-
Notifications
You must be signed in to change notification settings - Fork 26
/
siegel.tukey.r
232 lines (180 loc) · 7.29 KB
/
siegel.tukey.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
siegel.tukey <- function(x, y, id.col = FALSE, adjust.median = F,
rnd = -1, alternative = "two.sided", mu = 0, paired = FALSE,
exact = FALSE, correct = TRUE, conf.int = FALSE, conf.level = 0.95) {
###### published on:
# http://www.r-statistics.com/2010/02/siegel-tukey-a-non-parametric-test-for-equality-in-variability-r-code/
## Main author of the function: Daniel Malter
# x: a vector of data
# y: Group indicator (if id.col=TRUE); data of the second
# group (if
# id.col=FALSE). If y is the group indicator it MUST take 0
# or 1 to indicate
# the groups, and x must contain the data for both groups.
# id.col: If TRUE (default), then x is the data column and y
# is the ID column,
# indicating the groups. If FALSE, x and y are both data
# columns. id.col must
# be FALSE only if both data columns are of the same length.
# adjust.median: Should between-group differences in medians
# be leveled before
# performing the test? In certain cases, the Siegel-Tukey
# test is susceptible
# to median differences and may indicate significant
# differences in
# variability that, in reality, stem from differences in
# medians.
# rnd: Should the data be rounded and, if so, to which
# decimal? The default
# (-1) uses the data as is. Otherwise, rnd must be a
# non-negative integer.
# Typically, this option is not needed. However,
# occasionally, differences in
# the precision with which certain functions return values
# cause the merging
# of two data frames to fail within the siegel.tukey
# function. Only then
# rounding is necessary. This operation should not be
# performed if it affects
# the ranks of observations.
# … arguments passed on to the Wilcoxon test. See
# ?wilcox.test
# Value: Among other output, the function returns the data,
# the Siegel-Tukey
# ranks, the associated Wilcoxon’s W and the p-value for a
# Wilcoxon test on
# tie-adjusted Siegel-Tukey ranks (i.e., it performs and
# returns a
# Siegel-Tukey test). If significant, the group with the
# smaller rank sum has
# greater variability.
# References: Sidney Siegel and John Wilder Tukey (1960) “A
# nonparametric sum
# of ranks procedure for relative spread in unpaired
# samples.” Journal of the
# American Statistical Association. See also, David J.
# Sheskin (2004)
# ”Handbook of parametric and nonparametric statistical
# procedures.” 3rd
# edition. Chapman and Hall/CRC. Boca Raton, FL.
# Notes: The Siegel-Tukey test has relatively low power and
# may, under certain
# conditions, indicate significance due to differences in
# medians rather than
# differences in variabilities (consider using the argument
# adjust.median).
# Output (in this order)
# 1. Group medians (after median adjustment if specified)
# 2. Wilcoxon-test for between-group differences in medians
# (after the median
# adjustment if specified)
# 3. Data, group membership, and the Siegel-Tukey ranks
# 4. Mean Siegel-Tukey rank by group (smaller values indicate
# greater
# variability)
# 5. Siegel-Tukey test (Wilcoxon test on tie-adjusted
# Siegel-Tukey ranks)
is.formula <- function(x) class(x) == "formula"
if (is.formula(x)) {
y <- do.call(c, list(as.name(all.vars(x)[2])), envir = parent.frame(2))
x <- do.call(c, list(as.name(all.vars(x)[1])), envir = parent.frame(2)) # I am using parent.frame(2) since if the name of the variable in the equation is 'x', then we will mistakenly get the function in here instead of the vector.
id.col <- TRUE
# print(x)
# print(ls.str())
# data=data.frame(c(x,y),rep(c(0,1),c(length(x),length(y))))
# print(data)
}
if (id.col == FALSE) {
data = data.frame(c(x, y), rep(c(0, 1), c(length(x), length(y))))
} else {
data = data.frame(x, y)
}
names(data) = c("x", "y")
data = data[order(data$x), ]
if (rnd > -1) {
data$x = round(data$x, rnd)
}
if (adjust.median == T) {
cat("\n", "Adjusting medians...", "\n", sep = "")
data$x[data$y == 0] = data$x[data$y == 0] - (median(data$x[data$y ==
0]))
data$x[data$y == 1] = data$x[data$y == 1] - (median(data$x[data$y ==
1]))
}
cat("\n", "Median of group 1 = ", median(data$x[data$y == 0]),
"\n", sep = "")
cat("Median of group 2 = ", median(data$x[data$y == 1]), "\n",
"\n", sep = "")
cat("Testing median differences...", "\n")
print(wilcox.test(data$x[data$y == 0], data$x[data$y == 1]))
# The following must be done for the case when id.col==F
x <- data$x
y <- data$y
cat("Performing Siegel-Tukey rank transformation...", "\n",
"\n")
sort.x <- sort(data$x)
sort.id <- data$y[order(data$x)]
data.matrix <- data.frame(sort.x, sort.id)
base1 <- c(1, 4)
iterator1 <- matrix(seq(from = 1, to = length(x), by = 4)) -
1
rank1 <- apply(iterator1, 1, function(x) x + base1)
iterator2 <- matrix(seq(from = 2, to = length(x), by = 4))
base2 <- c(0, 1)
rank2 <- apply(iterator2, 1, function(x) x + base2)
#print(rank1)
#print(rank2)
if (length(rank1) == length(rank2)) {
rank <- c(rank1[1:floor(length(x)/2)], rev(rank2[1:ceiling(length(x)/2)]))
} else {
rank <- c(rank1[1:ceiling(length(x)/2)], rev(rank2[1:floor(length(x)/2)]))
}
unique.ranks <- tapply(rank, sort.x, mean)
unique.x <- as.numeric(as.character(names(unique.ranks)))
rank.matrix <- data.frame(unique.x, unique.ranks)
ST.matrix <- merge(data.matrix, rank.matrix, by.x = "sort.x",
by.y = "unique.x")
print(ST.matrix)
cat("\n", "Performing Siegel-Tukey test...", "\n", sep = "")
ranks0 <- ST.matrix$unique.ranks[ST.matrix$sort.id == 0]
ranks1 <- ST.matrix$unique.ranks[ST.matrix$sort.id == 1]
cat("\n", "Mean rank of group 0: ", mean(ranks0), "\n", sep = "")
cat("Mean rank of group 1: ", mean(ranks1), "\n", sep = "")
print(wilcox.test(ranks0, ranks1, alternative = alternative,
mu = mu, paired = paired, exact = exact, correct = correct,
conf.int = conf.int, conf.level = conf.level))
}
if(F) {
#Example:
### 1
x=c(4,4,5,5,6,6)
y=c(0,0,1,9,10,10)
siegel.tukey(x,y, F)
siegel.tukey(x,y) #same as above
### 2
# example for a non equal number of cases:
x=c(4,4,5,5,6,6)
y=c(0,0,1,9,10)
siegel.tukey(x,y,F)
### 3
x <- c(33, 62, 84, 85, 88, 93, 97, 4, 16, 48, 51, 66, 98)
id <- c(0,0,0,0,0,0,0,1,1,1,1,1,1)
siegel.tukey(x,id,T)
siegel.tukey(x~id) # from now on, this also works as a function...
siegel.tukey(x,id,T,adjust.median=F,exact=T)
### 4
x<-c(177,200,227,230,232,268,272,297,47,105,126,142,158,172,197,220,225,230,262,270)
id<-c(rep(0,8),rep(1,12))
siegel.tukey(x,id,T,adjust.median=T)
### 5
x=c(33,62,84,85,88,93,97)
y=c(4,16,48,51,66,98)
siegel.tukey(x,y)
### 6
x<-c(0,0,1,4,4,5,5,6,6,9,10,10)
id<-c(0,0,0,1,1,1,1,1,1,0,0,0)
siegel.tukey(x,id,T)
### 7
x <- c(85,106,96, 105, 104, 108, 86)
id<-c(0,0,1,1,1,1,1)
siegel.tukey(x,id,T)
}