This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from VITA-Group/DeblurGANv2
-
Notifications
You must be signed in to change notification settings - Fork 4
/
dataset.py
142 lines (116 loc) · 5.06 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
from copy import deepcopy
from functools import partial
from glob import glob
from hashlib import sha1
from typing import Callable, Iterable, Optional, Tuple
import cv2
import numpy as np
from glog import logger
from joblib import Parallel, cpu_count, delayed
from skimage.io import imread
from torch.utils.data import Dataset
from tqdm import tqdm
import aug
def subsample(data: Iterable, bounds: Tuple[float, float], hash_fn: Callable, n_buckets=100, salt='', verbose=True):
data = list(data)
buckets = split_into_buckets(data, n_buckets=n_buckets, salt=salt, hash_fn=hash_fn)
lower_bound, upper_bound = [x * n_buckets for x in bounds]
msg = f'Subsampling buckets from {lower_bound} to {upper_bound}, total buckets number is {n_buckets}'
if salt:
msg += f'; salt is {salt}'
if verbose:
logger.info(msg)
return np.array([sample for bucket, sample in zip(buckets, data) if lower_bound <= bucket < upper_bound])
def hash_from_paths(x: Tuple[str, str], salt: str = '') -> str:
path_a, path_b = x
names = ''.join(map(os.path.basename, (path_a, path_b)))
return sha1(f'{names}_{salt}'.encode()).hexdigest()
def split_into_buckets(data: Iterable, n_buckets: int, hash_fn: Callable, salt=''):
hashes = map(partial(hash_fn, salt=salt), data)
return np.array([int(x, 16) % n_buckets for x in hashes])
def _read_img(x: str):
img = cv2.imread(x)
if img is None:
logger.warning(f'Can not read image {x} with OpenCV, switching to scikit-image')
img = imread(x)
return img
class PairedDataset(Dataset):
def __init__(self,
files_a: Tuple[str],
files_b: Tuple[str],
transform_fn: Callable,
normalize_fn: Callable,
corrupt_fn: Optional[Callable] = None,
preload: bool = True,
preload_size: Optional[int] = 0,
verbose=True):
assert len(files_a) == len(files_b)
self.preload = preload
self.data_a = files_a
self.data_b = files_b
self.verbose = verbose
self.corrupt_fn = corrupt_fn
self.transform_fn = transform_fn
self.normalize_fn = normalize_fn
logger.info(f'Dataset has been created with {len(self.data_a)} samples')
if preload:
preload_fn = partial(self._bulk_preload, preload_size=preload_size)
if files_a == files_b:
self.data_a = self.data_b = preload_fn(self.data_a)
else:
self.data_a, self.data_b = map(preload_fn, (self.data_a, self.data_b))
self.preload = True
def _bulk_preload(self, data: Iterable[str], preload_size: int):
jobs = [delayed(self._preload)(x, preload_size=preload_size) for x in data]
jobs = tqdm(jobs, desc='preloading images', disable=not self.verbose)
return Parallel(n_jobs=cpu_count(), backend='threading')(jobs)
@staticmethod
def _preload(x: str, preload_size: int):
img = _read_img(x)
if preload_size:
h, w, *_ = img.shape
h_scale = preload_size / h
w_scale = preload_size / w
scale = max(h_scale, w_scale)
img = cv2.resize(img, fx=scale, fy=scale, dsize=None)
assert min(img.shape[:2]) >= preload_size, f'weird img shape: {img.shape}'
return img
def _preprocess(self, img, res):
def transpose(x):
return np.transpose(x, (2, 0, 1))
return map(transpose, self.normalize_fn(img, res))
def __len__(self):
return len(self.data_a)
def __getitem__(self, idx):
a, b = self.data_a[idx], self.data_b[idx]
if not self.preload:
a, b = map(_read_img, (a, b))
a, b = self.transform_fn(a, b)
if self.corrupt_fn is not None:
a = self.corrupt_fn(a)
a, b = self._preprocess(a, b)
return {'a': a, 'b': b}
@staticmethod
def from_config(config):
config = deepcopy(config)
files_a, files_b = map(lambda x: sorted(glob(config[x], recursive=True)), ('files_a', 'files_b'))
transform_fn = aug.get_transforms(size=config['size'], scope=config['scope'], crop=config['crop'])
normalize_fn = aug.get_normalize()
corrupt_fn = aug.get_corrupt_function(config['corrupt'])
hash_fn = hash_from_paths
# ToDo: add more hash functions
verbose = config.get('verbose', True)
data = subsample(data=zip(files_a, files_b),
bounds=config.get('bounds', (0, 1)),
hash_fn=hash_fn,
verbose=verbose)
files_a, files_b = map(list, zip(*data))
return PairedDataset(files_a=files_a,
files_b=files_b,
preload=config['preload'],
preload_size=config['preload_size'],
corrupt_fn=corrupt_fn,
normalize_fn=normalize_fn,
transform_fn=transform_fn,
verbose=verbose)