-
Notifications
You must be signed in to change notification settings - Fork 0
/
qso_SDSS_SDSS_matched_plotting.py
205 lines (158 loc) · 7.08 KB
/
qso_SDSS_SDSS_matched_plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 22 13:58:42 2014
@author: astronomy
modified qso_CRTS_SDSS_matched_plotting.py
meant to plot the log(sigma) vs log(tau) for Chelsea S82 results
matched to Javelin fits of SDSS r-band data, from chelsea_results_SDSS_load.py
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
from math import isinf
######################
# lOAD DATA #
######################
dir_in = 'QSO_SDSS_analysis/'
dir_out = 'QSO_SDSS_analysis/'
results_file = 'javelin_SDSS_chelsea_comparison_r_band.txt'
output = dir_in+ results_file
data = np.loadtxt(output,dtype='str' )
qso_name = data[:,0]
ra_crts = data[:,1].astype(float) # ra and dec in degrees
ra_sdss = data[:,2].astype(float)
dec_crts = data[:,3].astype(float)
dec_sdss = data[:,4].astype(float)
tau_med_jav_crts = data[:,5].astype(float)
tau_chelsea_sdss = data[:,6].astype(float)
sigma_med_jav_crts = data[:,7].astype(float)
sigma_hat_jav_crts = sigma_med_jav_crts * np.sqrt(tau_med_jav_crts / (2.0*365))
sigma_chelsea_sdss = data[:,8].astype(float)
sigma_hat_chelsea_sdss = sigma_chelsea_sdss * np.sqrt(tau_chelsea_sdss /(2.0*365) )
xmin = 0.001 # sigma limits
xmax = 5
ymin = 1 # tau limits
ymax = 70000
xlim = [xmin, xmax]
ylim = [ymin, ymax]
##########################
# SELECT POINTS TO USE #
##########################
good_LC = np.loadtxt(dir_in + 'good_err_LC.txt', dtype='str')
good_LC_cut = np.empty(0, dtype=str)
for i in range(len(good_LC)):
good_LC_cut = np.append(good_LC_cut, good_LC[i][2:-4])
good_LC_mask = np.zeros_like(qso_name, dtype='bool')
for i in range(len(qso_name)):
print '\nComparison in progress...', str((float(i) / float(len(qso_name)) )*100.0)[:5], '%'
good_LC_mask[i] = qso_name[i][:-14] in good_LC_cut
print 'Out of ', len(qso_name), 'objects, we use ', good_LC_mask.sum()
###########################
# DEFINE NEEDED FUNCTION #
###########################
def load_x_y(x_arr, y_arr, x_limits, y_limits):
print '\n Loading x and y ... '
x = x_arr
y = y_arr
# sieve out suspiciously bad values , based only on x and y
xinf = np.asarray(map(isinf,x),dtype=bool)
yinf = np.asarray(map(isinf,y),dtype=bool)
ttlinf = xinf + yinf
# ttlwh = np.where(ttlinf == True) list of good indices
gi = -ttlinf # good_indices
ysmall = np.where(y < y_limits[0])
ylarge = np.where(y > y_limits[1])
xsmall = np.where(x < x_limits[0])
xlarge = np.where(x > x_limits[1])
gi[xsmall] = False
gi[ysmall] = False
gi[xlarge] = False
gi[ylarge] = False
non_inf = len(np.where(gi == True)[0])
percent = (float(non_inf) / float(len(x))) * 100.0
print 'Out of ', len(x),' rows, we have ', non_inf, ' of those that match', \
'the criteria of ', x_limits[0],' < x <', x_limits[1],' and ', y_limits[0],\
' < y < ',y_limits[1], 'and only those are used for plotting ... '
return x[gi], y[gi], non_inf, percent
def histogram2D(x_arr, y_arr, number, percent, xlim, ylim, title, dir_out):
# args could include javelin results_file , from which you can
# take the info about the prior
font = 20
x = np.log10(x_arr)
y = np.log10(y_arr)
nbins =50
plt.clf()
fig1 = plt.figure()
# Define the canvas to work on and the grid
fig1 = plt.figure(figsize=[10,8])
gs = GridSpec(100,100,bottom=0.18,left=0.18,right=0.88)
# First histogram : Chelsea results
H, xedges,yedges = np.histogram2d(x,y,bins=nbins)
H = np.rot90(H)
H = np.flipud(H)
Hmasked = np.ma.masked_where(H==0,H)
ax1 = fig1.add_subplot(gs[:,:90])
pcObject1 = ax1.pcolormesh(xedges, yedges, Hmasked)
ax1.tick_params(axis='x', labelsize=font)
ax1.tick_params(axis='y', labelsize=font)
xmin = np.log10(xlim[0])
xmax = np.log10(xlim[1])
ymin = np.log10(ylim[0])
ymax = np.log10(ylim[1])
plt.xlim((xmin, xmax))
plt.ylim((ymin, ymax))
x_label_ch = r'$\log_{10}{ \, \left( \hat\sigma_{ch} \right)}$'
y_label_ch = r'$\log_{10}{ \, \left( \tau_{ch} \right)}$'
x_label_jav = r'$\log_{10}{ \, \left( \hat\sigma_{jav} \right)}$'
y_label_jav = r'$\log_{10}{ \, \left( \tau_{jav} \right)}$'
if title == 'ch' :
plt.ylabel(y_label_ch,fontsize=font+5)
plt.xlabel(x_label_ch,fontsize=font+5)
title_hist = 'S82 SDSS Chelsea results, '+ str(number) + ', i.e. ' + str(percent)[:5]+ '% points'
fname = dir_out + 'Chelsea_s82_SDSS_matched_sigma_hat_tau.png'
if title == 'jav' :
plt.ylabel(y_label_jav,fontsize=font+5)
plt.xlabel(x_label_jav,fontsize=font+5)
title_hist = 'SDSS Javelin results, '+ str(number) + ', i.e. ' + str(percent)[:5]+ '% points'
fname = dir_out + 'SDSS_Javelin_matched_sigma_hat_tau.png'
if title == 'ss' :
plt.xlabel(x_label_ch,fontsize=font+5)
plt.ylabel(x_label_jav,fontsize=font+5)
title_hist = 'S82 SDSS Chelsea vs JAVELIN r-band, '+str(number) + ', i.e. ' + str(percent)[:5]+ '% points'
fname = dir_out + 'SDSS_SDSS_matched_sigma_hat_sigma_hat.png'
if title == 'tt' :
plt.xlabel(y_label_ch, fontsize=font+5)
plt.ylabel(y_label_jav,fontsize=font+5)
title_hist = 'S82 SDSS Chelsea vs JAVELIN r-band, '+str(number) + ', i.e. ' + str(percent)[:5]+ '% points'
fname = dir_out + 'SDSS_SDSS_matched_tau_tau.png'
plt.title(title_hist, fontsize = font)
# Add the colorbar
axC = fig1.add_subplot(gs[:,95:])
axC.tick_params(axis='y', labelsize=font)
cbar = fig1.colorbar(pcObject1,ax=ax1, cax=axC, orientation='vertical')
cbar.ax.set_ylabel('Counts', fontsize=font)
plt.savefig(fname)
print 'File saved is ', fname
# Make log(sigma_hat) vs log(tau) histogram for Chelsea
x_arr, y_arr, number, percent = load_x_y(sigma_hat_chelsea_sdss[good_LC_mask], tau_chelsea_sdss[good_LC_mask], xlim, ylim)
histogram2D(x_arr, y_arr, number, percent, xlim, ylim, 'ch', dir_out)
##
### Make log(sigma_hat) vs log(tau) histogram for Javelin CRTS
x_arr, y_arr, number, percent = load_x_y(sigma_hat_jav_crts, tau_med_jav_crts, xlim, ylim)
histogram2D(x_arr, y_arr, number, percent, xlim, ylim, 'jav', dir_out)
##
### Make log(sigma_hat) vs log(sigma_hat) histogram
##
x_arr, y_arr, number, percent = load_x_y(sigma_hat_chelsea_sdss[good_LC_mask], sigma_med_jav_crts[good_LC_mask], xlim, xlim)
histogram2D(x_arr, y_arr, number, percent, xlim, xlim, 'ss', dir_out)
##
### Make log(tau) vs log(tau) histogram
##
x_arr, y_arr, number, percent = load_x_y(tau_chelsea_sdss[good_LC_mask], tau_med_jav_crts[good_LC_mask], ylim, ylim)
histogram2D(x_arr, y_arr, number, percent, ylim, ylim, 'tt', dir_out)
def median_and_rms(array):
median = np.median(array)
rms = np.percentile(array, 75) - np.percentile(array,25)
print median, rms
print '\nMedian and RMs from IQR (75-25%) range for Chelsea sigma hat is ', median_and_rms(x_arr)
print '\nMedian and RMs from IQR (75-25%) range for Javelin SDSS sigma hat is ', median_and_rms(y_arr)