Skip to content

Latest commit

 

History

History
135 lines (103 loc) · 4.09 KB

README.md

File metadata and controls

135 lines (103 loc) · 4.09 KB

⚠️ this package is under development - use with care

R/qtl2helper

qtl2helper provides with some helper functions to work with objects created by several functions in the R/qtl2 package.

To install the package do:

# make sure the remotes package is installed
remotes::install_github("tavareshugo/qtl2helper")

Quick overview

Let's start with an example dataset from the qtl2 user guide:

library(qtl2)
library(qtl2helper)

# read example data
iron <- read_cross2( system.file("extdata", "iron.zip", package="qtl2") )
map <- insert_pseudomarkers(iron$gmap, step=1)
pr <- calc_genoprob(iron, map, error_prob=0.002)
Xcovar <- get_x_covar(iron)

# run QTL scan
out <- scan1(pr, iron$pheno, Xcovar=Xcovar)

# get QTL effects
c2eff <- scan1coef(pr[,"2"], iron$pheno[,"liver"])

qtl2helper provides methods for the tidy function (from the broom package), which convert several R/qtl2 objects to (long) data frames.

# convert scan1 object to a tibble
tidy(out)

## # A tibble: 1,762 x 3
##    marker   pheno   LOD
##    <chr>    <chr> <dbl>
##  1 D1Mit18  liver 0.293
##  2 c1.loc28 liver 0.282
##  3 c1.loc29 liver 0.270
##  4 c1.loc30 liver 0.257
##  5 c1.loc31 liver 0.244
##  6 c1.loc32 liver 0.231
##  7 c1.loc33 liver 0.218
##  8 c1.loc34 liver 0.204
##  9 c1.loc35 liver 0.190
## 10 c1.loc36 liver 0.176
## # … with 1,752 more rows

You can provide a map of markers to tidy() to get marker positions in the output:

# convert scan1 object to a tibble
tidy(out, map)

## # A tibble: 1,762 x 5
##    marker   chrom   pos pheno   LOD
##    <chr>    <fct> <dbl> <chr> <dbl>
##  1 D1Mit18  1      27.3 liver 0.293
##  2 c1.loc28 1      28.3 liver 0.282
##  3 c1.loc29 1      29.3 liver 0.270
##  4 c1.loc30 1      30.3 liver 0.257
##  5 c1.loc31 1      31.3 liver 0.244
##  6 c1.loc32 1      32.3 liver 0.231
##  7 c1.loc33 1      33.3 liver 0.218
##  8 c1.loc34 1      34.3 liver 0.204
##  9 c1.loc35 1      35.3 liver 0.190
## 10 c1.loc36 1      36.3 liver 0.176
## # … with 1,752 more rows

This makes it ideal to do further plotting, for example with ggplot2:

library(ggplot2)

out_tbl <- tidy(out, map)

ggplot(out_tbl, aes(x = pos, y = LOD, colour = pheno)) +
  geom_line() +
  facet_grid(. ~ chrom, scales = "free_x", space = "free_x") +
  theme_classic() +
  theme(axis.text.x = element_blank(), axis.ticks.x = element_blank()) +
  labs(x = "Chromosome", y = "LOD score", colour = "Tissue")

Here's the same idea applied to the estimated QTL effects:

# tidy the scan1coef object
c2eff_tbl <- tidy(c2eff, map)

# plot
ggplot(c2eff_tbl, aes(x = pos, y = estimate, colour = coef)) +
  geom_line() +
  labs(x = "Chromosome 2 position", y = "QTL effects", colour = "Genotype")

Finally, here's an example of tidying permutations to obtain a tibble of thresholds:

# run permutation scans
operm <- scan1perm(pr, iron$pheno, Xcovar=Xcovar, n_perm=10)

# tidy output
operm_tbl <- tidy(operm)
operm_tbl

## # A tibble: 2 x 3
##   alpha pheno  threshold
##   <chr> <chr>      <dbl>
## 1 0.05  liver       3.18
## 2 0.05  spleen      3.41

These can now be added to the scan plot, for example using geom_hline():

ggplot(out_tbl, aes(x = pos, y = LOD, colour = pheno)) +
  geom_line() +
  geom_hline(data = operm_tbl, 
             aes(yintercept = threshold, colour = pheno), 
             linetype = "dotted") +
  facet_grid(. ~ chrom, scales = "free_x", space = "free_x") +
  theme_classic() +
  theme(axis.text.x = element_blank(), axis.ticks.x = element_blank()) +
  labs(x = "Chromosome", y = "LOD score", colour = "Tissue")