-
Notifications
You must be signed in to change notification settings - Fork 77
/
example_classify.lua
81 lines (66 loc) · 1.98 KB
/
example_classify.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
require 'image'
require 'cudnn'
require 'cunn'
local tablex = require 'pl.tablex'
if #arg < 2 then
io.stderr:write('Usage: th example_classify.lua [MODEL] [FILE]...\n')
os.exit(1)
end
for _, f in ipairs(arg) do
if not paths.filep(f) then
io.stderr:write('file not found: ' .. f .. '\n')
os.exit(1)
end
end
local model_path = arg[1]
local image_paths = tablex.sub(arg, 2, -1)
-- loads the normalization parameters
require 'provider'
local provider = torch.load 'provider.t7'
local function normalize(imgRGB)
-- preprocess trainSet
local normalization = nn.SpatialContrastiveNormalization(1, image.gaussian1D(7)):float()
-- rgb -> yuv
local yuv = image.rgb2yuv(imgRGB)
-- normalize y locally:
yuv[1] = normalization(yuv[{{1}}])
-- normalize u globally:
local mean_u = provider.trainData.mean_u
local std_u = provider.trainData.std_u
yuv:select(1,2):add(-mean_u)
yuv:select(1,2):div(std_u)
-- normalize v globally:
local mean_v = provider.trainData.mean_v
local std_v = provider.trainData.std_v
yuv:select(1,3):add(-mean_v)
yuv:select(1,3):div(std_v)
return yuv
end
local model = torch.load(model_path)
model:add(nn.SoftMax():cuda())
model:evaluate()
-- model definition should set numInputDims
-- hacking around it for the moment
local view = model:findModules('nn.View')
if #view > 0 then
view[1].numInputDims = 3
end
local cls = {'airplane', 'automobile', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck'}
for _, img_path in ipairs(image_paths) do
-- load image
local img = image.load(img_path, 3, 'float'):mul(255)
-- resize it to 32x32
img = image.scale(img, 32, 32)
-- normalize
img = normalize(img)
-- make it batch mode (for BatchNormalization)
img = img:view(1, 3, 32, 32)
-- get probabilities
local output = model:forward(img:cuda()):squeeze()
-- display
print('Probabilities for '..img_path)
for cl_id, cl in ipairs(cls) do
print(string.format('%-10s: %-05.2f%%', cl, output[cl_id] * 100))
end
end