-
Notifications
You must be signed in to change notification settings - Fork 52
/
flanger_1191.xml
176 lines (148 loc) · 5.74 KB
/
flanger_1191.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
<?xml version="1.0"?>
<!DOCTYPE ladspa SYSTEM "ladspa-swh.dtd">
<?xml-stylesheet href="ladspa.css" type="text/css"?>
<ladspa>
<global>
<meta name="maker" value="Steve Harris <[email protected]>"/>
<meta name="copyright" value="GPL"/>
<meta name="properties" value="HARD_RT_CAPABLE"/>
<code><![CDATA[
#include "ladspa-util.h"
]]></code>
</global>
<plugin label="flanger" id="1191" class="FlangerPlugin">
<name>Flanger</name>
<p>A digital flanger implementation. Uses a novel zero excursion, controlled bandwidth modulation function, which should make the modulation less repetitive and noticeable.</p>
<p>This effect is similar in character to a phaser (see section \ref{lfoPhaser}). The main difference is that a phaser sounds more regular and stable.</p>
<callback event="instantiate"><![CDATA[
int min_size;
sample_rate = s_rate;
prev_law_peak = 0.0f;
next_law_peak = 1.0f;
prev_law_pos = 0;
next_law_pos = 10;
min_size = sample_rate * 0.04f;
for (delay_size = 1024; delay_size < min_size; delay_size *= 2);
delay_tbl = malloc(sizeof(LADSPA_Data) * delay_size);
delay_pos = 0;
count = 0;
old_d_base = 0;
]]></callback>
<callback event="activate"><![CDATA[
memset(delay_tbl, 0, sizeof(LADSPA_Data) * delay_size);
delay_pos = 0;
count = 0;
old_d_base = 0;
]]></callback>
<callback event="cleanup"><![CDATA[
free(plugin_data->delay_tbl);
]]></callback>
<callback event="run"><![CDATA[
unsigned long pos;
long d_base, new_d_base;
LADSPA_Data out;
float delay_depth;
float dp; // float delay position
float dp_frac; // fractional part
long dp_idx; // integer delay index
long law_p; // period of law
float frac = 0.0f, step; // Portion the way through the block
float law; /* law amplitude */
float n_ph, p_ph;
const float fb = f_clamp(feedback, -0.999f, 0.999f);
// Set law params
law_p = (float)sample_rate / law_freq;
if (law_p < 1) {
law_p = 1;
}
// Calculate base delay size in samples
new_d_base = (LIMIT(f_round(delay_base), 0, 25) * sample_rate) / 1000;
// Calculate delay depth in samples
delay_depth = f_clamp(detune * (float)sample_rate * 0.001f, 0.0f, delay_size - new_d_base - 1.0f);
step = 1.0f/sample_count;
for (pos = 0; pos < sample_count; pos++) {
if (count % law_p == 0) {
// Value for amplitude of law peak
next_law_peak = (float)rand() / (float)RAND_MAX;
next_law_pos = count + law_p;
} else if (count % law_p == law_p / 2) {
// Value for amplitude of law peak
prev_law_peak = (float)rand() / (float)RAND_MAX;
prev_law_pos = count + law_p;
}
// Calculate position in delay table
d_base = LIN_INTERP(frac, old_d_base, new_d_base);
n_ph = (float)(law_p - labs(next_law_pos - count))/(float)law_p;
p_ph = n_ph + 0.5f;
while (p_ph > 1.0f) {
p_ph -= 1.0f;
}
law = f_sin_sq(3.1415926f*p_ph)*prev_law_peak +
f_sin_sq(3.1415926f*n_ph)*next_law_peak;
dp = (float)(delay_pos - d_base) - (delay_depth * law);
// Get the integer part
dp_idx = f_round(dp - 0.5f);
// Get the fractional part
dp_frac = dp - dp_idx;
// Accumulate into output buffer
out = cube_interp(dp_frac, delay_tbl[(dp_idx-1) & (delay_size-1)], delay_tbl[dp_idx & (delay_size-1)], delay_tbl[(dp_idx+1) & (delay_size-1)], delay_tbl[(dp_idx+2) & (delay_size-1)]);
// Store new delayed value
delay_tbl[delay_pos] = flush_to_zero(input[pos] + (fb * out));
// Sometimes the delay can pick up NaN values, I'm not sure why
// and this is easier than fixing it
if (isnan(delay_tbl[delay_pos])) {
delay_tbl[delay_pos] = 0.0f;
}
out = f_clamp(delay_tbl[delay_pos] * 0.707f, -1.0, 1.0);
buffer_write(output[pos], out);
frac += step;
delay_pos = (delay_pos + 1) & (delay_size-1);
count++;
}
plugin_data->count = count;
plugin_data->prev_law_peak = prev_law_peak;
plugin_data->next_law_peak = next_law_peak;
plugin_data->prev_law_pos = prev_law_pos;
plugin_data->next_law_pos = next_law_pos;
plugin_data->delay_pos = delay_pos;
plugin_data->old_d_base = new_d_base;
]]></callback>
<port label="delay_base" dir="input" type="control" hint="default_low">
<name>Delay base (ms)</name>
<range min="0.1" max="25"/>
<p>This is the offset from the input time that the detune delay moves around.</p>
<p>10 is probably a good starting value.</p>
</port>
<port label="detune" dir="input" type="control" hint="default_low">
<name>Max slowdown (ms)</name>
<range min="0" max="10"/>
<p>This is the maximum delay that will be applied to the delayed signal, relative to the dry signal.</p>
</port>
<port label="law_freq" dir="input" type="control" hint="default_low,logarithmic">
<name>LFO frequency (Hz)</name>
<range min="0.05" max="100"/>
<p>This is the core frequency that the 'LFO' will move at. The LFO isn't actually an oscillator, but it does vary periodically.</p>
</port>
<port label="feedback" dir="input" type="control" hint="default_0">
<name>Feedback</name>
<range min="-1" max="1"/>
<p>Feedback applied from the output to the input, increases the depth of the effect, but makes it sound less like a real flanger.</p>
</port>
<port label="input" dir="input" type="audio">
<name>Input</name>
</port>
<port label="output" dir="output" type="audio">
<name>Output</name>
</port>
<instance-data label="sample_rate" type="long"/>
<instance-data label="count" type="long"/>
<instance-data label="prev_law_peak" type="float"/>
<instance-data label="next_law_peak" type="float"/>
<instance-data label="prev_law_pos" type="int"/>
<instance-data label="next_law_pos" type="int"/>
<instance-data label="delay_tbl" type="LADSPA_Data *"/>
<instance-data label="delay_pos" type="long"/>
<instance-data label="delay_size" type="long"/>
<instance-data label="old_d_base" type="long"/>
</plugin>
</ladspa>