forked from vlimant/mpi_learn
-
Notifications
You must be signed in to change notification settings - Fork 5
/
MPIDriver.py
executable file
·209 lines (183 loc) · 10.6 KB
/
MPIDriver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python3
### This script creates an MPIManager object and launches distributed training.
import sys,os
import numpy as np
import argparse
import json
import re
from mpi4py import MPI
from time import time,sleep
from mpi_learn.mpi.manager import MPIManager, get_device
from mpi_learn.train.algo import Algo
from mpi_learn.train.data import H5Data
from mpi_learn.train.model import ModelFromJson, ModelFromJsonTF,ModelPytorch
from mpi_learn.utils import import_keras
from mpi_learn.train.trace import Trace
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--verbose',help='display metrics for each training batch',action='store_true')
parser.add_argument('--profile',help='profile theano code',action='store_true')
parser.add_argument('--monitor',help='Monitor cpu and gpu utilization', action='store_true')
parser.add_argument('--trace',help='Record timeline of activity', action='store_true')
parser.add_argument('--tf', help='use tensorflow backend', action='store_true')
parser.add_argument('--torch', help='use pytorch', action='store_true')
parser.add_argument('--thread_validation', help='run a single process', action='store_true')
# model arguments
parser.add_argument('model_json', help='JSON file containing model architecture')
parser.add_argument('--trial-name', help='descriptive name for trial',
default='train', dest='trial_name')
# training data arguments
parser.add_argument('train_data', help='text file listing data inputs for training')
parser.add_argument('val_data', help='text file listing data inputs for validation')
parser.add_argument('--features-name', help='name of HDF5 dataset with input features',
default='features', dest='features_name')
parser.add_argument('--labels-name', help='name of HDF5 dataset with output labels',
default='labels', dest='labels_name')
parser.add_argument('--batch', help='batch size', default=100, type=int)
parser.add_argument('--preload-data', help='Preload files as we read them', default=0, type=int, dest='data_preload')
parser.add_argument('--cache-data', help='Cache the input files to a provided directory', default='', dest='caching_dir')
# configuration of network topology
parser.add_argument('--masters', help='number of master processes', default=1, type=int)
parser.add_argument('--processes', help='number of processes per worker', default=1, type=int)
parser.add_argument('--max-gpus', dest='max_gpus', help='max GPUs to use',
type=int, default=-1)
parser.add_argument('--master-gpu',help='master process should get a gpu',
action='store_true', dest='master_gpu')
parser.add_argument('--synchronous',help='run in synchronous mode',action='store_true')
# configuration of training process
parser.add_argument('--epochs', help='number of training epochs', default=1, type=int)
parser.add_argument('--optimizer',help='optimizer for master to use',default='adam')
parser.add_argument('--loss',help='loss function',default='binary_crossentropy')
parser.add_argument('--early-stopping', default=None,
dest='early_stopping', help='patience for early stopping')
parser.add_argument('--target-metric', default=None,
dest='target_metric', help='Passing configuration for a target metric')
parser.add_argument('--worker-optimizer',help='optimizer for workers to use',
dest='worker_optimizer', default='sgd')
parser.add_argument('--sync-every', help='how often to sync weights with master',
default=1, type=int, dest='sync_every')
parser.add_argument('--mode',help='Mode of operation.'
'One of "sgd" (Stohastic Gradient Descent), "easgd" (Elastic Averaging SGD) or "gem" (Gradient Energy Matching)',default='sgd')
parser.add_argument('--elastic-force',help='beta parameter for EASGD',type=float,default=0.9)
parser.add_argument('--elastic-lr',help='worker SGD learning rate for EASGD',
type=float, default=1.0, dest='elastic_lr')
parser.add_argument('--elastic-momentum',help='worker SGD momentum for EASGD',
type=float, default=0, dest='elastic_momentum')
parser.add_argument('--gem-lr',help='learning rate for GEM',type=float,default=0.01, dest='gem_lr')
parser.add_argument('--gem-momentum',help='momentum for GEM',type=float, default=0.9, dest='gem_momentum')
parser.add_argument('--gem-kappa',help='Proxy amplification parameter for GEM',type=float, default=2.0, dest='gem_kappa')
parser.add_argument('--restore', help='pass a file to retore the variables from', default=None)
args = parser.parse_args()
model_name = os.path.basename(args.model_json).replace('.json','')
with open(args.train_data) as train_list_file:
train_list = [ s.strip() for s in train_list_file.readlines() ]
with open(args.val_data) as val_list_file:
val_list = [ s.strip() for s in val_list_file.readlines() ]
comm = MPI.COMM_WORLD.Dup()
if args.trace: Trace.enable()
model_weights = None
if args.restore:
args.restore = re.sub(r'\.algo$', '', args.restore)
if not args.tf:
model_weights = args.restore + '.model'
# Theano is the default backend; use tensorflow if --tf is specified.
# In the theano case it is necessary to specify the device before importing.
device = get_device( comm, args.masters, gpu_limit=args.max_gpus,
gpu_for_master=args.master_gpu)
hide_device = True
if args.torch:
print("Using pytorch")
import torch
if hide_device:
os.environ['CUDA_VISIBLE_DEVICES'] = device[-1] if 'gpu' in device else ''
print ('set to device',os.environ['CUDA_VISIBLE_DEVICES'])
else:
if 'gpu' in device:
torch.cuda.set_device(int(device[-1]))
model_builder = ModelPytorch(comm, filename=args.model_json, weights=model_weights, gpus=1 if 'gpu' in device else 0)
else:
if args.tf:
backend = 'tensorflow'
if not args.optimizer.endswith("tf"):
args.optimizer = args.optimizer + 'tf'
if hide_device:
os.environ['CUDA_VISIBLE_DEVICES'] = device[-1] if 'gpu' in device else ''
print ('set to device',os.environ['CUDA_VISIBLE_DEVICES'])
else:
backend = 'theano'
os.environ['THEANO_FLAGS'] = "profile=%s,device=%s,floatX=float32" % (args.profile,device.replace('gpu','cuda'))
os.environ['KERAS_BACKEND'] = backend
print (backend)
import_keras()
import keras.backend as K
if args.tf:
gpu_options=K.tf.GPUOptions(
per_process_gpu_memory_fraction=0.1, #was 0.0
allow_growth = True,
visible_device_list = device[-1] if 'gpu' in device else '')
if hide_device:
gpu_options=K.tf.GPUOptions(
per_process_gpu_memory_fraction=0.0,
allow_growth = True,)
K.set_session( K.tf.Session( config=K.tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False,
gpu_options=gpu_options
) ) )
if args.tf:
model_builder = ModelFromJsonTF( comm, args.model_json, device_name=device , weights=model_weights)
print ("Process {0} using device {1}".format(comm.Get_rank(), model_builder.device))
else:
model_builder = ModelFromJson( comm, args.model_json ,weights=model_weights)
print ("Process {0} using device {1}".format(comm.Get_rank(),device))
os.environ['THEANO_FLAGS'] = "profile=%s,device=%s,floatX=float32" % (args.profile,device.replace('gpu','cuda'))
# GPU ops need to be executed synchronously in order for profiling to make sense
if args.profile:
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
data = H5Data( batch_size=args.batch,
cache = args.caching_dir,
preloading = args.data_preload,
features_name=args.features_name, labels_name=args.labels_name )
# We initialize the Data object with the training data list
# so that we can use it to count the number of training examples
data.set_file_names( train_list )
validate_every = int(data.count_data()/args.batch)
# Some input arguments may be ignored depending on chosen algorithm
if args.mode == 'easgd':
algo = Algo(None, loss=args.loss, validate_every=validate_every,
mode='easgd', sync_every=args.sync_every,
worker_optimizer=args.worker_optimizer,
elastic_force=args.elastic_force/(comm.Get_size()-1),
elastic_lr=args.elastic_lr,
elastic_momentum=args.elastic_momentum)
elif args.mode == 'gem':
algo = Algo('gem', loss=args.loss, validate_every=validate_every,
mode='gem', sync_every=args.sync_every, worker_optimizer=args.worker_optimizer,
learning_rate=args.gem_lr, momentum=args.gem_momentum, kappa=args.gem_kappa)
else:
algo = Algo(args.optimizer, loss=args.loss, validate_every=validate_every,
sync_every=args.sync_every, worker_optimizer=args.worker_optimizer)
if args.restore:
algo.load(args.restore)
# Creating the MPIManager object causes all needed worker and master nodes to be created
manager = MPIManager( comm=comm, data=data, algo=algo, model_builder=model_builder,
num_epochs=args.epochs, train_list=train_list, val_list=val_list,
num_masters=args.masters, num_processes=args.processes,
synchronous=args.synchronous,
verbose=args.verbose, monitor=args.monitor,
early_stopping=args.early_stopping,
target_metric=args.target_metric,
thread_validation = args.thread_validation)
# Process 0 launches the training procedure
if comm.Get_rank() == 0:
print (algo)
t_0 = time()
histories = manager.process.train()
delta_t = time() - t_0
manager.free_comms()
print ("Training finished in {0:.3f} seconds".format(delta_t))
json_name = '_'.join([model_name,args.trial_name,"history.json"])
manager.process.record_details(json_name,
meta={"args":vars(args)})
print ("Wrote trial information to {0}".format(json_name))
comm.barrier()
if args.trace: Trace.collect(clean=True)