forked from GPrathap/motion_planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
qt1.py
56 lines (43 loc) · 1.13 KB
/
qt1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import casadi as ca
# state symbolic variables
x = ca.SX.sym('w')
obj = ca.exp(0.2*x)*ca.sin(x)
g = [] # constraints
P = [] # problem parameters
variables = x # decision variable
nlp_prob = {
'f': obj,
'x': variables,
'g': g,
'p': P
}
opts = {
'ipopt': {
'max_iter': 2000,
'print_level': 0,
'acceptable_tol': 1e-8,
'acceptable_obj_change_tol': 1e-6
},
'print_time': 0
}
solver = ca.nlpsol('solver', 'ipopt', nlp_prob, opts)
lbx = ca.DM.zeros((1, 1))
ubx = ca.DM.zeros((1, 1))
lbx[0:1: 1] = -ca.inf # X lower bound
ubx[0:1: 1] = ca.inf # X upper bound
lbg = ca.DM.zeros((1, 1))
ubg = ca.DM.zeros((1, 1))
lbg[0:1: 1] = -ca.inf # constraints lower bound
ubg[0:1: 1] = ca.inf # constraints upper bound
args = {
'lbg': lbg, # constraints lower bound
'ubg': ubg, # constraints upper bound
'lbx': lbx,
'ubx': ubx,
'p':[],
'x0': -0.5
}
if __name__ == '__main__':
sol = solver(x0=args['x0'], lbx=args['lbx'], ubx=args['ubx'], lbg=args['lbg'], ubg=args['ubg'], p=args['p'])
min_value = sol['x'].full()
print(min_value)