Skip to content

Latest commit

 

History

History
345 lines (235 loc) · 10.1 KB

README.md

File metadata and controls

345 lines (235 loc) · 10.1 KB

openai-assistants-api-streaming

A sample application to demonstrate OpenAI Assistants API streaming, built using Next.js.


Next.jsを使用して作成されたOpenAI Assistants APIストリーミングをデモンストレーションするサンプルアプリケーション。

Motivation

This project is designed to serve as a sandbox for testing the streaming capabilities of the OpenAI Assistants API.

When streaming was first introduced a few weeks ago, I struggle to find resources to make it work, especially when it came to function calling. I hope this will be of assistance to others who may be seeking to implement it in Node.js or Next.js, in particular.

A few notes, however. To simplify things, I will not be using the Vercel AI SDK. Instead, I’ll be utilizing the ReadableStream from the Streams API. Also, I will not be using the createAndStream SDK helper functions provided by OpenAI. I will opt for the generic functions for streaming.


このプロジェクトは、OpenAI Assistants APIのストリーミング機能をテストするためのサンドボックスとして設計されています。

ストリーミングが数週間前に初めて導入されたとき、特に関数呼び出しについて動作させるためのリソースを見つけるのに苦労しました。これがNode.jsやNext.jsを特に実装しようとしている他の人々の助けになることを願っています。

ただし、いくつかの注意点があります。物事を単純化するために、私はVercel AI SDKを使用しないでしょう。代わりに、Streams APIからReadableStreamを利用します。また、OpenAIが提供するcreateAndStream SDKヘルパー関数を使用しないでしょう。私はストリーミングのための一般的な関数を選択します。

Application

Screenshot

A simple chatbot interface

Japanese

You can use it to converse in any language, for example, in Japanese.

Streaming: Client-side

This is the basic code required to manage streaming on the client-side.

// call our backend API
const response = await fetch('/api/stream', {
    method: 'POST',
    headers: {
        'Accept': 'application/json',
    },
    body: JSON.stringify({
        message: text,
        thread_id: threadId,
    })
})

// setup stream reader
const reader = response.body.getReader()

let is_completed = false

// do polling
while(!is_completed) {

    const { done, value } = await reader.read()

    if(done) {
        // exit loop when done
        is_completed = true
        break
    }

    // convert value to string
    const delta = new TextDecoder().decode(value)

    // this is the text output...
    console.log(delta)

}

Streaming: Backend

In this sample project, we will be utilizing existing Assistants that already have functions attached. We will also not be handling any Retrieval or CodeInterpreter tools.

First, we create a thread and add the message from the client-side.

let thread

if (thread_id) {
    try {
        thread = await openai.beta.threads.retrieve(thread_id)
    } catch(e) {
        console.error(`Failed to retrieve thread: ${e.message}`)
    }
}

if (!thread) {
    try {
        thread = await openai.beta.threads.create()
        thread_id = thread.id
    } catch(e) {
        console.error(`Failed to create thread: ${e.message}`)

        return new Response('Bad request', {
            status: 400,
        })
    }
}

const ret_message = await openai.beta.threads.messages.create(
    thread_id,
    {
        role: 'user',
        content: message
    }
)

It’s important to note that we will be sending the thread_id back to the client-side and will use this if it exists. If it doesn’t, we will create a new one.

Next, we set up a streaming response using the ReadableStream.

return new Response(
        new ReadableStream({
            async pull(controller) {

                // send text to the client side using
                // controller.enqueue()
                
                controller.close()

            }
        }),
        { 
            status: 200, 
            headers: {
                'Content-Type': 'text/event-stream'
            } 
        }
    )

After setting it up, we initiate the run with streaming.

At first, if we only want a text response, we can disregard function calling.

const stream = await openai.beta.threads.runs.create(
    thread_id,
    {
        assistant_id: process.env.OPENAI_ASSISTANT_ID,
        stream: true
    }

for await (const event of stream) {

    if(event.event === 'thread.message.delta') {
        
        // send text response to the client side
        controller.enqueue(event.data.delta.content[0].text.value)
    
    }

}

Simple enough, right? Now, let’s add a function calling handler.

let tool_outputs = []
let run_id

let stream = await openai.beta.threads.runs.create(
    thread_id,
    {
        assistant_id: process.env.OPENAI_ASSISTANT_ID,
        stream: true
    }

for await (const event of stream) {

    if(event.event === 'thread.message.delta') {
        
        // send text response to the client side
        controller.enqueue(event.data.delta.content[0].text.value)
    
    } else if(event.event === 'thread.run.requires_action') {
        if(event.data.status === 'requires_action') {
            if(event.data.required_action && event.data.required_action.type === 'submit_tool_outputs') {

                // save the run_id for submitToolOutputs call
                run_id = event.data.id

                const tools_called = event.data.required_action.submit_tool_outputs.tool_calls

                tools_called.forEach((tool) => {

                    const tool_name = tool.function.name
                    const tool_args = JSON.parse(tool.function.arguments)

                    // call your external API here to process your tools
                    const tool_output = { status: 'success' }

                    tool_outputs.push({
                        tool_call_id: tool.id,
                        output: JSON.stringify(tool_output)
                    })

                })

                console.log('tool-outputs', tool_outputs)

                // exit loop
                break

            }
        }
    }

}

// submit tools output
stream = openai.beta.threads.runs.submitToolOutputsStream(
        thread_id,
        run_id,
        {
            tool_outputs
        }
    )

for await (const event of stream) {

    if(event.event === 'thread.message.delta') {
        
        // send text response to the client side
        controller.enqueue(event.data.delta.content[0].text.value)
    
    }

}

This will handle a single function call. However, most of the time, functions will be called sequentially several times. As you may have already noticed, the code block handling the first run and the tools output submission is similar. This similarity allows us to unify it and place the handler inside a loop, letting it run until it completes its task. So, let’s rewrite our code:

let tool_outputs = []
let is_completed = false
let run_id

while(!is_completed) {

    let stream = tool_outputs.length === 0 ? await openai.beta.threads.runs.create(
            thread_id,
            {
                assistant_id: process.env.OPENAI_ASSISTANT_ID,
                stream: true
            }
        ) : openai.beta.threads.runs.submitToolOutputsStream(
            thread_id,
            run_id,
            {
                tool_outputs
            }
        )
    
    for await (const event of stream) {

        if(event.event === 'thread.message.delta') {

            // send text response to client-side
            controller.enqueue(event.data.delta.content[0].text.value)
        
        } else if(event.event === 'thread.run.completed'){

            // run is completed
            is_completed = true

        } else if(event.event === 'thread.run.requires_action') {
            if(event.data.status === 'requires_action') {
                if(event.data.required_action && event.data.required_action.type === 'submit_tool_outputs') {
                    
                    run_id = event.data.id

                    const tools_called = event.data.required_action.submit_tool_outputs.tool_calls

                    tool_outputs = []

                    tools_called.forEach((tool) => {

                        const tool_name = tool.function.name
                        const tool_args = JSON.parse(tool.function.arguments)

                        // call your external API here to process your tools
                        const tool_output = { status: 'success' }

                        tool_outputs.push({
                            tool_call_id: tool.id,
                            output: JSON.stringify(tool_output)
                        })

                    })

                    // exit the loop and submit the tools output
                    break

                }
            }
        }

    }

}

That’s it. This will handle parallel function calling and subsequent function calls.

Setup

Clone the repository and install the dependencies

git clone https://github.com/supershaneski/openai-assistants-api-streaming.git myproject

cd myproject

npm install

Copy .env.example and rename it to .env then edit the OPENAI_API_KEY and OPENAI_ASSISTANT_ID with your own values.

OPENAI_API_KEY=YOUR_OWN_API_KEY
OPENAI_ASSISTANT_ID=YOUR_OWN_ASSISTANT_ID

To run the app

npm run dev

Open your browser to http://localhost:3000/ to load the application page.