Skip to content

Latest commit

 

History

History
77 lines (54 loc) · 2.12 KB

README.md

File metadata and controls

77 lines (54 loc) · 2.12 KB

CS131: Computer Vision Foundations and Applications

课程和作业介绍

This repository contains the released assignments for the fall 2017 iteration of CS 131, a course at Stanford taught by Juan Carlos Niebles and Ranjay Krishna.

The assignments cover a wide range of topics in computer vision and should expose students to a broad range of concepts and applications.

编程环境

  • Python 3
  • Jupyter Notebook
  • Package 参照每个每份作业文件夹下的requirement.txt

提示:运行pip install -r requirements.txt 安装共享环境。

Homework 0:Basics (完成)

  • 使用Python和Numpy操作图像
  • 基础线性代数知识

Homework 1:Filters - Instagram (完成)

  • 理解基本概念
    • 卷积
    • 线性系统
    • 卷积核分解
  • 设计卷积核来寻找图像的特定信号

Homework 2: Edges - Smart Car lane Detection (完成)

  • 边缘检测
  • 霍夫变换检测直线
  • 车道线检测

Homework 3: Panorama - Image Stiching (完成)

  • 介绍HOG和RANSAC
  • 多幅图像中寻找匹配点
  • 估计图像间仿射变换矩阵
  • 实现拼接操作

Homework 4: Resizing - Seam Carving (完成)

  • 介绍seam carving算法
  • 实现算法
    • 定义图像能量
    • 动态编程寻找最小能量线
  • 拓展实现图像缩放、目标移除

Homework 5: Segmentation - Clustering (完成)

  • 实现聚类算法
    • K-Means
    • HAC
  • 提取图像特征序列进行分割
  • 基于Groundtruth对分割算法进行量化评估

Homework 6: Recognition - Classification (完成)

  • SVD 图像压缩
  • KNN 图像分类
  • PCA(主成分分析)和LDA(线性判别分析)进行数据降维

Homework 7: Object detection - constellation models (完成)

  • Hog人脸表征
  • 滑窗法人脸检测
  • 图像金字塔解决维度诅咒
  • DPM人脸检测

Homework 8:Tracking-OpticalFlow (完成)

  • Lucas-Kanade 光流法
  • 最小二乘求解LK光流
  • 高斯迭代求解LK光流
  • 图像金字塔优化LK光流
  • 使用LK光流进行目标跟踪