Skip to content

Latest commit

 

History

History
50 lines (39 loc) · 2.01 KB

README.md

File metadata and controls

50 lines (39 loc) · 2.01 KB

Experiments for EMNLP_2020 paper: Identifying Spurious Correlations for Robust Text Classification

Datasets summary

Dataset #docs top terms (coef>=1) #matched sentences for top terms placebo terms #matched sentences for placebo terms
IMDB 10,662 366 8,882 626 (coef<=0.1) 12,996
Kindle 20,233 (N, 10,161) (P, 10,072) 270 24,882 569 (coef <=0.2) 13,850
Toxic comment 15,216 329 8,414 750 (coef<=0.1) 30,454
Toxic tweet 6,774 341 (coef >=0.7) 9,224 574 (coef<=0.2) 5,457

Data structure (class Dataset):

  • X, y, df (dataframe), vec (countvectorizer), feats(features in vocabulary), moniker (nick name)

  • top_features, top_feature_idx, placebo_features, placebo_feature_idx

  • topwd_sentObj_list, placebowd_sentObj_list (list of SentenceEdit objects)

    • remove_wd
    • context
    • original_sentence_idx
    • label
    • embedding (bert last four layers)
  • topwd_sentObj_dict, placebowd_sentObj_dict (map from word to a list of SentenceEdit objects)

  • ites (dataframe recording matched sentences)

    • term (the word being removed)
    • sentence_id (current sentence idx)
    • control_obj: the matched control SentenceEdit object
    • treat_obj: the matched treatment SentenceEdit object
    • similarity: cosine similarity between context of matched sentences
    • difference: embedding difference between treat context and control context
    • ite: treat_label - control_label
  • BAD_POS, BAD_NEG, ALL_BAD, DUMMY_TERM

  • term_df (features for word classification)

    • term
    • ite_abs_avg / top_5 / top_5_by_sim
    • similarity_scaled_avg / top_5 / std / max
    • closest_pos / neg_similarity_scaled
    • ite_weighted_scaled
    • ite_x_similarity_scaled / scaled_top_5
    • diff_mean / mean_vec / mean_abs
    • diff_min_mean, diff_max_mean, diff_max_mean_abs
    • top_diff_mean
    • coef
    • pca