You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I noticed that the anova_stats function returns wrong partial eta squared values for repeated measures ANOVAs.
Please see the following reproducible example for details regarding the issue and its source:
library(sjstats)
# generate some data
set.seed(325)
dat <- expand.grid(
factor1 = c("A","B"),
factor2 = c("X","Y"),
participant = 1:10
)
dat$participant <- factor(dat$participant)
dat$value <- rnorm(length(dat$participant))
# add some main effects
dat$value[dat$factor1 == "A"] <- dat$value[dat$factor1 == "A"] + rnorm(dat$value[dat$factor1 == "A"], 5)
dat$value[dat$factor2 == "X"] <- dat$value[dat$factor2 == "X"] + rnorm(dat$value[dat$factor2 == "X"], 2)
# 2x2 repeated measures ANOVA
model <- aov(value ~ factor1*factor2 + Error(participant/(factor1*factor2)), dat)
summary(model)
# Error: participant
# Df Sum Sq Mean Sq F value Pr(>F)
# Residuals 9 17.41 1.935
#
# Error: participant:factor1
# Df Sum Sq Mean Sq F value Pr(>F)
# factor1 1 317.9 317.9 225.6 1.12e-07 ***
# Residuals 9 12.7 1.4
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Error: participant:factor2
# Df Sum Sq Mean Sq F value Pr(>F)
# factor2 1 28.70 28.70 12.16 0.00686 **
# Residuals 9 21.24 2.36
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Error: participant:factor1:factor2
# Df Sum Sq Mean Sq F value Pr(>F)
# factor1:factor2 1 4.814 4.814 4.581 0.061 .
# Residuals 9 9.457 1.051
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# Thus, partial eta squared values should be:
#
# main effect factor 1: 317.9 / (317.9 + 12.7) = 0.961585
# main effect factor 2: 28.70 / (28.70 + 21.24) = 0.5746896
# interaction effect factor 1:factor2: 4.814 / (4.814 + 9.457) = 0.3373274
#
# This is the results of anova_stats from the sjstats package
anova_stats(model)
# main effect factor 1: 0.971
# main effect factor 2: 0.752
# interaction effect factor 1:factor2: 0.337
# --> partial eta squared of last effect is correct, but of the other effects is wrong
# the source of this issue lies in the following line 160 of the anova_stats.R script:
#
# "ss.resid <- aov.sum[["sumsq"]][nrow(aov.sum)]"
# --> this line assumes that the last row in the anova structure contains the residuals
# --> thus it calculates the partial eta squared effect size for all effects with the residuals of the last effect in the model
# So here is a reproduction of the false partial eta squared values as calculated by the sjstats package for the above example:
# false ss.resid (9.457) for all effects:
# main effect factor 1: 317.9 / (317.9 + 9.457) = 0.9711111 -> false result reported by anova_stats
# main effect factor 2: 28.70 / (28.70 + 9.457) = 0.7521556 -> false result reported by anova_stats
# interaction effect factor 1:factor2: 4.814 / (4.814 + 9.457) = 0.3373274 -> this one is correct
The text was updated successfully, but these errors were encountered:
I noticed that the anova_stats function returns wrong partial eta squared values for repeated measures ANOVAs.
Please see the following reproducible example for details regarding the issue and its source:
The text was updated successfully, but these errors were encountered: