library(devtools)
install_github("tagteam/riskRegression")
The following references provide the methodological framework for the features of riskRegression.
- T.A. Gerds and M.W. Kattan (2021). Medical Risk Prediction Models: With Ties to Machine Learning (1st ed.) Chapman and Hall/CRC https://doi.org/10.1201/9781138384484
- T.A. Gerds and M. Schumacher. Consistent estimation of the expected Brier score in general survival models with right-censored event times. Biometrical Journal, 48(6):1029–1040, 2006.
- T.A. Gerds and M. Schumacher. Efron-type measures of prediction error for survival analysis. Biometrics, 63(4):1283–1287, 2007.
- T.A. Gerds, T. Cai, and M. Schumacher. The performance of risk prediction models. Biometrical Journal, 50(4):457–479, 2008.
- U B Mogensen, H. Ishwaran, and T A Gerds. Evaluating random forests for survival analysis using prediction error curves. Journal of Statistical Software, 50(11), 2012.
- P. Blanche, J-F Dartigues, and H. Jacqmin-Gadda. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Statistics in Medicine, 32(30): 5381–5397, 2013.
- Paul Blanche, Ce’cile Proust-Lima, Lucie Loube`re, Claudine Berr, Jean- Franc,ois Dartigues, and He’le`ne Jacqmin-Gadda. Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks. Biometrics, 71 (1):102–113, 2015.
Functions predict.CauseSpecificCox
, predictCox
and iidCox
:
- Brice Ozenne, Anne Lyngholm Sorensen, Thomas Scheike, Christian Torp-Pedersen and Thomas Alexander Gerds. riskRegression: Predicting the Risk of an Event using Cox Regression Models. The R Journal (2017) 9:2, pages 440-460.