-
Notifications
You must be signed in to change notification settings - Fork 0
/
research.html
114 lines (106 loc) · 6.5 KB
/
research.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
<!DOCTYPE HTML>
<!--
Story by HTML5 UP
html5up.net | @ajlkn
Free for personal and commercial use under the CCA 3.0 license (html5up.net/license)
-->
<html>
<head>
<title>Tyler A. Gordon</title>
<meta charset="utf-8" />
<meta name="viewport"
content="width=device-width,
initial-scale=1, user-scalable=no" />
<link rel="stylesheet" href="assets/css/main.css" />
<noscript><link rel="stylesheet"
href="assets/css/noscript.css" /></noscript>
</head>
<body class="is-preloaded">
<div id="wrapper" class="divided">
<section class="banner
style1
orient-left
content-align-left
image-position-right
fullscreen
onload-image-fade-in
onload-content-fade-right">
<div class="content">
<h1>Research</h1>
<p class="major">
My research is focused on advancing methods
for detecting exoplanets and developing a better
understanding of the stars that they orbit.
</p>
<p>
<a href="#exomoons">mutual transits</a>
// <a href="#gp">gaussian processes</a>
// <a href="#rotation">stellar rotation</a>
// <a href="https://www.tagordon.com">home</a>
</p>
</div>
</section>
<section class="wrapper style1 align-left">
<div class="inner" id="exomoons">
<h2>mutual transits</h2>
<p>
I have developed a new photodynamical transit model for overlapping bodies such as an exoplanet/exomoon pair. This work was a response to a lack of open-source transit models for multiple, potentially overlapping bodies. This model is exact and includes analytic derivatives with respect to all input parameters which makes it suitable for gradient-based inference methods such as Hamiltonian MCMC. It is currently the only exact and differentiable transit code available for modeling exomoon-planet or planet-planet mutual transit events. Applications of this code include searching for exomoon transits and modeling simultaneous planetary transits in coplanar multiplanetary systems. These planet-planet mutual events are important because they allow us to constrain the mutual inclination -- an important parameter for understanding the dynamical history and present-day architecture of these systems.
</p>
<p>
<a href="https://github.com/tagordon/gefera">code</a>
// <a href="https://ui.adsabs.harvard.edu/abs/2022AAS...24041805G/abstract">paper</a>
</p>
</div>
</section>
<section class="wrapper style1 align-left">
<div class="inner" id="gp">
<h2>gaussian processes for transiting exoplanets</h2>
<p>
I developed an extension to the celerite algorithm (<a href="https://ui.adsabs.harvard.edu/abs/2017ascl.soft09008F/abstract"> Foreman-Mackey et al., 2017</a>) algorithm which allows for the computation of two-dimensional GPs for certain covariance structures. This method can be used to model stellar variability across multiple wavelength bands, making it a useful noise model for multiband transit lightcurves. This includes spectral time-series from JWST, and multiband lightcurves from future transit missions such as PLATO and Ariel. I demonstrated that the precision of measured transit parameters can be significantly improved by modeling correlations in stellar variability across wavelengths.
</p>
<p>
<a href="https://github.com/tagordon/specgp">code</a>
// <a href="https://ui.adsabs.harvard.edu/abs/2020AJ....160..240G/abstract">paper</a>
</p>
</div>
</section>
<section class="wrapper style1 align-left">
<div class="inner" id="rotation">
<h2>stellar rotation</h2>
<p>
Knowing the age of a star is important
for understanding stellar evolution,
investigating star formation histories,
and studying their planets. Because stars
lose angular momentum over time, we can
estimate their ages by measuring their
rotational periods.
I've used a Gaussian processes to model light curves and
measure stellar rotation periods for thousands of K2 targets.
Our sample shows strong evidence of a bimodal period distribution which we interpret as
indicative of a broken spindown law.
</p>
<p>
<a href="https://ui.adsabs.harvard.edu/abs/2021arXiv210107886G/abstract">paper</a>
</p>
</div>
</section>
<footer class="wrapper style1 align-center">
<div class="inner">
<ul class="icons">
<li><a href="https://www.github.com/tagordon/" class="icon brands style2 fa-github"><span class="label">Github</span></a></li>
<li><a href="mailto:[email protected]" class="icon style2 fa-envelope"><span class="label">Email</span></a></li>
</ul>
<p>© Tyler Gordon, 2022. Design: <a href="https://html5up.net">HTML5 UP</a>.</p>
</div>
</footer>
</div>
<script src="assets/js/jquery.min.js"></script>
<script src="assets/js/jquery.scrollex.min.js"></script>
<script src="assets/js/jquery.scrolly.min.js"></script>
<script src="assets/js/browser.min.js"></script>
<script src="assets/js/breakpoints.min.js"></script>
<script src="assets/js/util.js"></script>
<script src="assets/js/main.js"></script>
</body>
</html>