Skip to content

Latest commit

 

History

History
231 lines (195 loc) · 7.52 KB

README.md

File metadata and controls

231 lines (195 loc) · 7.52 KB

R_Data-Visualization

library

library(ggplot2)
library(plyr)
library(tidyverse)
library(gridExtra)

Scatter Plot

ggplot( data=iris, aes(x=Sepal.Length, y=Sepal.Width, color=Species) ) +
       geom_point( size=3 )

【圖】

ErrorBar

plotData <- tribble( ~level, ~mean, ~cil, ~ciu,
                          1, 38.72, 38.1, 39.34,
                          2, 45.23, 41.6, 48.82,
                          3, 51.75, 48.7, 54.75,
                          4, 61.66, 61.1, 62.20
                   )

plotData %>% 
  ggplot() + 
  geom_point( aes(x=level, y=mean) ) +
  geom_errorbar( aes(x=level, ymin=cil, ymax=ciu) )

ggplot_errorbar

Bar

  • 探索類別
  • 已經統計過的資訊,繪製長條圖就必須要指定一個參數 stat="identity"
TFMqe <- data.frame( stringsAsFactors=FALSE,
                     Group=c( "Non-Fertile Chip",
                               "Non-Fertile Chip","Fertile Chip","Fertile Chip",
                               "Non-Fertile Chip","Fertile Chip","Non-Fertile Chip",
                               "Non-Fertile Chip","Fertile Chip","Non-Fertile Chip"),
                     NTopQualityEmbryos=c("Yes","Yes","Yes","Yes",
                                            "Yes","No","Yes","Yes","No","No")
)

ggplot( TFMqe, aes(x=NTopQualityEmbryos,
                   y=stat(count/sum(count)),
                   fill=Group) ) +
  geom_bar( position=position_dodge2()) +
  geom_text( aes(label=scales::percent(stat(count/sum(count)), 
             accuracy=0.01)),
             position=position_dodge2(.9),
             vjust=1.6,
             color="white",
             size=3.5,
             stat="count" ) +
  scale_y_continuous( label=scales::label_percent() ) +
  labs( x="NTopQualityEmbryos",
        y="Percentatges",
        fill="Group" ) +
  theme_minimal() +
  theme( legend.position = "bottom" )

ggplot_bar

iris.mean <- aggregate( iris[,1:4], by=list(Species=iris$Species), FUN=mean ) 
mydata <- cbind( stack(iris.mean[,-1]), Species=iris.mean$Species )
ggplot( mydata, aes(x=ind, y=values, fill = Species) ) + geom_bar( position="dodge", stat="identity" )

【圖】

Box

  • 探索不同類別與數值分佈的關係
mtcars$cyl <- factor(mtcars$cyl)
ggplot(data=mtcars, aes(x=cyl, y=disp)) + geom_boxplot()

【圖】

Histogram

  • 探索數值分佈
prediction_1 = 0.469
prediction_3 <- data.frame( prediction_3=rnorm(1000, 4, 3) )  
prediction_2b <- data.frame( prediction=rnorm(10000, 8, 3) )

ggplot( prediction_3 ) +
  geom_histogram( aes(x=prediction_3), binwidth=0.01 )
ggplot(prediction_2b) +
  geom_histogram( aes(x=prediction), binwidth=0.01 )

dats <- rbind( data.frame(pred=prediction_3$prediction_3, var='prediction_3'),
               data.frame(pred=prediction_2b$pred, var='prediction_2b') )

ggplot( dats, aes(pred, fill=var) ) + 
  geom_histogram( alpha=0.5, position="identity", bins=75 ) +
  geom_vline( xintercept=prediction_1 )

ggplot_histogram

h1 <- ggplot( data=iris, aes(x=Sepal.Length) ) + geom_histogram( )
h2 <- ggplot( data=iris, aes(x=Sepal.Length) ) + geom_histogram( binwidth=1 )
h3 <- ggplot( data=iris, aes(x=Sepal.Length) ) +
              geom_histogram( color="black", fill="blue", bins=10 )
h4 <- ggplot( data=iris, aes(x=Sepal.Length, color=Species) ) + geom_histogram( binwidth=1 )
grid.arrange( h1, h2, h3, h4, nrow=1, ncol=4 )

h1 + facet_grid( Species~. )                     # row

【圖】

point

  • 探索兩個數值的關係
p <- ggplot( data=mtcars, aes(x=wt, y=mpg, label=rownames(mtcars)) )
p + geom_point()          #以點呈現
p + geom_text( size=3 )   #以字呈現
p + geom_label()

【圖】

line

  • 探索數值與日期 (時間) 的關係
p <- ggplot( data=iris, aes(x=Sepal.Length, y=Sepal.Width, shape=Species, color=Species) )+
             geom_point()
p + geom_line( aes(y=Sepal.Width) )

curve

stat_function( fun, geom = "line" )

Map

Sp

require(raster)
require(sp)
require(lattice)
require(grid)

north <- list( "SpatialPolygonsRescale", layout.north.arrow(type=1), offset=c(0.95,0.85), scale=0.1 )
scale <- list( "SpatialPolygonsRescale", layout.scale.bar(),
               offset=c(0.55, 0.03), scale=0.4, fill=c("transparent","black") )
txt1 <- list( "sp.text", c(0.55, 0.08), "0" )
txt2 <- list( "sp.text", c(0.75, 0.08), "0.2" )
txt3 <- list( "sp.text", c(0.95, 0.08), "0.4" )
raster_layout <- list( north, scale, txt1, txt2, txt3 )
cuts <- c( 110, 120, 130, 140, 150, 160, 170, 180, 190, 200 )
spplot( raster(volcano), scales=list(draw=T), at=cuts, col.regions=palette(gray(seq(0,0.9,len=9))), sp.layout=raster_layout, add=T )
grid.text( "XXX (m)", x=unit(0.95, "npc"), y=unit(0.50, "npc"), rot=-90 )

Map

Taiwan

#(NOT RUN)
spplot( county2010, "grouping", col.regions=col, 
         colorkey=list(at=seq(0, 4, 1), labels=as.character(c( "0", "1", "2", "3", "4" )), 
                       col=col, space="left", height=0.4), 
         main=name.title, xlim=c(118,124), ylim=c(21.6,26.3) )

Taiwan Map

Dashboard

簡介

  • Shiny 主要特色:將資料分析結果轉換成互動式的網頁應用程式
  • 使用者介面 (User Interface):通常會使用 dashboardPage() 函數建構,而非常見的 fluidPage() 函數
    • 儀表板標頭 (header):dashboardHeader(),不需要也可關掉 disable=TRUE
      • 標題:title
      • 訊息選單:messageItem()
      • 通知選單:notificationItem()
      • 工作選單:taskItem()
      • 若想在後端修改選單元件,則需使用 dropdownMenuOutput() 設定輸出元件,並在伺服器端程式用 renderMenu() 作動態設定
    • 側邊選單 (sidebar):dashboardSidebar()
      • 每個選單 sidebarMenu() 中可有多個選項 meunItem()
      • 在選項中除可在第一個參數設定選項名稱外,也必須用 tabName 參數設定選項ID,以及 icon 參數加上圖示
    • 主頁面 (body):dashboardBody(),不需要也可關掉 disable=TRUE
      • 使用 tabItems() 來排版
      • tabItems() 中可用多個 tabItem() 來對應側邊欄位的每個選項,對應方式為設定相同的 tabName
      • tabItems() 中,再使用列 fluidRow 和欄位 column 或資訊區塊 box 的方式將圖表排版
  • 伺服器端程式 (Server Instruction)
    • 資料呈現方式:
      • 數字與文字:renderText()
      • 表格:renderTable(),DT套件支援互動式表格
      • 圖片:renderPlot()
      • 地圖:ggmap 套件或 leaflet 套件支援互動式地圖
  • 重要議題:
    • 快速將資料載入:考慮批次方式,先作預處理,降低資料量,以加快資料存取速度

更多參考資訊

更多參考資訊

參考資料