-
Notifications
You must be signed in to change notification settings - Fork 52
/
mbeq_1197.xml
312 lines (257 loc) · 8.64 KB
/
mbeq_1197.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
<?xml version="1.0" ?>
<!DOCTYPE ladspa SYSTEM "ladspa-swh.dtd">
<?xml-stylesheet href="ladspa.css" type="text/css" ?>
<ladspa>
<global>
<meta name="maker" value="Steve Harris <[email protected]>"/>
<meta name="copyright" value="GPL"/>
<meta name="properties" value="HARD_RT_CAPABLE"/>
<code><![CDATA[
#include "config.h"
#ifdef FFTW3
#include <fftw3.h>
typedef fftwf_plan fft_plan;
typedef float fftw_real;
#else
#ifdef EXPLICIT_S
#include <srfftw.h>
#else
#include <rfftw.h>
#endif //EXPLICIT_S
typedef rfftw_plan fft_plan;
#endif //FFTW3
#include "ladspa-util.h"
#define FFT_LENGTH 1024
#define OVER_SAMP 4
#define BANDS 15
float bands[BANDS] =
{ 50.00f, 100.00f, 155.56f, 220.00f, 311.13f,
440.00f, 622.25f, 880.00f, 1244.51f, 1760.00f, 2489.02f,
3519.95, 4978.04f, 9956.08f, 19912.16f };
]]></code>
</global>
<plugin label="mbeq" id="1197" class="MultiEQPlugin">
<name>Multiband EQ</name>
<p>This is a fairly typical multiband graphical equalizer. It's implemented using a FFT, so it takes quite a lot of CPU power, but should have less phase effects than an equivalent filter implementation.</p>
<p>If the input signal is at too low a sample rate then the top bands will be ignored, the highest useful band will always be a high shelf.</p>
<callback event="instantiate"><![CDATA[
int i, bin;
float last_bin, next_bin;
float db;
float hz_per_bin = (float)s_rate / (float)FFT_LENGTH;
in_fifo = calloc(FFT_LENGTH, sizeof(LADSPA_Data));
out_fifo = calloc(FFT_LENGTH, sizeof(LADSPA_Data));
out_accum = calloc(FFT_LENGTH * 2, sizeof(LADSPA_Data));
real = calloc(FFT_LENGTH, sizeof(fftw_real));
comp = calloc(FFT_LENGTH, sizeof(fftw_real));
window = calloc(FFT_LENGTH, sizeof(float));
bin_base = calloc(FFT_LENGTH/2, sizeof(int));
bin_delta = calloc(FFT_LENGTH/2, sizeof(float));
fifo_pos = 0;
#ifdef FFTW3
plan_rc = fftwf_plan_r2r_1d(FFT_LENGTH, real, comp, FFTW_R2HC, FFTW_MEASURE);
plan_cr = fftwf_plan_r2r_1d(FFT_LENGTH, comp, real, FFTW_HC2R, FFTW_MEASURE);
#else
plan_rc = rfftw_create_plan(FFT_LENGTH, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE);
plan_cr = rfftw_create_plan(FFT_LENGTH, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE);
#endif
// Create raised cosine window table
for (i=0; i < FFT_LENGTH; i++) {
window[i] = -0.5f*cos(2.0f*M_PI*(double)i/(double)FFT_LENGTH)+0.5f;
window[i] *= 2.0f;
}
// Create db->coeffiecnt lookup table
db_table = malloc(1000 * sizeof(float));
for (i=0; i < 1000; i++) {
db = ((float)i/10) - 70;
db_table[i] = pow(10.0f, db/20.0f);
}
// Create FFT bin -> band + delta tables
bin = 0;
while (bin <= bands[0]/hz_per_bin) {
bin_base[bin] = 0;
bin_delta[bin++] = 0.0f;
}
for (i = 1; i < BANDS-1 && bin < (FFT_LENGTH/2)-1 && bands[i+1] < s_rate/2; i++) {
last_bin = bin;
next_bin = (bands[i+1])/hz_per_bin;
while (bin <= next_bin) {
bin_base[bin] = i;
bin_delta[bin] = (float)(bin - last_bin) / (float)(next_bin - last_bin);
bin++;
}
}
for (; bin < (FFT_LENGTH/2); bin++) {
bin_base[bin] = BANDS-1;
bin_delta[bin] = 0.0f;
}
]]></callback>
<callback event="activate"><![CDATA[
fifo_pos = 0;
]]></callback>
<callback event="cleanup"><![CDATA[
free(plugin_data->in_fifo);
free(plugin_data->out_fifo);
free(plugin_data->out_accum);
free(plugin_data->real);
free(plugin_data->comp);
free(plugin_data->window);
free(plugin_data->bin_base);
free(plugin_data->bin_delta);
free(plugin_data->db_table);
]]></callback>
<callback event="run"><![CDATA[
int i, bin, gain_idx;
float gains[BANDS + 1] =
{ band_1, band_2, band_3, band_4, band_5, band_6, band_7, band_8, band_9,
band_10, band_11, band_12, band_13, band_14, band_15, 0.0f };
float coefs[FFT_LENGTH / 2];
unsigned long pos;
int step_size = FFT_LENGTH / OVER_SAMP;
int fft_latency = FFT_LENGTH - step_size;
// Convert gains from dB to co-efficents
for (i = 0; i < BANDS; i++) {
gain_idx = (int)((gains[i] * 10) + 700);
gains[i] = db_table[LIMIT(gain_idx, 0, 999)];
}
// Calculate coefficients for each bin of FFT
coefs[0] = 0.0f;
for (bin=1; bin < (FFT_LENGTH/2-1); bin++) {
coefs[bin] = ((1.0f-bin_delta[bin]) * gains[bin_base[bin]])
+ (bin_delta[bin] * gains[bin_base[bin]+1]);
}
if (fifo_pos == 0) {
fifo_pos = fft_latency;
}
for (pos = 0; pos < sample_count; pos++) {
in_fifo[fifo_pos] = input[pos];
buffer_write(output[pos], out_fifo[fifo_pos-fft_latency]);
fifo_pos++;
// If the FIFO is full
if (fifo_pos >= FFT_LENGTH) {
fifo_pos = fft_latency;
// Window input FIFO
for (i=0; i < FFT_LENGTH; i++) {
real[i] = in_fifo[i] * window[i];
}
// Run the real->complex transform
#ifdef FFTW3
fftwf_execute(plan_rc);
#else
rfftw_one(plan_rc, real, comp);
#endif
// Multiply the bins magnitudes by the coeficients
comp[0] *= coefs[0];
for (i = 1; i < FFT_LENGTH/2; i++) {
comp[i] *= coefs[i];
comp[FFT_LENGTH-i] *= coefs[i];
}
// Run the complex->real transform
#ifdef FFTW3
fftwf_execute(plan_cr);
#else
rfftw_one(plan_cr, comp, real);
#endif
// Window into the output accumulator
for (i = 0; i < FFT_LENGTH; i++) {
out_accum[i] += 0.9186162f * window[i] * real[i]/(FFT_LENGTH * OVER_SAMP);
}
for (i = 0; i < step_size; i++) {
out_fifo[i] = out_accum[i];
}
// Shift output accumulator
memmove(out_accum, out_accum + step_size, FFT_LENGTH*sizeof(LADSPA_Data));
// Shift input fifo
for (i = 0; i < fft_latency; i++) {
in_fifo[i] = in_fifo[i+step_size];
}
}
}
// Store the fifo_position
plugin_data->fifo_pos = fifo_pos;
*(plugin_data->latency) = fft_latency;
]]></callback>
<port label="band_1" dir="input" type="control" hint="default_0">
<name>50Hz gain (low shelving)</name>
<range min="-70" max="+30"/>
</port>
<port label="band_2" dir="input" type="control" hint="default_0">
<name>100Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_3" dir="input" type="control" hint="default_0">
<name>156Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_4" dir="input" type="control" hint="default_0">
<name>220Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_5" dir="input" type="control" hint="default_0">
<name>311Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_6" dir="input" type="control" hint="default_0">
<name>440Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_7" dir="input" type="control" hint="default_0">
<name>622Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_8" dir="input" type="control" hint="default_0">
<name>880Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_9" dir="input" type="control" hint="default_0">
<name>1250Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_10" dir="input" type="control" hint="default_0">
<name>1750Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_11" dir="input" type="control" hint="default_0">
<name>2500Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_12" dir="input" type="control" hint="default_0">
<name>3500Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_13" dir="input" type="control" hint="default_0">
<name>5000Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_14" dir="input" type="control" hint="default_0">
<name>10000Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_15" dir="input" type="control" hint="default_0">
<name>20000Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="input" dir="input" type="audio">
<name>Input</name>
</port>
<port label="output" dir="output" type="audio">
<name>Output</name>
</port>
<port label="latency" dir="output" type="control">
<name>latency</name>
</port>
<instance-data label="in_fifo" type="LADSPA_Data *"/>
<instance-data label="out_fifo" type="LADSPA_Data *"/>
<instance-data label="out_accum" type="LADSPA_Data *"/>
<instance-data label="real" type="fftw_real *"/>
<instance-data label="comp" type="fftw_real *"/>
<instance-data label="window" type="float *"/>
<instance-data label="fifo_pos" type="long"/>
<instance-data label="db_table" type="float *"/>
<instance-data label="bin_base" type="int *"/>
<instance-data label="bin_delta" type="float *"/>
<instance-data label="plan_rc" type="fft_plan"/>
<instance-data label="plan_cr" type="fft_plan"/>
<!-- static fft_plan plan_rc = NULL, plan_cr = NULL; -->
</plugin>
</ladspa>