forked from foamliu/Scene-Understanding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
image_augmentation.py
67 lines (56 loc) · 1.97 KB
/
image_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import random
import cv2 as cv
import numpy as np
from imgaug import augmenters as iaa
from tqdm import tqdm
from config import img_rows, img_cols
from utils import get_image, get_category, to_bgr
seq = iaa.Sequential([
iaa.Fliplr(0.5),
iaa.CropAndPad(
percent=(-0.25, 0.25),
pad_mode=["wrap"],
),
iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-25, 25),
shear=(-8, 8),
order=[0],
mode='wrap'
)
])
seq_det = seq.to_deterministic()
seq_img = iaa.Sequential([
iaa.GaussianBlur(sigma=(0, 0.5)),
iaa.ContrastNormalization((0.75, 1.5)),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5),
iaa.Multiply((0.8, 1.2), per_channel=0.2),
], random_order=True)
if __name__ == '__main__':
with open('names.txt', 'r') as f:
names = f.read().splitlines()
filename = 'valid_ids.txt'
with open(filename, 'r') as f:
ids = f.read().splitlines()
ids = list(map(int, ids))
id = random.choice(ids)
name = names[id]
image = get_image(name)
category = get_category(id)
image = cv.resize(image, (img_rows, img_cols), cv.INTER_NEAREST)
category = cv.resize(category, (img_rows, img_cols), cv.INTER_NEAREST)
length = 10
images = np.zeros((length, img_rows, img_cols, 3), np.uint8)
categories = np.zeros((length, img_rows, img_cols), np.uint8)
for i in tqdm(range(length)):
images[i] = image.copy()
categories[i] = category.copy()
images_aug = seq_img.augment_images(images)
images_aug = seq_det.augment_images(images_aug)
categories_aug = seq_det.augment_images(categories)
for i in range(length):
image = images_aug[i]
category_bgr = to_bgr(categories_aug[i].astype(np.uint8))
cv.imwrite('images/{}_image_aug.png'.format(i), image)
cv.imwrite('images/{}_category_aug.png'.format(i), category_bgr)