975-07-01 1975 Jul #> 2 11 1976-01-07 Cyanobacteria /0.1mL 1 1976-01-01 1976 Jan #> 3 11 1977-01-05 other /0.1mL 1 1977-01-01 1977 Jan #> 4 11 1977-04-20 other /0.1mL 1 1977-04-01 1977 Apr #> 5 11 1977-04-20 Tripos hircus /0.1mL 1 1977-04-01 1977 Apr #> 6 11 1977-07-13 other /0.1mL 12 1977-07-01 1977 Jul #> 7 11 1978-01-11 other /0.1mL 16 1978-01-01 1978 Jan #> 8 11 1979-02-08 other /0.1mL 1 1979-01-01 1979 Feb #> 9 11 1979-05-02 Karenia brevis /0.1mL 1 1979-04-01 1979 May #> 10 11 1979-05-30 other /0.1mL 1 1979-04-01 1979 May #> # ℹ 23,838 more rows"},{"path":"https://tbep-tech.github.io/tbeptools/articles/intro.html","id":"retrieving-additional-water-quality-data","dir":"Articles","previous_headings":"Read","what":"Retrieving additional water quality data","title":"Water Quality Data","text":"water quality functions tbeptools developed work long-term monitoring data Environmental Protection Commission Hillsborough County. Additional monitoring programs Tampa Bay can also used develop complete description water quality. read_importwqp() function can used retrieve data USEPA Water Quality Portal data monitoring organizations around Tampa Bay watershed. function retrieves nutrient, chlorophyll, secchi, temperature, salinity, turbidity data available estuarine stations monitored organization type = 'wq'. data can retrieved follows typically take less one minute download.","code":"# get Manatee County data mancodata <- read_importwqp(org = '21FLMANA_WQX', type = 'wq', trace = T) # get Pinellas County data pincodata <- read_importwqp(org = '21FLPDEM_WQX', type = 'wq', trace = T)"},{"path":"https://tbep-tech.github.io/tbeptools/articles/intro.html","id":"analyze","dir":"Articles","previous_headings":"","what":"Analyze","title":"Water Quality Data","text":"functions anlz_avedat() anlz_avedatsite() summarize station data bay segments sites, respectively. functions return annual means chlorophyll light attenuation (based Secchi depth measurements) monthly means year chlorophyll light attenuation. summaries used determine bay segment targets water quality met using anlz_attain() anlz_attainsite() function. use anlz_avedat() summarize data bay segment estimate annual monthly means chlorophyll light attenuation. output two-element list annual (ann) monthly (mos) means segment. output can analyzed anlz_attain() determine bay segment outcomes met year. results used plotting functions described . short, chl_la column indicates categorical outcome chlorophyll light attenuation segment. outcomes integer values zero three. relative exceedances water quality thresholds segment, duration magnitude, indicated higher integer values. Similar information can obtained individual sites using anlz_avedatsite() anlz_attainsite(). main difference yes/column metis added indicates target segment threshold site.","code":"avedat <- anlz_avedat(epcdata) avedat #> $ann #> # A tibble: 608 × 4 #> yr bay_segment var val #> #> 1 1974 HB mean_chla 22.4 #> 2 1974 LTB mean_chla 4.24 #> 3 1974 MTB mean_chla 9.66 #> 4 1974 OTB mean_chla 10.2 #> 5 1975 HB mean_chla 27.9 #> 6 1975 LTB mean_chla 4.93 #> 7 1975 MTB mean_chla 11.4 #> 8 1975 OTB mean_chla 13.2 #> 9 1976 HB mean_chla 29.5 #> 10 1976 LTB mean_chla 5.08 #> # ℹ 598 more rows #> #> $mos #> # A tibble: 4,724 × 5 #> bay_segment yr mo var val #> #> 1 HB 1974 1 mean_chla 36.2 #> 2 LTB 1974 1 mean_chla 1.75 #> 3 MTB 1974 1 mean_chla 11.5 #> 4 OTB 1974 1 mean_chla 4.4 #> 5 HB 1974 2 mean_chla 42.4 #> 6 LTB 1974 2 mean_chla 5.5 #> 7 MTB 1974 2 mean_chla 9.35 #> 8 OTB 1974 2 mean_chla 4.07 #> 9 HB 1974 3 mean_chla 14.9 #> 10 LTB 1974 3 mean_chla 5.88 #> # ℹ 4,714 more rows anlz_attain(avedat) #> # A tibble: 200 × 4 #> bay_segment yr chl_la outcome #> #> 1 HB 1974 3_0 yellow #> 2 HB 1975 3_2 red #> 3 HB 1976 3_2 red #> 4 HB 1977 3_2 red #> 5 HB 1978 3_3 red #> 6 HB 1979 3_3 red #> 7 HB 1980 3_3 red #> 8 HB 1981 3_3 red #> 9 HB 1982 3_3 red #> 10 HB 1983 3_0 yellow #> # ℹ 190 more rows anlz_avedatsite(epcdata) %>% anlz_attainsite #> # A tibble: 2,250 × 9 #> yr bay_segment epchc_station var val target smallex thresh met #> #> 1 1974 HB 6 chla 25.6 13.2 14.1 15 no #> 2 1974 HB 7 chla 21.6 13.2 14.1 15 no #> 3 1974 HB 8 chla 22.6 13.2 14.1 15 no #> 4 1974 HB 44 chla 23.4 13.2 14.1 15 no #> 5 1974 HB 52 chla 23.5 13.2 14.1 15 no #> 6 1974 HB 55 chla 20.2 13.2 14.1 15 no #> 7 1974 HB 70 chla 33.1 13.2 14.1 15 no #> 8 1974 HB 71 chla 25.8 13.2 14.1 15 no #> 9 1974 HB 73 chla 17.6 13.2 14.1 15 no #> 10 1974 HB 80 chla 10.5 13.2 14.1 15 yes #> # ℹ 2,240 more rows"},{"path":"https://tbep-tech.github.io/tbeptools/articles/intro.html","id":"show","dir":"Articles","previous_headings":"","what":"Show","title":"Water Quality Data","text":"External package libraries R can used plot time series data. ’s example using popular ggplot2 package. data wrangling dplyr done first filter data want plot. show_thrplot() function provides descriptive assessment annual trends chosen bay segment relative defined targets thresholds. plot show annual averages across stations Old Tampa bay (bay_segment = \"OTB\") chlorophyll (thr = \"chla\"). red line shows annual trends horizontal blue lines indicate thresholds targets chlorophyll-specific Old Tampa Bay. dashed dotted blue lines indicate +1 +2 standard errors management target shown filled line. target standard errors considered identifying annual segment outcome chlorophyll. can show plot light attenuation changing thr = \"chla\" thr = \"la\". Note change horizontal reference lines light attenuation target. year range plot can also specified using yrrng argument, default year range epcdata. show_thrplot() function uses results anlz_avedat() function. example, can retrieve values plot follows: Similarly, show_boxplot() function provides assessment seasonal changes chlorophyll light attenuation values bay segment. recent year highlighted red default. allows simple evaluation recent year compared historical averages. large exceedance value shown blue text dotted line. corresponds “large” magnitude change +2 standard errors bay segment threshold dotted line shown show_thrplot(). different subset years selected year interest can also viewed changing yrrng yrsel arguments. show 1980 compared monthly averages 2008 2018. show_thrplot() function useful understand annual variation chlorophyll light attenuation relative management targets bay segment. information plots can provide understanding annual reporting outcomes determined. noted , outcome integer zero three assigned bay segment annual estimate chlorophyll light attenuation. outcomes based exceedance annual estimate threshold target (blue lines show_thrplot()) duration exceedance years prior. following graphic describes logic [8]. Outcomes annual estimates water quality assigned integer value zero three depending magnitude duration exceedence. outcomes assigned chlorophyll light attenuation. duration criteria determined based whether exceedance observed years prior current year. exceedance criteria chlorophyll light-attenuation specific segment. tbeptools package contains targets data file reference determining annual outcomes. file loaded automatically package can viewed command line. final plotting function show_matrix(), creates annual reporting matrix reflects combined outcomes chlorophyll light attenuation. Tracking attainment bay segment specific targets indicators provides framework bay management actions developed initiated. year segment, color-coded management action assigned: Stay Course: Continue planned projects. Report data via annual progress reports Baywide Environmental Monitoring Report. Caution: Review monitoring data nitrogen loading estimates. Begin/continue TAC Management Board development specific management recommendations. Alert: Finalize development implement appropriate management actions get back track. management category action based combination outcomes chlorophyll light attenuation [8]. Management action categories assigned bay segment year based chlorophyll light attenuation outcomes. results can viewed show_matrix(). matrix also ggplot object layout can changed using ggplot elements. Note use txtsz = NULL remove color labels. preferred, matrix can also returned HTML table can sorted scrolled. first ten rows shown default. default number rows (10) can changed nrows argument. Use sufficiently large number show rows. plotly (interactive, dynamic plot) can returned setting plotly argument TRUE. Results can also obtained selected year. Outcomes can returned tabular format anlz_yrattain(). table also shows segment averages chlorophyll light attenuation, including associated targets. map showing individual sites achieved chlorophyll targets can obtained show_sitemap(). station averages chlorophyll selected year shown next point. Stations red failed meet segment target. show_sitemap() function also includes argument specify particular monthly range selected year. option chosen, averages shown continuous values station. Another map can created show_sitesegmap() similar show_sitemap(), except bay segments shown colored annual outcome. map useful understand site data correspond bay segment. Bay segment exceedances can also viewed matrix using show_wqmatrix(). thresholds values correspond Florida DEP criteria (large exceedance defined +2 standard errors segment target). default, show_wqmatrix() function returns chlorophyll exceedances segment. Light attenuation exceedances can viewed changing param argument. results show_matrix() show_wqmatrix() can combined individual segment using show_segmatrix() function. useful understand water quality parameter driving management outcome given year. plot shows light attenuation chlorophyll outcomes show_wqmatrix() next segment management outcomes show_matrix(). one segment can plotted function call. Finally, segment plots can shown together using show_segplotly() function combines chlorophyll secchi data given segment. function combines outputs show_thrplot() show_segmatrix(). final plot interactive can zoomed dragging mouse pointer section plot. Information cell value can seen hovering location plot. plots, can quickly view summary environmental history water quality Tampa Bay. Degraded conditions common early period record, particularly Old Tampa Bay Hillsborough Bay. Conditions began improve late 1980s early 1990s, good conditions persisting present day. However, recent trends Old Tampa Bay shown conditions changing “stay course” “caution”.","code":"toplo <- epcdata %>% filter(epchc_station == '52') ggplot(toplo, aes(x = SampleTime, y = chla)) + geom_line() + geom_point() + scale_y_log10() + labs( y = 'Chlorophyll-a concentration (ug/L)', x = NULL, title = 'Chlorophyll trends', subtitle = 'Hillsborough Bay station 52, all dates' ) + theme_bw() show_thrplot(epcdata, bay_segment = \"OTB\", thr = \"chla\") show_thrplot(epcdata, bay_segment = \"OTB\", thr = \"la\") show_thrplot(epcdata, bay_segment = \"OTB\", thr = \"la\", yrrng = c(2000, 2018)) epcdata %>% anlz_avedat %>% .[['ann']] %>% filter(bay_segment == 'OTB') %>% filter(var == 'mean_la') %>% filter(yr >= 2000 & yr <= 2018) #> # A tibble: 19 × 4 #> yr bay_segment var val #> #> 1 2000 OTB mean_la 0.733 #> 2 2001 OTB mean_la 0.951 #> 3 2002 OTB mean_la 0.927 #> 4 2003 OTB mean_la 1.04 #> 5 2004 OTB mean_la 0.878 #> 6 2005 OTB mean_la 0.769 #> 7 2006 OTB mean_la 0.620 #> 8 2007 OTB mean_la 0.677 #> 9 2008 OTB mean_la 0.696 #> 10 2009 OTB mean_la 0.808 #> 11 2010 OTB mean_la 0.842 #> 12 2011 OTB mean_la 0.912 #> 13 2012 OTB mean_la 0.687 #> 14 2013 OTB mean_la 0.567 #> 15 2014 OTB mean_la 0.606 #> 16 2015 OTB mean_la 0.560 #> 17 2016 OTB mean_la 0.575 #> 18 2017 OTB mean_la 0.682 #> 19 2018 OTB mean_la 0.678 show_boxplot(epcdata, param = 'chla', bay_segment = \"OTB\") show_boxplot(epcdata, param = 'la', bay_segment = \"HB\") show_boxplot(epcdata, param = 'chla', bay_segment = \"OTB\", yrrng = c(2008, 2018), yrsel = 1980) targets #> bay_segment name chla_target chla_smallex chla_thresh #> 1 OTB Old Tampa Bay 8.5 8.9 9.3 #> 2 HB Hillsborough Bay 13.2 14.1 15.0 #> 3 MTB Middle Tampa Bay 7.4 7.9 8.5 #> 4 LTB Lower Tampa Bay 4.6 4.8 5.1 #> 5 BCBN Boca Ciega Bay North 7.7 NaN 8.3 #> 6 BCBS Boca Ciega Bay South 6.1 NaN 6.3 #> 7 TCB Terra Ceia Bay 7.5 NaN 8.7 #> 8 MR Manatee River 7.3 NaN 8.8 #> 9 RALTB Remainder Lower Tampa Bay NaN NaN 5.1 #> la_target la_smallex la_thresh #> 1 0.83 0.86 0.88 #> 2 1.58 1.63 1.67 #> 3 0.83 0.87 0.91 #> 4 0.63 0.66 0.68 #> 5 NaN NaN NaN #> 6 NaN NaN NaN #> 7 NaN NaN NaN #> 8 NaN NaN NaN #> 9 NaN NaN NaN show_matrix(epcdata) show_matrix(epcdata, txtsz = NULL) + scale_y_continuous(expand = c(0,0), breaks = sort(unique(epcdata$yr))) + coord_flip() + theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 7)) show_matrix(epcdata, asreact = TRUE) show_matrix(epcdata, plotly = TRUE) anlz_yrattain(epcdata, yrsel = 2018) #> # A tibble: 4 × 6 #> bay_segment chla_val chla_target la_val la_target outcome #> #> 1 OTB 9.22 8.5 0.678 0.83 yellow #> 2 HB 13.9 13.2 1.09 1.58 green #> 3 MTB 7.05 7.4 0.570 0.83 green #> 4 LTB 4.65 4.6 0.593 0.63 green show_sitemap(epcdata, yrsel = 2018) show_sitemap(epcdata, yrsel = 2018, mosel = c(7, 9)) show_sitesegmap(epcdata, yrsel = 2018) show_wqmatrix(epcdata) show_wqmatrix(epcdata, param = 'la') show_segmatrix(epcdata, bay_segment = 'OTB') show_segplotly(epcdata, width = 1000, height = 600)"},{"path":"https://tbep-tech.github.io/tbeptools/articles/intro.html","id":"reasonable-assurance-reporting","dir":"Articles","previous_headings":"Show","what":"Reasonable Assurance reporting","title":"Water Quality Data","text":"TBEP collaboration Tampa Bay Nitrogen Management Consortium (NMC) reports annually water quality conditions Tampa Bay Reasonable Assurance (RA) plan Florida Department Environmental Protection (FDEP). plan comprehensive approach managing nitrogen pollution Tampa Bay provides “reasonable assurance” designated uses waterbody segments bay maintained restored response potential nutrient impairments. Annual reports FDEP critical part plan tbeptools package includes functions facilitate reporting. functions previously described (e.g., show_wqmatrix()). First, show_annualassess() function can create simple table annual management outcome assessments chlorophyll-light attenuation bay segment. provides summary results given year, including segment-averaged chlorophyll-light attenuation bay segment names colored management outcome. required inputs EPC dataset selected year. Segment Chl-(ug/L) Light Penetration (m-1) 2022 target 2022 target OTB 7.1 8.5 0.79 0.83 HB 8.9 13.2 0.92 1.58 MTB 5.0 7.4 0.55 0.83 LTB 3.6 4.6 0.66 0.63 default caption can also included setting caption = TRUE. Water quality outcomes 2022. Segment Chl-(ug/L) Light Penetration (m-1) 2022 target 2022 target OTB 7.1 8.5 0.79 0.83 HB 8.9 13.2 0.92 1.58 MTB 5.0 7.4 0.55 0.83 LTB 3.6 4.6 0.66 0.63 Second, show_ratab() function provides table annual water quality outcomes relative five-year RA reporting period. table includes associated NMC actions followed based water quality outcomes, actions provide reasonable assurance water quality maintained restored following outcomes. results specific four bay segments. Bay Segment Reasonable Assurance Assessment Steps DATA USED ASSESS ANNUAL REASONABLE ASSURANCE OUTCOME Year 1 (2022) Year 2 (2023) Year 3 (2024) Year 4 (2025) Year 5 (2026) **NMC Action 1:** Determine observed chlorophyll-exceeds FDEP threshold 9.3 ug/L (7.1) years threshold far, necessary NMC Actions 2-5 **NMC Action 2:** Determine observed chlorophyll-** exceedences occurred 2 consecutive years years met threshold, necessary NMC Actions 3-5 **NMC Action 3:** Determine observed hydrologically-normalized total load exceeds federally-recognized TMDL 486 tons/year N/ necessary due observed water quality seagrass conditions bay segment **NMC Actions 4-5:** Determine entity/source/facility specific exceedences 5-yr average allocation occurred implementation period necessary chlorophyll-** threshold met show_ratab() function developed 2022-2026 RA period currently work previous RA periods. function may updated future accommodate different periods.","code":"show_annualassess(epcdata, yrsel = 2022) show_annualassess(epcdata, yrsel = 2022, caption = TRUE) show_ratab(epcdata, yrsel = 2022, bay_segment = 'OTB')"},{"path":[]},{"path":"https://tbep-tech.github.io/tbeptools/articles/seagrasstransect.html","id":"data-import-and-included-datasets","dir":"Articles","previous_headings":"","what":"Data import and included datasets","title":"Seagrass Transect Data","text":"two datasets included tbeptools show actively monitored transect locations Tampa Bay. trnpts dataset point object starting location transect trnlns dataset line object showing approximate direction length transect beginning point trnpts. dataset also includes MonAgency column indicates monitoring agency collects data transect. two datasets sf() (simple features) objects easily mapped mapview() view locations. transect data can downloaded Water Atlas using read_transect() function. required argument function training, indicates want download training data complete dataset, .e., training = TRUE training = FALSE (default). former case, small dataset downloaded includes data collected annual training event. primarily used internally TBEP staff assess precision among different training crews. data downloaded JSON object formatted internally using read_formtransect() function. Shoot density reported number shoots per square meter corrected quadrat size entered raw data. Abundance reported numeric value 0 -5 Braun-Blanquet coverage estimates blade length cm. Change training argument FALSE download entire transect database. may take seconds. columns complete transect database describe crew (Crew), monitoring agency (MonitoringAgency), sample date (Date), transect name (Transect), meter location quadrat along transect (Site, m), depth site (Depth, cm), Seagrass species (Savspecies), distance seagrass edge transect (SeagrassEdge, m), seagrass variable (var), average value variable (aveval), standard deviation variable appropriate (sdval). raw, unformatted transect data preferred, use raw = TRUE argument read_transect().","code":"trnpts #> Simple feature collection with 66 features and 11 fields #> Geometry type: POINT #> Dimension: XY #> Bounding box: xmin: -82.8089 ymin: 27.49925 xmax: -82.39305 ymax: 28.0001 #> Geodetic CRS: WGS 84 #> First 10 features: #> SEGMENT TRANSECT TRAN_ID Metermark ID LAT_DD LONG_DD MonAgency STATUS #> 1 1 1 S1T1 0 START 27.99498 -82.68325 EPCHC ACTIVE #> 2 1 3 S1T3 0 START 28.00010 -82.66417 EPCHC ACTIVE #> 3 1 5 S1T5 0 START 27.95788 -82.54663 FDEP ACTIVE #> 4 1 6 S1T6 0 START 27.91348 -82.53282 EPCHC ACTIVE #> 5 1 8 S1T8 0 START 27.86233 -82.56867 EPCHC ACTIVE #> 6 1 13 S1T13 0 START 27.92428 -82.70232 EPCHC ACTIVE #> 7 1 14 S1T14 0 START 27.85533 -82.59738 EPCHC ACTIVE #> 8 1 15 S1T15 0 START 27.87408 -82.53098 EPCHC ACTIVE #> 9 1 16 S1T16 0 START 27.88228 -82.62015 PCDEM ACTIVE #> 10 1 17 S1T17 0 START 27.90498 -82.64793 PCDEM ACTIVE #> Comments bay_segment geometry #> 1 OTB POINT (-82.68325 27.99498) #> 2 OTB POINT (-82.66417 28.0001) #> 3 OTB POINT (-82.54663 27.95788) #> 4 OTB POINT (-82.53282 27.91348) #> 5 OTB POINT (-82.56867 27.86233) #> 6 OTB POINT (-82.70232 27.92428) #> 7 OTB POINT (-82.59738 27.85533) #> 8 OTB POINT (-82.53098 27.87408) #> 9 OTB POINT (-82.62015 27.88228) #> 10 OTB POINT (-82.64793 27.90498) trnlns #> Simple feature collection with 61 features and 7 fields #> Geometry type: LINESTRING #> Dimension: XYM #> Bounding box: xmin: -82.8118 ymin: 27.49807 xmax: -82.39306 ymax: 28.0001 #> m_range: mmin: 0 mmax: 2700 #> Geodetic CRS: WGS 84 #> First 10 features: #> OBJECTID Site Shape_Leng MonAgency ActiveYN Comments #> 1 1 S1T1 300.1400 EPCHC YES #> 2 5 S1T13 1102.6182 EPCHC YES #> 3 6 S1T14 800.4500 EPCHC YES #> 4 7 S1T15 701.0075 EPCHC YES #> 5 8 S1T16 998.9961 PCDEM YES #> 6 9 S1T17 2698.5773 PCDEM YES #> 7 10 S1T18 997.5451 EPCHC YES #> 8 12 S1T3 401.5991 EPCHC YES #> 9 14 S1T5 457.5927 FDEP YES #> 10 15 S1T6 398.6606 EPCHC YES #> geometry bearing #> 1 LINESTRING M (-82.68325 27.... 116.533756 #> 2 LINESTRING M (-82.70232 27.... -4.689701 #> 3 LINESTRING M (-82.59738 27.... 109.402541 #> 4 LINESTRING M (-82.53098 27.... -85.765142 #> 5 LINESTRING M (-82.62015 27.... 13.913960 #> 6 LINESTRING M (-82.64791 27.... -21.165576 #> 7 LINESTRING M (-82.61143 27.... -123.050914 #> 8 LINESTRING M (-82.66417 28.... -128.034327 #> 9 LINESTRING M (-82.54663 27.... -121.861907 #> 10 LINESTRING M (-82.53282 27.... -89.362036 cols <- c(\"#E16A86\", \"#CB7F2F\", \"#9F9400\", \"#50A315\", \"#00AC79\", \"#00AAB7\", \"#009ADE\", \"#A87BE4\", \"#DA65C3\") mapview(trnpts, zcol = 'MonAgency', lwd = 0, legend = F, homebutton = F, col.regions = cols) + mapview(trnlns, zcol = 'MonAgency', homebutton = F, layer.name = 'Monitoring Agency', lwd = 4, color = cols) # import training data traindat <- read_transect(training = TRUE) # view the data traindat #> # A tibble: 957 × 11 #> yr grp grpact Crew MonitoringAgency Site Depth Savspecies var aveval #> #> 1 2020 A 2020:… K. H… MCNRD 1 -50 Halodule Abun… 3 #> 2 2020 A 2020:… K. H… MCNRD 1 -50 Halodule Blad… 0 #> 3 2020 A 2020:… K. H… MCNRD 1 -50 Halodule Shor… 0 #> 4 2020 A 2020:… K. H… MCNRD 3 -60 Halodule Abun… 5 #> 5 2020 A 2020:… K. H… MCNRD 3 -60 Halodule Blad… 22 #> 6 2020 A 2020:… K. H… MCNRD 3 -60 Halodule Shor… 27.3 #> 7 2020 A 2020:… K. H… MCNRD 3 -60 Thalassia Abun… 1 #> 8 2020 A 2020:… K. H… MCNRD 3 -60 Thalassia Blad… 45.2 #> 9 2020 A 2020:… K. H… MCNRD 3 -60 Thalassia Shor… 0.667 #> 10 2020 A 2020:… K. H… MCNRD 4 -90 Halodule Abun… 1 #> # ℹ 947 more rows #> # ℹ 1 more variable: sdval # import entire transct dataset as JSON transect <- read_transect(training = FALSE) # view the data transect #> # A tibble: 152,580 × 11 #> Crew MonitoringAgency Date Transect Site Depth Savspecies #> #> 1 Ali Mauer, Melis… PCDEM 2020-11-04 S5T8 0 -5 No Cover #> 2 Ali Mauer, Melis… PCDEM 2020-11-04 S5T8 0 -5 No Cover #> 3 Ali Mauer, Melis… PCDEM 2020-11-04 S5T8 0 -5 No Cover #> 4 Ali Mauer, Melis… PCDEM 2020-11-04 S5T8 10 -12 Halodule #> 5 Ali Mauer, Melis… PCDEM 2020-11-04 S5T8 10 -12 Halodule #> 6 Ali Mauer, Melis… PCDEM 2020-11-04 S5T8 10 -12 Halodule #> 7 Ali Mauer, Melis… PCDEM 2020-11-04 S5T8 100 -180 Syringodi… #> 8 Ali Mauer, Melis… PCDEM 2020-11-04 S5T8 100 -180 Syringodi… #> 9 Ali Mauer, Melis… PCDEM 2020-11-04 S5T8 100 -180 Syringodi… #> 10 Ali Mauer, Melis… PCDEM 2020-11-04 S5T8 11 -20 Halodule #> # ℹ 152,570 more rows #> # ℹ 4 more variables: SeagrassEdge , var , aveval , sdval # raw transect data transectraw <- read_transect(training = FALSE, raw = TRUE) # view the data transectraw #> # A tibble: 51,174 × 46 #> IDall AssessmentYear CreatedAt Crew CountingTech SeagrassEdge Secchi Sonde #> #> 1 2 1998 1998-10-15… NA NA NA NA FALSE #> 2 2 1998 1998-10-15… NA NA NA NA FALSE #> 3 2 1998 1998-10-15… NA NA NA NA FALSE #> 4 2 1998 1998-10-15… NA NA NA NA FALSE #> 5 2 1998 1998-10-15… NA NA NA NA FALSE #> 6 2 1998 1998-10-15… NA NA NA NA FALSE #> 7 2 1998 1998-10-15… NA NA NA NA FALSE #> 8 2 1998 1998-10-15… NA NA NA NA FALSE #> 9 2 1998 1998-10-15… NA NA NA NA FALSE #> 10 2 1998 1998-10-15… NA NA NA NA FALSE #> # ℹ 51,164 more rows #> # ℹ 38 more variables: Weather , Hidden , HiddenReason , #> # IsComplete , QASubmittedAt , ReadyForQA , #> # QACompletedAt , MonitoringAgency , Transect , #> # BaySegment , ID